ON THE TRANSFORMATION OF SEQUENCES AND RELATED CONVERGENCE CRITERIA FOR CONTINUED FRACTIONS

BY

David F. Dawson

1. Introduction

Lane and Wall [3] investigated convergence of the continued fraction

$$
f(a)=\frac{1}{1}+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\cdots
$$

as related to properties of the sequence $\left\{h_{p}\right\}_{p=1}^{\infty}$ associated with $f(a)$ in the following way. Let $f_{0}=0, f_{1}=1, f_{2}=1 /\left(1+a_{1}\right), \cdots$ denote the sequence of approximants of $f(a)$, and suppose no $a_{i}=0$. If $t_{p}(z)=1 /\left(1+a_{p} z\right)$, $T_{p}(z)=t_{1} t_{2} \cdots t_{p}(z), p=1,2,3, \cdots$, then $T_{p}(0)=f_{p}, T_{p}(\infty)=f_{p-1}$, $T_{p}(1)=f_{p+1}, p=1,2,3, \cdots$, and in case no $f_{i}=\infty,\left\{h_{p}\right\}_{p=1}^{\infty}$ is defined by

$$
T_{p}\left(h_{p}\right)=\infty, \quad p=1,2,3, \cdots
$$

Their investigations led to the result that if the even and odd parts of $f(a)$ converge absolutely, then $f(a)$ converges if and only if either some $a_{i}=0$ or else $a_{p} \neq 0, p=1,2,3, \cdots$, and the series $\sum\left|b_{p}\right|$ diverges, where

$$
\begin{equation*}
b_{1}=1, \quad b_{p+1}=1 / a_{p} b_{p}, \quad p=1,2,3, \cdots \tag{1.2}
\end{equation*}
$$

In case $a_{p} \neq 0, p=1,2,3, \cdots$, and $b=\left\{b_{p}\right\}_{p=1}^{\infty}$ is defined by (1.2), then the continued fraction

$$
g(b)=\frac{1}{\overline{b_{1}}}+\frac{1}{\overline{b_{2}}}+\frac{1}{\overline{b_{3}}}+\cdots
$$

is equivalent to $f(a)$ in the sense that if $g_{0}=0, g_{1}=1 / b_{1}, g_{2}=1 /\left(b_{1}+1 / b_{2}\right), \cdots$ is the sequence of approximants of $g(b)$, then $g_{p}=f_{p}, p=0,1,2, \cdots$.

In Section 2, a transformation H is given which transforms (under approprate restrictions) the sequence $\left\{b_{1}+b_{3}+\cdots+b_{2 p+1}\right\}$ into $\left\{g_{1}-g_{2 p+1}\right\}$, and it is shown that both H and its inverse are convergence preserving if and only if the product $\Pi\left(1-h_{2 p}\right)\left(1-h_{2 p+2}\right)$ converges absolutely. From this and a similar result, we are able to obtain (Section 3) convergence and divergence criteria for $g(b)$ as related to properties of $\left\{h_{p}\right\}$ and $\left\{b_{p}\right\}$.

2. A class of continued fractions

Suppose $z=\left\{z_{p}\right\}_{p=1}^{\infty}$ is a complex sequence whose terms are distinct from 0 and 1. Let

$$
\begin{equation*}
D_{1}=1, \quad D_{2 p+1} / D_{2 p-1}=1-z_{p}, \quad p=1,2,3, \cdots \tag{2.1}
\end{equation*}
$$

Received September 26, 1963; received in revised form February 24, 1964.

Let A denote the set of all continued fractions $f(a)$ such that no $a_{i}=0$ and no $f_{i}=\infty$.

Lemma 2.1. There exists a continued fraction $g(b)$ such that (1) the sequence of odd denominators of $g(b)$ is the sequence $\left\{D_{2 p-1}\right\}_{p=1}^{\infty}$ defined by (2.1), and (2) $g(b)$ is equivalent to some $f(a) \in A$.

