
JOINS OF SUBNORMAL SUBGROUPS

BY

DEREK . ROBINSON

1. Introduction

(1.1) Subnormal subgroups. A subgroup H of a group G is said to be
subnormal in G if there exist subgroups H0, H1, Hr such that

(1) H- H0_ HI_

_
H- G

where r is finite and, for i 0, 1, r 1, H is normal in H+I. We
shall use the familiar notation H <:l H+I to express this last fact; the rela-
tion of H to G is expressed by writing H <:l G.

Let G be a group and let sa(G) denote the set of all subnormal subgroups
of G. It is known that sn(G) is closed with respect to forming finite inter-
sections of its members. In this paper we are concerned with the problem
of deciding when a set of subnormal subgroups of G generate a subnormal
subgroup and in particular, therefore, when sn(G) is closed with respect to
forming finite joins of its members. Denote by the class of all groups in
which the join of any pair (and hence of any finite number) of subnormal
subgroups is subnormal. Then is the class of all groups G for which sn(G)
is a lattice (with respect to the operations set intersection and group theo-
retical join).

In a well-known paper [7] Wielandt showed that contains the class of
all groups which satisfy the maximal condition for subnormal subgroups. We
are able to prove the following generalization of Wielandt’s result.

THEOREM 4.3(i). If G is a group whose derived group G’ satisfies the maxi-
mal condition for subnormal subgroups, then G belongs to .
Our main result on the class is the following.

THEOREM 5.2. An extension of a group in the class by a group which
satisfies the maximal condition belongs to the class .
Another line of investigation is to impose conditions on a pair of subnormal

subgroups which will make their join subnormal. A sample of our results in
this direction is the following (Corollary 2 to Theorem 5.2).

If H and K are subnormal in G and their join J is an extension of an Abelian
group by a group satisfying the maximal condition, then J is subnormal in G.

In 6 examples of groups which fail to belong to the class are given.
Let be the class of all groups in which the join of any set of subnormal
subgroups is always subnormal. In 8 it is shown that is a proper sub-
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class of and also that an analogue of Theorem 5.2 holds for the class .
This is

THEOREM 8.3. An extension of a group in the class ’* by a group which
satisfies the maximal condition for subnormal subgroups belongs to the class ’*.

(1.2) Finiteness conditions. A set of subgroups of a group is said to satisfy
the maximal condition (Max) if and only if each ascending chain ia the set
has finite proper length (i.e., has finite length after deletion of any repeti-
tions). If the set of all subgroups of a group G satisfies Max, we say that
G satisfies Max; if merely the set sn(G) of all subnormal subgroups of G
satisfies Max, we say that G satisfies Max-s,. the maximal condition for sub-
normal subgroups. We recall two well-known results: (1) G satisfies Max if
and only if each subgroup of G can be finitely generated; (2) each finitely
generated nilpotent group satisfies Max, (see for example [5]).

(1.3) Conjugates and commutators. Let x, y, z,... be group elements.
--1xx denotes the coniugate y y of x and [x, y] denotes the commuta-

tor x-y-lxy x-lx. By [x, y, z] we understand [[x, y], z], and similarly for
higher commutators. The following three identities are well known.

(2) [xy, z] Ix, z][y, z]

(3)

(4)

Ix, yz] [x, z][x, y]

[x, y-Z, z][y, z-, x][z, x-, y]

If (Xx)x,a is a set consisting of non-empty subsets and of elements of a
group, {Xx:X cA} is the join or subgroup generated by the Xx’s. Let X, Y
be non-empty subsets and let H be a subgroup of a group. X is defmed to
be the group generated by all the conjugates xh, x e X, h e H. X" is the
normal closure of X in {X, H}, i.e., the smallest normal subgroup of {X, H}
which contains X. Clearly {X}" X" and XIx’’l X’. By [X, HI or

[H, X] we mean the group generated by all the commutators [x, h], x e X,
heH.

It is clear from the definitions that

(5) X" {X, [X, HI}
and

(6) {H, H} {H, [H, .x]},
(where of course H x-lHx). By the identity (3),

(7) IX, H]" [X, H].

[H, X, Y] is defined to be [[H, X], Y] and similarly for higher commu-
tator subgroups. We will occasionally employ the shorthand notation for
higher commutator subgroups suggested by P. Hall ia [2]. For example

HX[H, X, X] is written -/ and [H, X, Y, X] is written "3HXYX.
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(1.4) The standard series. Let X be a non-empty subset of a group G.
We define a descending chain of subgroups of G each member of which con-
tains X as follows.

for each ordinal a,

for each limit ordinal

Then G XG’ >_ X’1 >_ and X’"+ < Xa’" for all a; this is called the
standard series of X in G. There exists a first ordinal a such that
Xe’" X’"+1. If a is finite and Xa’" happens to coincide with {X}, IX} is
subnormal in G. The importance of the standard series arises from the.’ fact
that the converse of this result is true. Let IX} be subnolmal in G and sup-
pose that {X} H0 <:I H1 <:1 <:l Hr G, r being finite. Xa, Hr let
i > 0 and suppose that Xa’-

_
H_+I then

-JrHr-iq-1X’ xX’-< X"-+ < ..- H,-.

HenceXe’ _< Hr_,fori 0, 1, r and so {X} X’. Thus{X} is
subnormal in G if and only if {X} Xa’r, for some integer r.
The length of the standard series of a subnormal subgroup H of G is called

its index of subnormality and is denoted by S(G’H). Thus S(G’H) is the
least integer r for which H H’r, and the length of any series from H
to G cannot be less than r. This implies that if i is an integer such that
0 <_ i <_ S(G’H),

(8) S(G’H(’) i.

As H runs over sn(G), the function S(G:H) assumes non-negative integral
values. Obviously S(G:H) 0 if and only if H G and S(G:H) 1 if
and only if H is a proper normal subgroup of G. By equation (8) either S(G:H)
takes all non-negative integral values or else it has a least upper bound d in
which case S(G:H) assumes each of the values 0, 1, ..., d and no others.

Let r be a non-negative integer and let X be a non-empty subset of a group
G. Then

(9) X’’ {X, v"GXr}.
For r 0 this is evident, if we interpret vrGX as G. Let r > 0 and assume
that X‘’’- X, ,),"-IGXr-} Then

Xa,r xxG,"- XV,.-,ox,.- {X, TrGXr}
by (5). One consequence of equation (9) is that in a nilpotent group of
class c every subgroup is subnormal with index of subnormality at most equal
to c. This is a well-known result.

