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1. Introduction
There hve been number of results on the relationship between the order

of finite group G nd the order of its automorphism group A A (G), for
example, see [1], [3], [7], nd [10]. It is our purpose in this pper to investigate
the relationship between the order of G and the order of A when G is p-group
of class 2, p odd, nd G does not hve n belin direct factor (see Theorem 3 ).
Our result is bsed on characterization (s point set) of the group
of central automorphisms (Theorem 1) and construction of non-central.
utomorphisms (Lemm 1). The construction is, perhaps, of some interest
in its own right.

It should be pointed out that the min theorem (Theorem 3 is included in
a theorem stated in [8]. However that statement depends on lemm
(Lemm 3, [8]) that is invalid [9]. A counterexample to this lemm ws
announced in [4] nd ws published in [5].

2. Central automorphisms.
Let G be finite group, G’ its derived group, nd Z its center. An uto-

morphism a of G is clled central if x-xe Z, for every x e G. The set of all
central utomorphisms of G forms subgroup A of the group A of utomor-
phisms of G. If z is central automorphism of G then f x ----> x-x is
homomorphism of G into Z. The mp z f is one-to-one mp of A
into the group Horn (G, Z) of homomorphisms of G into its center Z. Con-
versely, if f e Horn (G, Z then x -- xf(x) defines an endomorphism of G.
The endomorphism z] is an automorphism if and only if f(x) x- for every
x e G, x 1. If G is direct product with n abelin fctor then there exists
n f e Horn (G, Z) such that f(x) x- for some x e G, x 1. We shll see
presently that the converse is lso true.
We cll group G purely non-abelian if it does not hve an abelin direct

factor.

THEOIEM 1. For a purely non-abelian group G, the correspondence --+ f
defined above is a one-to-one map of Ac onto Horn (G, Z).

Proof. Suppose that there exists a homomorphism f e Hom (G, Z) such
that f(z) z-1 for some z e G, z 1. Clearly, z e Z. We can further assume
that the order of z, ]z] p, is a prime. Write G/G’ Gv/G’ X Gv,/G’,
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where G/G’ is the p-primary component of GIG’. Then zG’e G/G’ and
zG’ G’, for G’ is contained in the kernel of f. Let the height of zG’ in

P/ (.G/G’ be pk and let z x u, where xeG and ue Then
--1 pkz --f(z) -f(x u) -f(x).

pk eSety =f(x)-i. Thenz y ,yeZnG,and(y} 1; here{X} de-
notes the subgroup generated by the set X. By [6, Lemma 7, p. 20],
yG’ generates a direct factor of G/G’, say G/G’ {yG’} X H/G’. Since
{y} G’ 1, G {y} (H G, is a direct decomposition of G. Therefore,
G has an abelian direct factor if the mapping a -- f is not onto.

COnOLAaY 1. A purely non-abelian group G has a non-trivial central
automorphism if and only if ([ GIG’ [, Z I) 1, where X denotes the cardi-
nality of the set X.

COROLLaY 2. If G is a purely non-abelian p-group then the group A of
central automorphisms is also a p-group.

With respect to the existence of non-trivial central automorphisms, we
should mention a recent paper of Adney and Deskins [2]. They establish a
set of necessary and sufficient conditions in terms of the lattice of subgroups.

3. A construction of non-central automorphism
From now on G will stand for a purely non-abelian p-group of class 2, where

p is an odd prime. The numbers p, p, and p stand for the exponents of
Z, G’, and G/G’ respectively.

LEMMA 1. Suppose
(i) G’ {u} X U, where u P:> P’ >-. exp U,
(ii) [g, h] g-lh-lgh u and h 1

Let H {g, h} and L {xeG [g, x], [h, x]e U}. Then G HL and the
correspondence

g---, gh t >_ m

x ---> x, for all x e L,

defines an automorphism (rk which fixes the elements in Z. The index [2:2 n Ac]
is pb-,, where is the group generated by the a’s.

Then

For any x e G, we have

[g, x] ------ u (mod U) and [h, x] u (mod U).

Hence h-Sgtx the L, x g- h-gx e HL, and G HL.
Since L Z G’ and gZ hZI pb, every element y e G is uniquely

expressible as y g’h*x, where 0 _< s, < pb and x e L. The mapping a

[g, h-gtx] 1 (rood U) and [h,--- h gx]--- 1 (rood U).
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is defined by y* (gh)’htx. To prove that zk is an automorphism fixing Z,
we need to show that

hg h*g,
(xg) -and

xeL,

O<_s<p.

THEOREM 3. The order GI divides AI if G is a purely non-abelian
p-group of class 2, p odd, satisfying one of the following conditions.

The center Z is cyclic.
(ii) a b.
(iii) a >_ c.
(iv) The central automorphism group Ac is abelian.

When p is odd and p exp G’, (xy) xy.
Finally, 2 is cyclic and generated by z,. The subgroup 2 n A is generated

by . Hence the index [2’2 A] is p-.
THEOREM 2. A purely non-abelian p-group of class 2, p odd, admits an outer

automorphism which fixes the elements in the center.