Proof. Let $z^{\prime}=\left\{z_{p}^{\prime}\right\}_{p=1}^{\infty}$ be a complex sequence whose terms are distinct from 0 and 1. Let $D_{0}=1, D_{2 p} / D_{2 p-2}=1-z_{p}^{\prime}, p=1,2,3, \cdots$. Define $\left\{b_{2 p-1}\right\}_{p=1}^{\infty}$ and $\left\{b_{2 p}\right\}_{p=1}^{\infty}$ as follows:

$$
\begin{gather*}
b_{1}=1, \quad b_{2 p+1}=\left(D_{2 p+1}-D_{2 p-1}\right) / D_{2 p} \\
b_{2 p}=\left(D_{2 p}-D_{2 p-2}\right) / D_{2 p-1} \tag{2.2}
\end{gather*}
$$

Then if $b=\left\{b_{p}\right\}_{p=1}^{\infty}$, (1) follows immediately from the fundamental recurrence formulas for $g(b)$ [1]. Since $b_{1}=1$, no $b_{i}=0$, and no $D_{i}=0$, we note that (2) is true.

Notation. If z is a complex sequence whose terms are distinct from 0 and 1 , then $B(z)$ will denote the set of all continued fractions $g(b)$ having properties (1) and (2) of Lemma 2.1.

Lemma 2.2. If $g(b) \in B(z)$ and $g(b)$ is equivalent to $f(a)$, then the sequence $\left\{h_{p}\right\}_{p=1}^{\infty}$ defined by (1.1) has the property that $h_{2 p}=z_{p}, p=1,2,3, \cdots$.

Proof. By (2.10) of [3], $h_{2 p}=-b_{2 p+1} D_{2 p} / D_{2 p-1}$. But from (2.2) and (2.1),$-b_{2 p+1} D_{2 p} / D_{2 p-1}=\left(D_{2 p-1}-D_{2 p+1}\right) / D_{2 p-1}=z_{p}$.

Lemma 2.3. Suppose $\left\{w_{p}\right\}_{p=1}^{\infty}$ is a complex sequence whose terms are distinct from 1, and suppose $1-w_{p}=u_{p+1} / u_{p}, p=1,2,3, \cdots$. Then, if n is a positive integer, the infinite product

$$
\begin{equation*}
\prod_{p \geqq 1}\left(\prod_{i=0}^{n-1}\left(1-w_{p+i}\right)\right) \tag{2.3}
\end{equation*}
$$

converges absolutely if and only if each of the sequences $\left\{u_{p n+i}\right\}_{p=0}^{\infty}, i=1,2$, \cdots, n, converges absolutely to a nonzero limit.

Proof. We note that

$$
\prod_{i=0}^{n-1}\left(1-w_{p+i}\right)=u_{p+n} / u_{p}=1-\left(1-u_{p+n} / u_{p}\right), \quad p=1,2,3, \cdots
$$

Hence (2.3) converges absolutely if and only if the series $\sum\left|1-u_{p+n} / u_{p}\right|$ converges. Thus (2.3) converges absolutely if and only if each of the series $\sum\left|1-u_{(p+1) n+i} / u_{p n+i}\right|, i=1,2, \cdots, n$, converges. But from a proof given in [1] it follows that $\sum\left|1-u_{(p+1) n+i} / u_{p n+i}\right|$ converges if and only if $\left\{u_{p n+i}\right\}_{p=0}^{\infty}$ converges absolutely to a nonzero limit, $i=1,2, \cdots, n$.

Theorem 2.1. Suppose $z=\left\{z_{p}\right\}_{p=1}^{\infty}$ is a complex sequence whose terms are distinct from 0 and 1 . Then the following two statements are equivalent:
(1) If $g(b) \in B(z)$, then $\left\{g_{2 p-1}\right\}$ and $\sum b_{2 p-1}$ both converge or both diverge.
(2) The product $\Pi\left(1-z_{p}\right)\left(1-z_{p+1}\right)$ converges absolutely.

Proof. We apply Lemma 2.3 for the case that $n=2, w_{p}=z_{p}$, and $u_{p}=D_{2 p-1}, p=1,2,3, \cdots$. Thus by Lemma 2.3, the product $\Pi\left(1-z_{p}\right)\left(1-z_{p+1}\right)$ converges absolutely if and only if each of the sequences $\left\{D_{4 p+2 i-1}\right\}_{p=0}^{\infty}, i=1,2$, converges absolutely to a nonzero limit. Let $H=\left(h_{p q}\right)$ and $H^{\prime}=\left(h_{p q}^{\prime}\right)$ be triangular matrices defined as follows:

$$
\begin{align*}
h_{p q} & =0 & & \text { if } q>p \\
& =1 / D_{2 p-1} D_{2 p+1} & & \text { if } p=q \\
& =1 / D_{2 q-1} D_{2 q+1}-1 / D_{2 q+1} D_{2 q+3} & & \text { if } p>q \tag{2.4}\\
h_{p q}^{\prime} & =0 & & \text { if } q>p \\
& =D_{2 p-1} D_{2 p+1} & & \text { if } p=q \\
& =D_{2 q-1} D_{2 q+1}-D_{2 q+1} D_{2 q+3} & & \text { if } p>q .
\end{align*}
$$