(1.5) Classes of groups. By definition a class of groups Y has the properties
(i) G --- G e implies that G , and (ii) contains a unit group. A group
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in the class is called an -group. If and ) are two classes of groups,
is defined to be the class of all groups which are extensions of -groups by
-groups. The followirg alphabet of classes of groups is used"

Abelian groups,

nilpotent groups,

nilpotent groups of

class <_ c,

finite groups,

finitely generated groups,

groups satisfying Max,
groups satisfying 5/Iax-s.

The term closure operation is used in the sense of Hall ([3]). We use only
the closure operations s, sn, Q; if is any class of groups then by

S,, Sn , Q,

we mean respectively the class of groups embeddable in an -group, the class
of groups subnormally embeddable in an -group, the class of quotient .groups
of an -group. is said to be (for example) s-closed if and only if
that is, a subgroup of an i-group is an -group.

2. Elementary results
The following facts about subnormal subgroups are fundamental and are,

for the most part, immediate consequences of the definitions. Let H, K, L
be subgroups of a group G.

(i) If H is subnormal in K and K is subnormal in L, then H is subnormal
in L and

S(L’H)

_
S(L’K) - S(K’H).

(ii) If H is subnormal in K, then H n L is subnormal in K n L and

S(K L’H a L)

_
S(K’H).

In particular if H

_
L

_
K, H is subnormal iu L and

S(L’H)

_
S(K’H).

(iii) Let a be a homomorphism of G into some group. Then if H is sub-
normal in K, H is subnormal in K" and

S(K":H")

_
S(K’H).

Suppose that H contains the kernel of a. Then H is subnormal in K if and
only if H is subnormal in K, and,

S(K"’H) S(K’H)
if either side exists.

Intersections of subnormal subgroups.

LEMMA 2.1. Let Hx, Kx, ( e A), be subgroups of a group and let
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H ’lxA Hx, K N,A Kx. If Hx is subnormal in Kx and S(Kx’Hx) <_ d for
all e A and some integer d >_ O, then H is subnormal in K and S K’H <_ d.

Proof. By hypothesis /Kx H, _< Hx for each h e h. Therefore

"KH <__ "KxH <_ Hx
and so

"KH <_ H.

In particular if H1, ..., Hn is a set of subnormal subgroups of a group
G, H Nl Hi is subnormal in G and S(G’H) <_ maxi_-l,2,...,n S(G:Hi).
Thus for any group G the set sn(G) is closed with respect to forming inter-
sections of finite numbers of its members--this is a well-known fact. How-
ever it is easy to see that the intersection of even a countably infinite descend-
ing chain of subnormal subgroups need not be subnormal.
For example let G be the group with two generators a and b subject only to

the defining relations
bah a- and b= 1.

G is of infinite dihedral type (and could also have been defined as a free prod-
uct of two groups each of order 2). Let H(m, n) {a’b, a’}, where the
integers m and n satisfy 0 _< m < 2. A simple calculation shows that
H(m, n) is subnormal in G and its index of subnormality is equal to n. (Indeed
apart from the subgroups of the infinite cyclic group {a}, which are obviously
all normal in G, the H(m, n)’s are the only subnormal subgroups of G.) De-
fine

H(m) H(m, n).

Then H(m) lamb}, which is easily seen to coincide with its normlizer in
G and, a fortiori, is not subnormal in G.

The join problem. We now consider the mai topic of this paper, the prob-
lem of deciding when the ioin of two subnormal subgroups of a group is sub-
normal. The starting point for an attack on the "join problem" is the next
lemma.

L,MM 2.2. Let H and K be subnormal subgroups of a group G and let
J {H, K}. Then if H is normal in J, J is subnormal in G and

(10) S(G’J) <_ S(G’H)S(G’K).

Proof. Let H Hr < Hr_ < < H < H0 Gbethe stand-
ard series of H in G, where r S(G:H). We prove first that each Hi is
normalized by K. If i 0 this is clear, so let i > 0 and assume that
KHi-1 Hi_l. Then

H (HH-I)K= (gK)-’ H-1 H,

since H <:1 J. Hence H H and H< H_I K,(i > 0). Now K is sub-
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normal in G (and hence in H_I K), so that HK is subnormal in H_I K
and also S(H_ K:HK) <_ S(H,_ K:K) <<_ S(G:K), (using the properties
(ii) and (iii) at the beginning of this section). Hence J HK is subnormal
in G and S(G:J)

_
r.S(G:K) S(G:H)S(G:K).

As a corollary of Lemma 2.2 we have a very useful criterion for two sub-
normal subgroups to have subrormal join.

LEMMA 2..3. Let H and K be two subnormal subgroups of a group G and let
J {H, K}. Then the following statements are equivalent.

J is subnormal in G.
(ii) H is subnormal in G.
(iii) [H, K] is subnormal in G.

Proof. Since [H, K] <:l H <:1 J, (i) implies (ii) and (ii) implies (iii).
Suppose that [H, K] is subnormal in G; then since

[H, K] <:1 H {H, [H, K]},

H is subnormal in G, by Lemma 2.2.
subnormal in G, again by Lemma 2.2.

Also H<:lJ {H,K}, so J is
Hence (iii) implies (i).

COROLLARY 1. ?I

__
: all nilpotent-by-Abelian groups are in .

COROLLARY 2. If in Lemma 2.3 one of the conditions is fulfilled, then

S(G:[H,K]) 1 <_ S(G:J) <_ {(S(G:H) 1)S(G:[H,K]) + 1}S(G:K).

COROLLARY 3. If H and K are subnormal in G, J
S(G:H) <_ 2, then J is subnormal in G and

{H, K} and

S(G:J) <_ 2S(G:K).

Proofs. (i) If G e Tt.l, G’ is nilpotent and so [H, K] is subnormal in G’
and hence in G.

(ii) Since [H,K]<:IJ, S(G:[H,K]) <_ S(G:J) + 1. The other part
of the inequality is obtained by working through the proof of the last part of
Lemma 2.3 and applying the inequality (10) twice.

(iii) Since S(G:H) <_ 2, H <:l H <:l G, where H Ha. For any x e K,
H*<:I H1, so H<:I H1. Hence H is subnormal in G with S(G:H) <_ 2.
The required result follows from Lemmas 2.2 and 2.3.

LEMMA 2.4. Let H and K be subnormal in G and let J {H,
if J HKH, J is subnormal in G and

Then

S(G:J)

_
rs(s + 1) (s - r 1)

where r S(G:H) and s S(G:K).

Proof. Let H Ht < Ht_l <... < HI < Ho J be the standard
series of H in J, where S(J:H). Let K H n K. If x is any element
of H,we can writex hkh2, (h,h.eH,keK). SinceH<_ H,
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eHK K
and so H HKi H. Also H+ <:l H, so that

H HKH <_ {H+, K} H+K _< H.
Hence

H Hi+ K.
We will prove by induction on i that H is subnormal in G. H H,
so we can assume that i and that H+ is subnormal in G. Now H is
subnormal in J with index of subnormality equal to i. From this it follows
that K is subnormal in K and S(K"K) <_ i. Hence K subnormal in G and

S(G’K) <_ S(G’K) - i s + i.