Proof. Let G be a purely non-abelian p-group of class 2, where p is an odd
prime, and let G and Z be the derived group and ceater of G respectively. The
central automorphisms which fix the elements in Z are in one-to-one cor-
respondence with the elements of Horn (G/Z, Z). Since

exp G/Z exp G

_
exp Z,

Horn (G/Z, Z) contains a subgroup isomorphic with G/Z. If all the central
automorphisms that fix the elements in Z are inner, then Horn (G/Z, Z G/Z
and Z is cyclic. In this case, G’ is also cyclic. Therefore, we can apply
Lemma 1 to produce a non-central outer automorphism which fixes the ele-
ments in Z. The hypothesis (i) of Lemma 1 is satisfied. It remains to verify

-b
the hypothesis (ii). Let z be a generator of Z. Then u z is a generator
of G’. Let [g, hi] u, g z’, and h= z. We may assume that
t=-rs(modp). Leth = g-rh. Then[g,h] uandh 1. This com-
pletes the proof.

The order of A

Proof. The proof of all four cases is divided into two steps. First we ob-
tain a lower bound of A which is Hom (G, Z) I. Then making use of
Lemma 1, we construct enough non-central automorphisms of p-power order
to make up the difference.

X
(n--l)/2Ix, yz] [x, y][x, z], and (xy) y [y, X]

We can check these equalities by direct computation, bearing in mind that in
a p-group of class 2 the following equalities hold"
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(i) The center Z is cyclic. We have shown in the proof of Theorem 2
that G satisfies the hypothesis of Lemma 1 with m 0. Therefore, there is a
group of non-central automorphisms of order pb G’ [. Next we show that
Horn (G, Z) - GIG’. Since Z is cyclic of order pa and G’ is the cyclic sub-

--b Ggroup of order pb, za belongs to for every z e Z. It follows that
xa (xb)a-b belongs to G’ for any x e G. Consequently, exp GIG’ <_ pa and
Horn (G, Z) Horn (G/G’, Z) GIG’.

(ii) a b. In a cyclic decomposition of G/Z there are two factors {gZ}
and {hZ} of order p such that u [g, h] has order p. Then {u} is a direct
factor of Z" Z {u} Z1. Then

Horn (G/Z, Z)

Hom (G/Z, {u}) Hom (G/Z, Zl) . GIg Hom (G/Z, Z)

and Horn (G/Z, Z) contains the subgroup

Hom ({gZ}, Z) Horn ({hZ}, Z) Z1 Z.

Therefore, Horn (G, Z) contains a subgroup isomorphic with G/Z Z X Z
whose order islGllZl/p. If IG > IHom(G,Z) lthenp> Zll pro.
Now we apply Lemma 1 to produce pb-" non-central automorphisms.

The hypothesis (i) of Lemma 1 is satisfied for {u} is also a direct factor of G’.
To establish the hypothesis (ii), let

g u (modZ1) and h--- u (modZ1).

We assume that rs (rood p). Then (g-rh) 1 (mod Z1). Replacing
h by g-rh, we have [g, h] u and h+ 1, which is the hypothesis (ii) of
Lemma 2.

(iii) a>_c. LetZ- IIl{z} Z,where [zl >- pC and exp Z
Sincea >__ c,]c >_ 1. Then

Horn (G, Z) G/G’ I*l Horn (G/G’, Z)[ >_ G/G’ I*1 z, I.
If]G > Horn (G, Z) then a/a I-1 z < Iv’l and since GIG’ >- P,
p(-)]Z] < [G’I < p]Z]. Thus2(k- 1) < kandso lc 1. Now
we havep Z, < G’ < Phi Z land Z {z} X Z, where exp
We can improve our estimate of ]Hom (G/G’, Z) as follows. Let GIG’

G G’{x G/G’ where xl Then

Horn (G/G’, Z) --- Zl X Hom (G/G’, Z)
and

Therefore,
Hom (G/G’, Z)l >- [Z [.min(I G/G’ l, Z [).

]Hom (G, Z) a/a’ I. Z I.min(I G/G’ I, Zt I).
Since al > Hom (G, Z)l, G’I < and exp G#G’ >_ p, we must
have
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min(I G/G’ l, Z l) Z
and

Hom (G, Z)[ >_ [GIG’ Z ( >_ G I/p-.
Again we apply Lemma 1 to construct p-’ non-central automorphisms.

Choose g, h in G so that u [g, h] has order p. Then G’ can be decomposed
into a direct product G’ {u} U. We have

exp U

_
U e’ [/p’ < p’.

Let g z (rood Z1) and hf z (rood Z). We can assume that
t-- rs (modp). Then, withh g-h we have [g, h] uandh+ 1.

(iv) A is abelian. Let a, r be central automorphisms. Then

x xf(x)f(x)f(f(x)) and x xf(x)f(x)f(f(x)),

for anyxeG. Hence ar raifandonlyiffof fof. ThusA is
abelian if and only if f f f f for any f, f e Horn (G, Z). It follows

O ethat, for anyfHom(G,Z) andFHom(G,G) f F F f 1 as
is contained in the kernel of f. Therefore, f(G) is contained in F-(1 for
anyf Horn (G,Z) andF Horn (G, G’). Thesetofallf(G),f Horn (G, Z),
generates a subgroup

{zZllzl , (a,c)l.