Using induction and the formula $g_{2 p-1}-g_{2 p+1}=b_{2 p+1} / D_{2 p+1} D_{2 p-1}$, $p=1,2,3, \cdots$, we can show that H transforms the sequence of partial sums of the series $\sum_{p=1}^{\infty} b_{2 p+1}$ into the sequence $\left\{g_{1}-g_{2 p+1}\right\}_{p=1}^{\infty}$, and H^{\prime} is the inverse of H. Recalling the Silverman-Toeplitz conditions which are necessary and sufficient for a triangular matrix to be convergence preserving, we see that H and H^{\prime} are both convergence preserving if and only if both of the series

$$
\begin{equation*}
\sum\left|1 / D_{2 q-1} D_{2 q+1}-1 / D_{2 q+1} D_{2 q+3}\right| \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum\left|D_{2 q-1} D_{2 q+1}-D_{2 q+1} D_{2 q+3}\right| \tag{2.6}
\end{equation*}
$$

are convergent. But (2.5) and (2.6) are both convergent if and only if $\left\{D_{2 q-1} D_{2 q+1}\right\}_{q=1}^{\infty}$ converges absolutely to a nonzero limit, and this condition is equivalent to the convergence of the series $\sum\left|1-D_{2 p+1} D_{2 p+3} / D_{2 p-1} D_{2 p+1}\right|$ [1]. Thus H and H^{\prime} are both convergence preserving if and only if each of the sequences $\left\{D_{4 p+2 i-1}\right\}_{p=0}^{\infty}, i=1,2$, converges absolutely to a nonzero limit, and this condition is equivalent to the absolute convergence of the product $\Pi\left(1-z_{p}\right)\left(1-z_{p+1}\right)$, as shown above from Lemma 2.3. Hence (2) implies (1).

We next suppose that (1) is true. This means that H and H^{\prime} are both convergence preserving over the set of all complex sequences $\left\{t_{p}\right\}_{p=1}^{\infty}$ such that $t_{1} \neq 0$ and $t_{i} \neq t_{i+1}, i=1,2,3, \cdots$. Using a slight modification of Corollary 3.6a of [2], we see that H and H^{\prime} are both convergence preserving, and so (2) must hold. This completes the proof of Theorem 2.1. A similar theorem is obtained if the roles of even and odd indices are interchanged.

Theorem 2.2. Suppose $z=\left\{z_{p}\right\}_{p=1}^{\infty}$ is a complex sequence whose terms are distinct from 0 and 1 . Then the following two statements are equivalent:
(1) If $g(b) \in B(z)$, then $\left\{D_{2 p}\right\}$ and $\sum b_{2 p}$ both converge or both diverge.
(2) $\sum\left|z_{p}\right|$ converges.

Proof. Let $E=\left(e_{p q}\right)$ and $E^{\prime}=\left(e_{p q}^{\prime}\right)$ be triangular matrices defined as follows:

$$
\begin{align*}
e_{p q} & =0 & & \text { if } q>p \tag{2.7}
\end{align*} \quad e_{p q}^{\prime}=0 \quad \text { if } q>p .
$$

Using induction and the fundamental recurrence formulas for $g(b)$ [1], we can show that E transforms the sequence $\left\{D_{2 p}-D_{0}\right\}_{p=1}^{\infty}$ into the sequence of partial sums of the series $\sum_{p=1}^{\infty} b_{2 p}$, and E^{\prime} is the inverse of E. We note that E and E^{\prime} are both convergence preserving if and only if both of the series $\sum\left|1 / D_{2 p-1}-1 / D_{2 p+1}\right|$ and $\sum\left|D_{2 p-1}-D_{2 p+1}\right|$ are convergent, and this condition is equivalent to the convergence of the series $\sum\left|1-D_{2 p+1} / D_{2 p-1}\right|$ [1]. Thus from (2.1) we see that E and E^{\prime} are both convergence preserving if and only if $\sum\left|z_{p}\right|$ converges. Hence (2) implies (1).