But we now have the following situation: H+ and K are subnormal in G,
H H+K and H+ <:1 H. By Lemma 2.2 H is subnormal in G and

(11) S(G:H) <_ S(G’H+) (sW i) (i= 0,1, ...,t- 1).

Since H0 J, J is subnormal in G. Also S(J"H) <_ r; therefore by (11)

S(G’J) <_ rs(s + 1) (s -r- 1).

COaOLaY. The join of a pair of permutable subnormal subgroups is sub-
normal.

This (probably well-known) result is an immediate consequence of Lemma
2.4.

3. Some lemmas on commutator subgroups
In the proofs of several of our theorems rather frequent use is made of some

simple results on commutator subgroups and normal closures. The most
important of these is Lemm 3.4, which may be of independent interest.

LE 3.1. Let H be a subgroup and let x be an element of a group. If
(hx) is a set of generators for H, then

[H, x] {[hx, x]" . A}.
Proof. Since [H, x]" [H, x], the right side is contained in the left. Hence

it is sufficient to show that each commutator [h, x], (h e H), is contained ia
,(i) h) where X(i) eA, (i) =d::l{[hi,x]" Xei} R. Let h ,x(1) ),

and n >_ 1. Suppose that n 1; then [hx(1), x] e R and

x(i) x] [hi(i), x]

so [h(), x] e R. Let n > 1; then in view of the equation
he(n)

[h,x] r() ,-)
,()" hll x] x]

[h, x] e R, by induction ou n aad the case n 1.
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COOLLAIY. Let H and K be subgroups of a group and let (hx)xx and
(],),,M be sets of generators for H and K respectively. Then

i [H, K] [hx K]" X
(ii) [H, K] ([hx, ,])’" X e h, e i}.

(These can be proved by a straight-forward application of Lemma 3.1.)

LEMMA 3.2. Let H and K be subgroups of a group and let (]C,),M be a set
of generators for K. Then for each integer m :> 1,

[H, K] {[H, ](1), ](r)], [H, ]c(1), ](_1), K]

(i) eM, r 1, ,m- 1}.

Proof. By the corollary to Lemma 3.1,

[H, K] {[H, ]’ M} {[H, ], [H, ]c, K]’ M}.

Let m > 2 and suppose that the result has been proved for m 1. Then

[H, K] {[H, ](1), ]c,(r)], [H, k,(), ]c(_), K]

(i) e M, r 1,...,m- 2}.

Now, by the case m 2 already dealt with, [H, ]c(), ..., ]c(_), K] is
generated by the subgroups [H, ]c(), k(_), k] and [H, ]c,(),
k(_.), ], K], where runs over M. By substituting these generating
subgroups in the last expression for [H, K], we obtain the required result.

LEMMA 3.3. Let H be a subgroup and let x, x, x, be a finite set of
elements of a group. Then for each integer m >_ 0 the subgroup generated by the
N 1 - n - n - - n conjugates of H, H()()’’’() 1 < i(1)
i(2), i(r) <_ n, r O, 1, m, coincides with the subgroup generated
by the N commutator groups [H, x() x() ..., x()], 1 _< i(1), i(r) <_ n,
r O, 1, m. (We must point out here that according to our convention if
r 0, H)’’’() and [H, x(1), x()] are both interpreted as H.)

Proof. if m 0, the lemma is trivially true, so suppose that m > 0.
Now let C(m) and K(m) denote respectively the subgroups generated by the
N conjugates of H and the N commutator subgroups. Then

C(m) {H,{H()’’’’() 1 <_ i(1), i(r) <_ n, r O, 1, ..., m 1}

"j= 1,2, ...,n}.

By induction hypothesis on m,

{H’’’’’ 1 _< i(1), ..., i(r) <_ n, r O, 1,..., m- 1}

{[H,x(), ..., x()] 1 <_ i(1), ..., i(r) <__ n,r O, 1, ...,m- 1}.

By combining these two results we obtain
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j= I, ,n,

<_ <_
1.r-- 0,1, ..., m-

Now [H,x(1), x(r)], (0 <_ r < m), is contained in the subgroup C(m 1),
generated by all the conjugates H()’’’(’), (0 _< s < m), by induction
hypothesis, and C(m 1)

_
C(m). Hence it is contained in the right side

of (12). In view of the equation

{[H, x(1) x(r)], [H, xi(), x()]}

{[H, x,), x(,)], [H, x(), ..., x(,), x]},
C(m) K(m) follows from equation (12).
Lemmas 3.2 and 3.3 constitute the main step ia the proof of the key Lemma

3.4.

LEMX 3.4. Let H and K be subgroups of a group and suppose that K has a
normal subgroup N such that KIN can be generated by a finite number n of
its elements. Then for any positive integer m,

U {{S, S}, f’HK"}

for certain elements k in K and 1 -- n -- n -- -- n’-i.

Proof. If m 1, the statement of the lemma is trivial, so let m > 1. By
hypothesis there exist elements x, x., ..., x, in K such that K
{x,...,x.,N}. Let K {x,...,x};thenK K1N, sinceN<:lK.
By lemma 3.2, [H, K] is generated by all the subgroups

[H, xi() x()] and [H, x() xi(_) K],

1_ i(1),...,i(r)

_
n,r- 1,2,...,m- 1. SinceH H,[H,K]I,

H is generated by all the 1 -[- n + n -t- + n- conjugates of H
of the form H()()’’’(’) 1 < i(1) i(2) i(r) < n, r O, 1,
m 1, (with our usual conventio if r 0), and by H/C; here we are
applying Lemma 3.3. Hence for suitable elements kl,/2, kt of K,

S (H) {H, "", St, /S/_
{IS, ".., H*I, "’HK’I

_
H,

since "’HK" is normalized by K and N

_
K.

4. Some sufficient conditions in the join problem
Notation. Let A be a subgroup and B a non-empty subset of a group.

cn(A, B) we shall mean the set of all subgroups of the form

Ab, Abe},

By
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and by cm(A, B) the set of all subgroups of the form

{[A, b], ..., [A, b]},

where n is a positive integer and bl, ..., b are elements of B.

LEMMA 4.1. Let H be a subnormal subgroup and let K be any subgroup of a
group G. Then the following are equivalent.