The intersection of F-(1 of all F Horn (G, G’) is the subgroup

K [x G height (xG’) pl.

We have R K if A is abelian. Conversely, it is always true that K R.
Indeed, since exp G/Z p, K Z. An element x K is of the form x y z,

G. G 1 andwhere z Since y and c b, we have x (y)z
x{ g rain (pa, p) p. Consequently, K R if A is abelian.
Let G/G’ {x’ be a direct decomposition of G/G. Then

/G’= /G’= {x G }. On account of (ii) and (iii) we assume that
d ) b. Since R is generated by x 1 i n, and G, the exp R is attained

p5 dby some x I, say x[ p. We define f, F Horn (0, Z), 2 j S n,
as follows. Let

(x) x
f(x) 1, i 2,

and

where

F(x) 1, i j,
F(x) xf(),

s-- b + max (0, d- cl),

(1) t(j) b - max (0, d c.), 2 <_ j _< n,

Gp Ixi I, 1 _i_n.
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Since F o f(x.) 1, we hve 1 f o F(x) x Consequently,

(2) s W t(j) >_ b + d, 2 <_j d.

Combining (1) and (2), we get

(3) b +max(0, d- c) max (0, d- c) d, 2 j n.

It follows from p x G’ p[,p= x and expG,thatbWcbWd
andc d. Thus max(0, d- Cl) 0andmax(0, d ci) d ci > 0
by (3). Then(3) becomesb +d- c dfor2 j n. Consequently,
b > c for all j > 2 It follows that R/G’ is cyclic generated by x G’ and
R= {xf} R t is easy to see that exp R p.
We have

Hom (G, Z) Hom (G/G’, R) Hom (G/G’,{xf} Hom (G/G’, R).

The group Horn (G/G’, R) contains a subgroup isomorphic with R X R
G’ p.for there are at least two elements x of order > For the group

Hom (G/G’, {xf} ), we have

Horn (G/G’, {xf}) H=lHom ({x {xf

{xf} H=. {x G’}.
Hence ]Hom (GIG’, {xf}) ]G/G’ /p- and ]Hom (G, Z)[ is divisible

]"/p- } G’ " p-+,by ]GIG’ R Since {xf {x has order the order
of G’ is A p-+[ R . Therefore, [G R /p divides [Hom (G, Z).
Ifp ]R[ p we are done. Supposem < b. Chooseg, hinGso

thatu [g, h] has order p. ThenG’ {u} X Uand

V G’ /p p-+] R, ]/p p.
Letg z (modR)andhf z (modR), wherez x We canassume
thatt rs(modp). Then, withh g-h ,wehaveu [g,h]andh+ 1.
Thus we can apply Lemma 1 to produce p- non-central automorphisms.
On the structure of such groups G with abelian A we can say the follow-

ing.

THEOREM 4. Let G be a purely non-abelian p-group of class 2, p odd, and let
V’GIG’ = {x Then the group A of central automorphisms of G

is abelian if and only if
(i) R=K, and
(ii) either d b or d > b and R/G’ {xfG’},

where R, K, and d are as defined in Theorem 3.

Proof. The necessity of these conditions is established in the proof of
Theorem 3. We suppose that these conditions are satisfied. Since R K,

pb Vt. pbthe elements in R re of the form y z, where z If d b then f(y z) 1
for every f e Horn (G, Z). Therefore,. f f’ 1 for any f, f’o Hom (G, Z).
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Suppose that d > b and RIG’ {xG’} Then GIG’ {x G/G’,
where exp G/G’

_
p. Then we have, for any x e G and f e Horn (G1/G’, R),

f(x) xu, where u e G’. Therefore, f’(f(x)) 1 for any f,
eHom (G/G’,R)andxeG1. Thusthe ’commutativity’ ofHom (G,Z)

GHorn (G, R) depends on the "commutativity’ of Horn ({x R) The
latter is true because RIG is cyclic.

5. An application
In [1] it ws shown that i G ws finite group with belin Sylow p-sub-

group P of order p then p-i divides A (G) . When G is purely non-abelian
we can use our characterization of central automorphisms to simplify his
proof and improve the result.

THEOREM 4. Let G be a purely non-abelian finite group with an abdn Sylow
p-subgroup P. Then P divides A G) .

Proof. Let G be the kernel of the transfer of G into P and let P be the
image. It is known (see e.g. [1, Theorem 2.1] that G G P and G n P 1.

G’. G’Moreover, P P Z and P n G P n Thus P/P P. The
group Horn (G, Z) contains the subgroup

Horn (PG’/G’, P Z) Horn (PIP n G’, P n Z) Hom (P, P n Z)

whose order is divisible by P n Z . The automorphisms induced by
Horn (P, P n Z) are distinct from the inner automorphisms induced by P
for the latter fix the elements of P. The number of inner aumorphkms
induced by P is lP/P Z .
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