We now suppose that (1) holds. Then E and E^{\prime} are both convergence preserving over the set of all complex sequences $\left\{t_{p}\right\}_{p=1}^{\infty}$ such that $t_{1} \neq 0$ and $t_{i} \neq t_{i+1}, i=1,2,3, \cdots$. As in the proof of Theorem 2.1, it follows that E and E^{\prime} are both convergence preserving, and so (2) must hold. A similar theorem holds if the roles of even and odd indices are interchanged.

3. Theorems on convergence and divergence

Throughout this section it will be assumed that whenever a continued fraction $g(b)$ and a sequence $\left\{h_{p}\right\}$ are mentioned, $g(b)$ is equivalent to some $f(a) \in A$ and $\left\{h_{p}\right\}$ is defined by (1.1). The theorems and remarks of this section remain valid if the roles of even and odd indices are interchanged.

Theorem 3.1. If $\sum\left|h_{2 p}\right|$ converges and either $\sum b_{2 p}$ converges or $\sum\left|b_{2 p-1}\right|$ diverges, then $g(b)$ diverges.

Proof. From (2.1) and Lemma 2.2, the convergence of $\sum\left|h_{2 p}\right|$ implies absolute convergence of $\left\{D_{2 p-1}\right\}$ to a nonzero limit [1]. Suppose $\sum b_{2 p}$ converges. Then by Theorem 2.2, $\left\{D_{2 p}\right\}$ converges. Thus $g(b)$ diverges, since

$$
\begin{equation*}
g_{p+1}-g_{p}=(-1)^{p} / D_{p+1} D_{p}, \quad p=0,1,2, \cdots \tag{3.1}
\end{equation*}
$$

Suppose $\sum\left|b_{2 p-1}\right|$ diverges. From the formula

$$
\begin{equation*}
D_{2 p+1}-D_{2 p-1}=b_{2 p+1} D_{2 p}, \quad p=1,2,3, \cdots \tag{3.2}
\end{equation*}
$$

and the absolute convergence of $\left\{D_{2 p-1}\right\}$, it follows that $\sum\left|b_{2 p+1} D_{2 p}\right|$ converges. Hence $\left\{D_{2 p}\right\}$ contains a subsequence convergent to 0 . Therefore by (3.1), $g(b)$ diverges.

Remark 3.1. Theorem 3.1 can be proved by use of formulas of Lane and Wall [3, pp. 370-371] and a theorem of Scott and Wall [4, Theorem B] to the effect that if the series $\sum b_{2 p-1}$ and $\sum b_{2 p}$ converge, at least one of them absolutely, then $g(b)$ diverges. It is interesting to note that there is no
theorem to the effect that if the series $\sum h_{2 p-1}$ and $\sum h_{2 p}$ converge, at least one of them absolutely, then $g(b)$ diverges. We show this by means of the following example. Let $h_{2 p-1}=(-1)^{p}(-p)^{-1 / 2}$ and $h_{2 p}=2^{-p}, p=$ $1,2,3, \cdots$. Clearly $\left|\left(h_{1}-1\right)\left(h_{2}-1\right) \cdots\left(h_{n}-1\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, and by (2.7) of [3], $\left\{g_{2 p-1}\right\}$ converges. Hence by (2.4) of [3], $g(b)$ converges.

Theorem 3.2. If the odd part of $g(b)$ converges absolutely and the even part converges, then $g(b)$ converges if and only if either $\sum\left|h_{2 p}\right|$ diverges or $\sum h_{2 p+1}\left(1-h_{1}\right)\left(1-h_{3}\right) \cdots\left(1-h_{2 p-1}\right)$ diverges.