(i) cn(H, K) <_ sn(G).
(ii) cm(H, K) _< sn(G’).
Proof. Suppose that cn(H, K) _< sn(G) and let {[H,

be any member of the set cm(H, K). This subgroup is normal in

{H, [H, k], [H, k]} {H, H’, ...,
which is subnormal in G. Conversely let cm(H, K) <_ sn(G’) and let
H1, H’} belong to cn(H, K). Without loss of generality we may as-
sume that kt 1. Then

{H, H’, ..., H’1 {H, [g, k], ..., [H,

both H and {[H, k], ..., [H, k,]} are subnormal in G and H normalizes
[H,k], --., [H,k,]}. Thus we conclude via Lemma 2.2 that {H, H

is subnormal in G.
We can now state our first main result.

THEOREM 4.2. Let H and K be two subnormal subgroups of a group G and
let J {H, K}. Then either of the following two conditions is sujcient to
make J subnormal in G.

(i) cn(H, J) satisfies Max.
(ii) cm(H, K’) satisfies Max.

Proof. We will show that (ii) implies (i) and that (i) implies the sub-
normality of J in G.

Let cm(H, K") satisfy Max. First we note the obvious fact ca(H" J)
cn(H’KH). Let H1 <_ H _< be an ascending chain in the set cn(H, K’).
Without loss of generality we can assume that

Hi= {H,H", ...,H"’
Ktwherex e and m(2) <_ m(3) <_ .... Let L {[H, x.], [H,

Then
L._< L3_<

is an ascending chain in cm(H, K") and Hi {H, L}. Hence there exists a
positive integer n such that L, L,+ L,+ and therefore such that
H, H,+ H,+. Thus we have proved that cn(H, K’), (or
cn(H, J) ), satisfies Max.
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Next we will show by induction on r S(G:H) that J is subnormal in G.
Ifr 0, H G J, so we can suppose that r > 0. LetL {H,...,
H} be any member of the set cn(H, J). Let n > 1 and suppose that
M {H, H} has been shown to be subnormal in G. Let/ H.
Then M is subnormal in / and so is H; also S(/:H) r -1.
cn(H, L) satisfies Max, since

cn(H, L) _< cn(H, J).

Our induction hypothesis on r permits us to conclude that L {H, M} is
subnormal in/ and hence in G. Thus we have proved that

cn(H, J) _< sn(G).

Since cn(H, J) satisfies Max, He cn(H, J). Hence H and therefore J
is subnormal in G (by Lemma 2.3).

COROLLRr. Let H and K be subnormal in G. If [H, K] satisfies Max, then
J {H, K} is subnormal in G.

For if L e cm(H, K), L _< [H, K] [H, K]; so the given condition im-
plies that cm(H, K) satisfies Max. The result follows at once from the
theorem.

THEOREM 4.3. Let H and K be subnormal in G and let J {H, K}. Then
either of the following wo conditions is sucient o make J subnormal in G.

G’ satisfies Max-s.
(ii) J’ satisfies Max-s.

Proof. (i) Let G’ satisfy Max-s and let r S(G:H). Assume that
r > 0. Let/ H; now/’ satisfies Max-s, so by the induction hypothesis
and the argument of the second part of the proof of Theorem 4.2, cn(H, J) _<
sn(G). This implies that cm(H, J) _< sn(G’), by Lemma 4.1. But by
hypothesis sn(G’) satisfies Max and so cm(H, J) does too. That J is sub-
normal in G follows via Theorem 4.2.

(ii) Let J’ satisfy Max-s. By (i) it follows that cn(H, J) _< sn(J) and
by Lemma 4.1 that cm(H, J) _< sn(J’). Hence cm(H, J) satisfies Max and
so J is subnormal in G, by Theorem 4.2.
The next theorem has been proved by Baer [1].
THEOREM 4.4. Le H and K be wo subnormal nilpotent subgroups of a group

G and suppose that J {H, K} can be finitely generated. Then J is nilpotent
and subnormal.

This may of course be proved by means of the Hirsch-Plotkia theorem.
However we shall give a different proof based on Lemma 3.4. First a lemma
is needed.

LEMMA 4.5. If H and K are two subnormal nilpoten subgroups of a group,
J {H, K} and H < J, then J is nilpotent.
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Proof. LetK K8 < K8_1 < < Ko J be the standard series of
KinJ, wheres= S(J:K). We can assume thats>0. LetHe= KnH:
then K H K, since J HK, andK H K+I. Now let i < s and sup-
pose that K+I is nilpotent. H is contained in H and hence is nilpotent.
K+ <:] K and H<:I K because H <:] J. Hence K H Ki+ is nilpotent
by Fitting’s theorem (which asserts that the product of two normal nilpotent
subgroups is nilpotent). It follows that J K0 is nilpotent and that if C(H),
C(K) and C(J) are respectively the nilpotent classes of H, K and J, then

(13) C(J)

_
C(K) - S(J:K)C(H).

Proof of Theorem 4.4. Since J is finitely generated, it can be generated by
two finitely generated subgroups, one contained in H and the other in K.
Now any subgroup of H or K is subnormal in G and nilpotent, so we may as
well assume that H and K are finitely generated.

Let r S(G:H) and s S(G:K); we assume that r > 0 and s > 0 and
use induction on r. If d is the nilpotent class of K, 7"+HK8+ 1 and

(14) HK {H1, ..., gt}

by Lemma 3.4, where x, xt e K, 1 n - n n+- and
K can be generated by n elements. Since S(Ha’H) r 1, H: is sub-
normal in G and nilpotent, by (14) and the induction hypothesis. By
Lemmas 2.3 and 4.5, J is subnormal in G and nilpotent.
In conclusion we remark that if H and K can be generated by m and n

elements respectively, it is possible by the methods of the proof to find upper
bounds for S(G:J) and C(J) in terms of S(G:H), S(G:K), C(H), C(K),
m and n; the inequalities (10) and (13) are needed. One would of course
expect such upper bounds to be rather crude.

5. The classes (R), (R), (R)

We hve lredy defined to be the class of 11 groups i which ech pir
of subnormal subgroups generates a subnormal subgroup. It is convenient
to introduce two further classes of groups connected with the join problem.

Definitions. (a) A group G belongs to the class if and only if given
a group X with two subgroups Y, Z both of which are subnormal in
X, W {Y, Z} is subnormal in X if W can be embedded in G.
Thus 1 is the largest s-closed class of groups with the property that, in

any group, an rsubgroup which is the join of a pair of subnormal subgroups
is itself subnormal.

(b) A group G belongs to the class if and only if G belongs to the class
and, given a group X with Y, Z subnormal subgroups of X, W Y, Z}

is subnormal in X, if W can be embedded subnormally in G, (i.e., if W is
isomorphic with a subnormal subgroup of G).
Thus . is the largest s-closed subclass of with the property that an
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.-subgroup (of any group) which is the join of a pair of subnormal sub-
groups is itself subnormal.

LEM 5.1. (i) S , S. ., SI 1.
(ii) < <.

Proof. The s-elosure of and . and the s-closure of are immediate.
So are the inclusions _< . _< . Obviously contains the class 9t,
but . does not even contain the class 9h, by Theorem 6.1 below; hence. . We will show that s. contains properly; this of course implies
that .
To establish the assertion it is sufficient to show that any countable .group

can be embedded in a simple group. For contains the class of all simple
groups (by Theorem 4.3 (ii)), but by the results of the next section does
not contain the class of all countable groups. One way of proving this is to
make use of a theorem of Schreier and Ulam [6] on the normal structure of the
group 2 of all permutations of a countably infinite set. These authors have
shown that a proper normal subgroup of 2 consists entirely of finite permuta-
tions (i.e., of permutations fixing all but a finite number of the elements of
the set). Let 2 be the subgroup of all finite permutations; then 2;/2 is
simple. Now let G be any countable group: if G is finite, it can easily be
embedded in a countably infinite group, so we can assume that G is infinite.
2 may be regarded as permuting the elements of G. Thus G can be era.
bedded in 2 by means of its regular representation x --> x*, (x e G), x* being
the permutation of G in which g ---) gx, (g e G). Let G* be the subgroup of all
x*, (x e G). Then, since 2 n G* 1, G is effectively embedded in
as the subgroup G*/.

The main theorem on the classes , 1, .
THEORE 5.2. Let denote one of the three classes , , . Then

an extension of an -group by a group satisfying Max is an -group. In other
words .
For the classes , . there is a slightly more general result.

TEORE 5.2*. Let denote one of the two classes , . Then an ex-
tension of an -group by a group in which each subnormal subgroup is finitely
generated is an -group.

Proof. We will prove the more general result for the classes and .
Each proof makes use of the key Lemma 3.4.

(i) Let G be a group with a normal -subgroup N such that each sub-
normal subgroup of GIN is finitely generated; we have to show that G is an
-group. Let H and K be two subnormal subgroups of G and let J H, K}.
The proof that J is subnormal in G is by induction on r S(G:H);
we can assume that r > 0 and s S(G:H) > 0. Since KN/N is subnormal
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in G/N, K/A is finitely generated, where A K n N.

(15) HK {{H1, ..., HA’ , /HK},

By Lemma 3.4

where kl, ...,/t are elements of K and is finite. Let

(16) L H1, H, /HK}
Since s S(G:K), o/HK is contained in K and /HK <:1 K. Hence /HK
is subnormal in G. Let // Ha; //n N is an -group, every subnormal
subgroup of//// N is finitely generated and also S(//:H) r 1.
Therefore, by the induction hypothesis on r, L is subnormal in//and hence
inG. Let S(G:L) and letB LsN. ByLemma 3.4

(17) AL {As }/AL
where A belongs to cn(A, L), (because LN/N is subnormal in GIN and hence
L/B is finitely generated). Now 3,AL is contained in L and therefore is
subnormal in G; A K N and B L n N are subnormal in G. Hence
M {A, B, 3,AL} is the join of a finite set of subnormal subgroups of the
-group N. It follows that M is subnormal in G. B <_ L, so B normalizes
o/AL and AL< M, by equation (17). Thus we have proved that A is
subnormal in G. But both A and L are subnormal in G and therefore L is
subnormal in G, by Lemma 2.3. By equations (15) and (16), L H,
and so J is subnornml in G.

(ii) LetH andK be subnormal subgroups of a group G and let J H, K}.
Suppose that J has a normal .-subgroup N such that each subnormal
subgroup of J/N is finitely generated. It has to be shown that J is subnor-
mal in G. The argument is by induction on r S(G’H);let r > 0 and
s S(G’K). Since < , Je, by (i). LetA= KnN; thenK/A
is finitely generated, so that

H {H, /HK},
where H belongs to cn(H, K). As before let us write

L {H, 3,HK}
and B L n N. Since J e , L is subnormal in J, from which we conclude
that B belongs to . and each subnormal subgroup of L/B is finitely generated.
The induction hypothesis on r may now be pplied to L, as the join of a finite
set of subnormal subgroups of// Ha, and our conclusion is that L is sub-
normal in G. Let S(G’L); since L/B is finitely generated,

A " {A, /AL},
where Ax belongs to cn(A, L). The group M {A, B, AL} is subnormal
in J, (since J e ), and hence in N. Therefore M is subnormal in G, because
it is the ioin of a finite number of subnormal subgroups of G (since A <:l K
and B <1 L) and is subnormal in the .-group N. It follows just as in (i)
that J is subnormal in G.
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(iii) Let H and K be two subnormal subgroups of G and let J {H, K}.
Suppose that J has a normal l-subgroup N such that J/N satisfies Max.
Then by the argument used in (ii) one can show that J is subnormal in G.

This completes the proof of Theorems 5.2 and 5.2* and we will now mention
some special cases.

COROLLARY 1. (@ n)

_ . So, in particular, all finitely generated
metanilpotent (i.e., nilpotent-by-nilpotent) groups belong to the class .
Coaoav 2. _< (R).

COROLaY 3. If the join of a pair of subnormal subgrouos is finitely gen-
erated and metabelian, then it is subnormal.

The second corollary follows because ?I

_ , by Lemma 2.2. By Theorem
6.1, ?I is not

_
and ?I: is not

_
;hence the "finitely generated" cannot

be omitted in either Corollary 1 or 3.
Various more complicated results cau be read off from Theorem 5.2. For

example, !gt ?I

_ , by Theorem 4.3, and hence

(.) < ..
There are two further results of the same type, but rather easier.

THEORE 5.3. (i) An extension of a group with a composition series of
finite length by an -group is an -group.

(ii) An extension of a nilpotent group by an :-group is an -group.

Proof. (i) Let G have a normal subgroup N such that GIN is an -group. Let us for the moment assume that N is finite and write C Ca(N).
If L and M are subnormal subgroups of C, {L, M/ <:1 {L, M, N/ and
{L, M, N/ is subnormal ia G, since G/N . Hence C e . Also G/C is
finite and so G e , by Theorem 5.2.
Now suppose that N has a composition series of finite length m,

1= No N1 N N.

Letm > 0, (ifm 0, N landG),andlet Na _< Nand
N/fir has a composition series of length

_
m 1. Thus by induction on

m we can assume that G/fI e . Now N is simple; if it has prime order,
J, as the join of subnormal finite subgroups of a group with a composition
series of finite length, is finite, [7, Satz 10]; therefore G e , by the
first part. So we can assume that N is a non-Abelian simple group. By a
theorem of Wielandt, [8], in any group a subnormal non-Abelian simple
subgroup normalizes every other subnormal subgroup. Hence if H nd K
are subnormal in G and J {H, K}, J <3 J. However G/I e, so
Jf is subnormal in G. It follows that G e .

(ii) Let G have a nilpotent normul subgroup N such that GIN is an
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2-group. Let c be the nilpotent class of N; if c 0, N 1 and G e 2 < ,
so we may assume that c > 0. Let Z be the centre of N; then Z is charac-
teristic in N and so normal ia G. Since N/Z is nilpotent of class c 1,
G/Z by induction hypothesis on c. Now let H and K be two subnormal
subgroups of G and let J be their join. Then JZ is subnormal in G, so what
we have to show is that J is subnormal in JZ. Since N <:1 G and Z is the
centre of N, J n N < JZ. Further H(J r N)/J N and K(J N)/J N
are subnormal in JZ/J r N and their join is J/J r N. But J/J r N . JN/N
which is subnormal in G/N, since GIN e . < . By definition of the class

J/J N is subnormal in JZ/J N and J is subnormal ia JZ.

COROLLARY. )(( a l) _< . In particular all finitely generated soluble
groups of derived length at most equal to 3 belong to the class .

This follows at once from Theorem 5.3 (ii) and Corollary 3 to Theorem
5.2. We remark that in Section 6 it is shown that soluble groups of derived
length 3 are not necessarily in if they cannot be finitely generated; also
finitely generated soluble groups of derived length 4 do not in general belong
to (see Theorems 6.1 and 6.2).

5. Cooaterexampies
We shall now show how to construct examples of groups not in the class (R).

I am grateful to Professor P. Hall for drawing my attention to this construc-
tion. A similar example is given in the book by Zassenhaus [9, p. 235].
Let Z denote the set of all integers and let be the set of all subsets X of Z

such that there exist integers l(X) and L L(X), <_. L, with the prop-
erty that X contains all integers _< and no integers > L. Roughly speak-
ing, X contains all large negative integers but no large positive integers.

Let A and B be two elementary Abelian 2-groups with sets of basis ele-
ments respectively

(18) (ax)x$ and (bx)x,$.
For each n e Z two utomorphisms of M A B, u aad v, re defined by
the rules

(19)
[A, u] 1 [B, v]

[bx, u,] ax+, and [ar, v] bx+.
for each X e 6. Our notation here is as follows, if nl, n2, n are inte-
gers, (r being finite), and X e 6, ax+nl+...+,r is to mean at, where

Y X t (nx) t (n2) t t (n,)

if the n’s are all different and none of them belongs to X; otherwise
ax+,+...+nr 1. Similar remarks apply to bx+l+...+,. Also [bx, u,] is
used to denote blb. It is easy to check that these definitions mke u and
v automorphisms of M.
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It follows at once from (19) that for m, n e Z

[ax, u, u.] [bx, u, u.] 1 [a, v, v.] [bx, v, v.].

Hence

(20) [u,u] 1 [v,v] and u 1 v.
LetH {u’neZ} andK {v,’neZ}. Then H and K are elementary
Abelian 2-groups of ra 0. Let , [u, v]; by the identity

[Um, V:1, " 1, aX - v]TM 1a] Ivy, u] [a, u,

and equations (19) and (20), we get

(21) lax, z] ax++ and similarly [bx, z=] bx++=.
For all l, m, n Z,

(22) z,= 1 and [z.,u] 1= [z,,v].

The first part follows from

[ax z] [ax

For the second part one has the identity

"" u7, bxlt[u b, z] 1.[bx z u,] [z

By equations (19), (20) and (21), [bx [z u]] ax+t++ 1. Simi-
larly, [ax, [z, ut]] 1.

Let J {H, K}. Then it follows easily from (22) and Corollary (ii) to
Lemma 3.1 that J is nilpotent of class 2 and has exponent 4.
Next it will be shown that

(23) [H, B] A and [g, A] B.

Of course it is clear that [H, B] A, by (19). Let X e and let n be the
largest integer in X. Let Y X (n); clearly Y e g. Then [H, B] con-
tains the element

[b, u] a+ a.

Hence [H, B] A; the other equation follows by symmetry.
Let G be the split extension of M by the group of automorphisms

J {H,K}.
G JM, MG and JnM 1.

Nowga (HM) (HS) {H,A} {H,M},by (23). Hence

Ho. Ha H M HM H H, A

since H commutes elementwise with [H, K]. Thus H H’. However

H’a= Ha’ H,
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since [H, A] 1. Thus we have proved that H is subnormal in G and that
S(G"H) 3 (similarly of course for K).
But J {H, K} is not subnormal G. Indeed, J has two much stronger

properties than non-subnormality, namely J is neither ascendent nor descend-
ent in G. A subgroup of a group is said to be ascendent (descendent) if it
occurs in an ascending (descending) series in G. (Here we use the term
"series" in the sense of Hall [3].) A subnormal subgroup is both ascendent
and descendent.
J is not descendent in G because ja G and so J is not contained in any

proper normal subgroup of G. For ja >_ IHB, K.} {H, A, K, B} G,
by (23).
J is not ascendent in G because J coincides with its normalizer No(J) in

G. For ifJ < No(J), thenCe(J) 1, sinceJnM 1. But letxbe
any element of J different from the unit element; then x is a finite product
of ax’s and bx’s, (X e 8). Choose n e Z to be larger than any integer in any
X involved in this finite product. Then x cannot commute with both u.
and v. Hence CM( J) 1.
Hence we have proved

THEOREM 6.1. There exists a group G with a normal subgroup M such that
(i) M is a countably infinite elementary Abelian 2-group.
(ii) G is a split extension of M by a group of automorphisms J which is

nilpotent of class 2 and has exponent 4.
(iii) J {H, K} and H K 1, where H and K are countably in,hire

elementary Abelian 2-groups.
(iv) H and K are both subnormal in G and

S(G:H) 3 S(G:K).

v) J No J and ja G. Thus J is neither ascendent nor descendent
in G and so is certainly not subnormal in G.

A finitely generated counterexample. The group G which has just been
constructed is a soluble group with derived length 3 not in the class . G
cannot be finitely generated. It is rather easy to obtain from G a finitely
generated soluble group (of derived length 4) which fails to belong to .

Let X belong to the set 8; then we will define X* to be the set of all inte-
gers of the form n - 1, where n e X. Clearly X*e 8. An automorphism
of G is defined by the rules

b. b, (X e 8)ax ax,

U n+l V Vn+ (n e Z).

We omit the easy verification of the fact that as defined is an automorphism
of G. Let ( be the split extension of G by the infinite cyclic group T t},

TG, G< and T( 1.
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can be generated by five of its elements, namely

u0, v0, ax0, bx0 and t,

where X is the set of all integers

_
r. For clearly, if we put

L {u0, Vo, axo, bxo, t},

L >_ {J,T}. LetXe$;wecanwrite

X X, u (nl) u (n2) u u (n) (ni ni, i j),

for certain integers r, s and n. :> r. Now axr t-raxotr, so ax, belongs to L,
as does bx, by symmetry. Also

[ax, v, u, Vn u,.

equals either ax or bx (according to whether s is even or odd). Hence L
contains ax and bx thus L .
H and K are subnormal in . Since Ha H and Ka K,

S(’H) 3 S(:K).
But J is neither ascendent nor descendent in , siace it is neither ascendent
nor descendent in G. Thus we can state

THEOREM 6.2. There exists a finitely generated ?I?I-group which con-
tains two subgroups each of which is subnormal in with index of subnormality
3, but whose join is neither ascendent nor descendent in G. in particular
@ n ?Ig.?I is not (R).

7. Groups with bounding functions
Let H and K be two subnormal subgroups of a group G and let J {H, K}.

Even if J is subnormal in G, there need not be a close connection between
S(G: J) on the one hand and S(G:H) and S(G" K) on the other. In general
it is not possible to find an upper bound for S(G’J) in terms of S(G’H) and
S(G’K). Of course if S(G’H)

_
2, then S(G’J)

_
2S(G:K) (Lemma

2.3, Corollary 3). But even if S(G:H) 3 S(G’K), S(G:J) may be
arbitrarily large.
For example let G JM be the group constructed in Section 6. Let n

be an integer > 1 and let H(n) and K(n) be generated by u0, u2,
and vl, v3, vn_l respectively. It is not difficult to verify that

S(G:H(n) 3 S(G’K(n) ).

Let J(n) {H(n), K(n)}. J(n) is subnormal in G, by Theorem 4.4. But

S(G" J(n) > 2n,

because, if X is the set of all negative integers,
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[b:, u0, vl, u., v3, u.n-., v-l] br # 1

where Y is the set of negative integers with 0, 1, 2, 2n 1 adjoined.
Suppose that we can assign to a group G a function f(o) of two variables,

assuming non-negative integral values for non-negative integral values of
the variables, such that for each pair of subnormal subgroups H and K, their
join J is subnormal in G and

(24) S(G’J) <_ f(e)(S(G’U), S(G’K)).

Such a function will be called a bounding function for G and the class of all
groups which possess a bounding function will be denoted by . Then by
definition < .

Let G be a group with a bounding function f(e). Then we can define a
function ]() which is monotonic increasing in both variables and which is
also a bounding function for G, namely the function defined by

f(e)(25) ]() (x, y)= max0_<.< (u, v),

where d max(x, y). It is easy to verify that ](o) is monotonic increasing
in both variables; clearly f(e)(x, y) <_ ](O)(x, y), for all (x, y). Hence a
group which has a bounding function also has a monotonic one.

LEMMA 7.1. The class is q- and s,-closed.

Proof. Let G e and let f() be a bounding function for G. Let N <:1 G
and suppose that H/N and KIN are subnormal in GIN. Then H and K are
subnormal in G and J {H, K} is subnormal in G with

(26) S(G’J) <_ f(e)(S(G:g), S(G:K)).

But the indices of subnormality of H/N, KIN and J/N in GIN are the same
as those of H, K and J in G, respectively. Hence f(e) is also a bounding
function for G/N.
Next let M be any subnormal subgroup of G and let H, K be subnormal in

M; let J {H,K}. Then H,K and J are all subnormal in G and
also S(G’J) <_ f(e)(S(G’H), S(G:K)). Choose f(e) to be monotonic (in-
creasing) in both variables. Then, in view of the inequalities,

S(G’H) <_ S(G’M) + S(M:H),

S(G’K) < S(G’M) + S(M’K),

S(M" J) <_ S(G" J),

the function f(M) defined by

(27) f(M)(x, y) f(e)(S(G’M) + x, S(G’M) + y)

is a bounding function for M. Clearly f(M) is a bounding function for any
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subnormal subgroup of G whose index of subnormality does not exceed
S(G:M).

THEOREM 7.2. Let G be a group with a normal subgroup N such that
N belongs to the class

(ii) each subnormal subgroup of GIN can be generated by n elements, where
n is a fixed integer.
Then to each monotonic bounding function f(v) of N we can assign a monotonic
function Fs(v) of two variables, taking non-negative integral values for non-
negative integral values of the variables, such that for each pair of subnormal
subgroups H, K of G, their join J is subnormal in G and

S(G:J) <_ Fs(N)(S(G’H), S(G’K)).

The form of the function F](N) for a given f(v) depends on G only through n.
Hence G belongs to .

Proof. In the first place G belongs to the class by Theorem 5.2*. The
proof is essentially that of Theorem 5.2* with some extra argument.
We will define F]()(x, y) by induction on x and show that it has the re-

quired property. If either x or y 0, let F]()(x, y) 0. Suppose that
F]() (x, y) has been defined for all x, y and f() with 0 x < r and y 0.
We have to show how to define F()(r, s) for any s > 0.

Let H and K be two subnormal subgroups of G such that S(G’H) r
and S(G:K) s. Write J [H, K}. Let A K n N; by hypothesis K/A
can be generated by n elements. Hence, by Lemma 3.4,

(28) S H, H , ’HK}

wherek,...,keKandt 1 Wn n W n’-. Let

L {H H ’HK}
If Ho, H - fl and v’HK" ,+1 ft. Now it is clear that inherits
the properties (i) and (ii) from G, so we can apply the induction hypothesis
on r. Now F]() is monotonic in the region where it has been defined; so by
induction on r,

S(’{H, ..., H’, v’HK’}

F](h,)(r 1, S(:{H’, H-,
for i 1, 2, t, and any monotonic bounding function f() of n N.
Now N N so, by the proof of the second part of Lemma 7.1, we can
choose for f() the function determined by

f() (x, y) f() (x + 1, y + 1).

In view of the last inequality and the moaotonicity of F(,), S(’L) s,
where s is determined recursively by the relations
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0 -t- 1, o (r 1, _) ( 1, ..., ).
It is clear that s depends on H and K through r and s only. Let 1 -I-
then

(29) s(G:L) <_ 1.

Let B L N; L is subnormal in G, so LIB can be generated by n elements.
By Lemma 3.4

(30) A ., ,’rAL
wherey,-..,yeLandu= 1-{-nn ...-}-n*-. SinceA =KnN,
A <:l N; also B<:I N and.r*AL <+ G. Let M [A A’, B, /*AL}
M _< N and f() is a monotonic bounding function for N. Therefore
S(N"M) <_ s, where s is determined recursively by the relations

f( f(, s_) (i 1,. ,u).So (1, + 1), s

A <3 M, so S(G’A) <_ s’ W 2. Moreover H L. Hence
S(G:H) _< (s -{- 2) -{- 1, by Lemma 2.2; by the same result

We now define F> (r, s) (Su -}- 2)ls -}- 2 and observe that this depends
on H and K through r and s only. If (for a given fv)) F/>(x, y) now fails
to be monotonic in the region x _< r, we can easily increase its value at each
integral point (r, s), so as obtain a function, identical with F]> (x, y) in
x _< r 1, which is monotonic in x _< r and which of course is still a bound-
ing function for G. This completes the proof of the theorem.

COROLLARY 1. =.
Coaoav 2.

COaOLAaV 3. contains the class of polycyclic groups.

By a polycyclic group we mean a soluble group satisfying Max or equiva-
lently, (cf. [4]), a group which has a series of finite length with each factor
cyclic. Let G be a polycyclic group with a series of finite length n with each
factor cyclic. Then it is very easy to show that each subgroup of G can be
generated by n elements. Hence G belongs to by Theorem 7.2.

It seems likely that is a proper subclass of , but we have not been able
to find a group which would show this.

8. The join of an arbitrary collection of subnormal subgroups
We shall now consider what conditions may be imposed i order that a

arbitrary collection of subnormal subgroups should generate a subnormal
subgroup. Let be the class of groups in which joins of subnormal sub-
groups are always subnormal. It is clear that
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though of course is not s-closed (see the proof of Lemma 5.1).
The following lemma gives a simple characterisation of the class .
LEMMA 8.1. A group G belongs to the class if and only if the union of

every ascending chain of subnormal subgroups of G is subnormal in G.

Proof. Only the sufficiency of the condition is in question, so suppose
that it is satisfied. First of all we prove that G belongs . Let H and K
be subnormal in G and let J {H, K}; we argue by induction on r S(G:H)
that J is subnormal in G. Let r > 0. Let the elements of J be well-ordered
as (x,),<, for some ordinal % and letL {H":a < },f _< % Then
L HJ and, for any limit ordinal t <_ ", L, (Ja< L. If HJ is not sub-
normal in G, there exists a least ordinal a such that L, is not subnormal in
G. By our hypothesis a cannot be a limit number. Hence

L, {L,_I,

now L,_I and H"-1 are subnormal in Ha, S(Ha:H"-1) r 1 and Ha

inherits from G the chain property. Hence L, is subnormal in G by induction
hypothesis. This contradiction shows that H, and therefore J, is subnormal
inG. ThusGe.
Now suppose that we are given a set ( of subnormal subgroups of G; we

have to show that the ioia of all the subgroups in ( is subnormal. Since
sn(G) is closed with respect to finite joins and unions of ascending chains, we
may without loss of generality assume that a also enjoys these properties.
By use of Zorn’s lemma we conclude that ( has a unique maximal member
which is none other than the join of all the subgroups in a. Hence G e.
One immediate consequence of Lemma 8.1 is that all groups satisfying

Max-s belong to . Obviously is a subclass of : in fact, as the next
lemma shows, it is a much narrower class than (R).

LEMM+/- 8.2. For each prime p there exists a countably infinite metabelian
p-group which has a set of subnormal cyclic subgroups whose join, though Abelian,
is not subnormal.

Proof. Let A be an elementary Abelian p-group of order p, (n > 1), and
let a, as be a basis for A. An automorphism of A is determined by
the rules

if/> 1.al al and a aa_l,

Let pm be the least power of p which is not less than n. Then m > 0 and
the order of is pro. For, by a simple induction argument,

l(1),/(2) () (r 1 2, n, > 0)(31) at,. a,.a.- ,,.-: a,.-

where l(i) (). Our convention here is that a, 1 if s < 1.
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:pmFor0 < i < p ,pdivides (i);also r_ n_ p so v’ 1. Buttvm-1

carries a, into ana,_v,- which is not equal to an, since pro-1 < n.
Let X be the split extension of A by {t}; then X is a metabelian group of

order pm+n. Since [ai, t] ai_, the (n + 1)th term of the lower central
series of X is

Vn+ (X) [A, t,... ,t] 1.

On the other hand
[an, t, t] a 1,

so X is nilpotent of class n and {t} is subnormal in X with index of subnor-
reality n.
For a given prime p and each integer n > 1 take a group Xn of the type

just constructed, X, {t, A=} say, with S(X, "{t} n. Define G to be
the direct product of the Xn’s,

G Dr.> X.

G is a countably infinite metabelian p-group and {t} is subnormal in G with
S(G’{t}) n, (n 2,3,...). ButH {t2,t,...} isnotsubnormalin
G. For if it were, there would exist an integer r such that X,{ t,} 1 for
all n > 1 (since H is Abelian). Hence S(X, "{t,} g r for all n, which is
impossible.

Remark. It follows that is not @, whereas by Corollary 1
to Lemma 2.3.

It is perhaps surprising that for the class @ there is a theorem analogous
to Theorem 5.2.

THEOREM 8.3. An extension of an -group by a group satisfying Max-s is
an (R)%group. That is

Proof. Let G have a normal -subgroup N and suppose that GIN saris-
ties Max-s. By Lemma 8.1 it is enough to prove that the union of any ascend-
ing chain of subnormal subgroups of G is subnormal. Let

H _H2

_ _
H.

_
"",

(a < t, a limit ordinal), be an ascending chain in sn(G) and let H be its
union. Since GIN satisfies Max-s,

(32) H {H., H n N}

for somea < . Also

(33) H n N [J< (He n N).
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Each H n N is subnormal in N and .hence H n N is subnormal in N, since
N e H is the join of two subnormal subgroups, H, and H n N, by (32)
and thus H itself is subnormal in G, since H n N <:l H

Coaov. (@ - ) _< .
In particular, contains all finitely generated metabelian groups, though

not, as we have seen, all metabelian groups.

THEORE 8.4. An extension of a group with a composition series of finite
length by an %group is an -group.
The proof of this result runs on the same lines as that of Theorem 5.3(i)

(we appeal in this case to Theorem 8.3 instead of to Theorem 5.2).
Finally we will prove

THEOREM 8.5. An extension of an %group by an Abelian group is an
-group, that is .o

_ .
Proof. Let G e ; then G is an %group. Let H and K be sub-

normal in G and let J {H, K}. We have to prove that J is subnormal in G.
Let r S(G:H) O. By induction on r and the usual argument, it
follows that cn(H, J)

_
sn(G). By Lemma 4.1 cm(H, J)

_
sn(G) and

in particular, for each k e K, [H, k] is subnormal in G’. But
[H, K] {[H, /el :/ e K} and G’ e, so [H, K] is subnormal in G’. The
theorem now follows easily.
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