Proof. The necessity follows from Theorem 3.1, Theorem 2.2, and the fact that

$$
\begin{align*}
h_{2 p+1}\left(1-h_{1}\right)\left(1-h_{3}\right) \cdots(1- & \left.h_{2 p-1}\right) \tag{3.3}\\
& =D_{2 p}-D_{2 p+2}, \quad p=1,2,3, \cdots
\end{align*}
$$

Convergence of $g(b)$ when $\sum\left|h_{2 p}\right|$ diverges follows from a theorem of Lane and Wall [3, Theorem 2.2a]. Suppose then that $\sum\left|h_{2 p}\right|$ converges and $\sum h_{2 p+1}\left(1-h_{1}\right)\left(1-h_{3}\right) \cdots\left(1-h_{2 p-1}\right)$ diverges. We have then the absolute convergence of $\left\{D_{2 p-1}\right\}$ to a nonzero limit, and from (3.3), the divergence of $\left\{D_{2 p}\right\}$. But since the even and odd parts of $g(b)$ converge and

$$
\begin{equation*}
g_{2 p+1}-g_{2 p}=1 / D_{2 p+1} D_{2 p}, \quad p=1,2,3, \cdots \tag{3.4}
\end{equation*}
$$

we see that $\left|D_{2 n}\right| \rightarrow \infty$ as $n \rightarrow \infty$, and so $g(b)$ is convergent.
Theorem 3.3. If the product $\prod\left(1-h_{2 p}\right)\left(1-h_{2 p+2}\right)$ converges absolutely and $h_{2 n} \rightarrow 0$, then $g(b)$ converges if and only if $\sum b_{2 p-1}$ converges.

Proof. From the proof of Theorem 2.1, we see that each of the sequences $D_{1}, D_{5}, D_{9}, \cdots$ and $D_{3}, D_{7}, D_{11}, \cdots$ converges absolutely and neither limit is 0 . These limits are distinct since $h_{2 p}=1-D_{2 p+1} / D_{2 p-1}$ and $h_{2 n} \rightarrow 0$. From Theorem 2.1 it follows that if $g(b)$ converges, then $\sum b_{2 p-1}$ converges. Suppose conversely that $\sum b_{2 p-1}$ converges. Then by (3.2), $\left|D_{2 n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. By Theorem 2.1, the odd part of $g(b)$ converges, and so by (3.4), $g(b)$ converges.

Remark 3.2. Lane and Wall [3, Theorem 2.3] showed that if $\left\{g_{p}\right\}$ is bounded, then the two series $\sum\left|h_{p}\right|$ and $\sum\left|b_{p}\right|$ converge or diverge together. We can use Theorem 3.3 to show that the two series $\sum\left|h_{2 p}\right|$ and $\sum\left|b_{2 p-1}\right|$ need not converge or diverge together whenever $\left\{g_{p}\right\}$ is bounded. Let $z=\left\{z_{p}\right\}_{p=1}^{\infty}$ be a complex sequence such that $z_{i} \neq 0, z_{i} \neq 1, i=1,2,3, \cdots$, and such that $\Pi\left(1-z_{p}\right)\left(1-z_{p+1}\right)$ converges absolutely, but $z_{n} \rightarrow 0$. Let $g(b) \in B(z)$ such that $\sum\left|b_{2 p-1}\right|$ converges. Then by Theorem 3.3, $g(b)$ converges. By Lemma 2.2, $h_{2 p}=z_{p}, p=1,2,3, \cdots$, and so $\sum\left|h_{2 p}\right|$ diverges. Thus the convergence of $\sum\left|b_{2 p-1}\right|$ need not imply convergence of $\sum\left|h_{2 p}\right|$ even when $\left\{g_{p}\right\}$ is convergent. It follows easily from the formula on the bottom of page 371 of [3], however, that the convergence of $\sum\left|h_{2 p}\right|$ implies convergence of $\sum\left|b_{2 p-1}\right|$ when $\left\{g_{p}\right\}$ is bounded.

Remark 3.3. It is easy to show that if both of the matrices H and H^{\prime} defined by (2.4) are convergence preserving, then the sequences $\left\{g_{2 p-1}\right\}$ and $\left\{b_{1}+b_{3}+\cdots+b_{2 p-1}\right\}$ are either both bounded or both unbounded. Similarly, if both of the matrices E and E^{\prime} defined by (2.7) are convergence preserving, then the sequences $\left\{D_{2 p}\right\}$ and $\left\{b_{2}+b_{4}+\cdots+b_{2 p}\right\}$ are either both bounded or both unbounded. Hence if $\sum\left|h_{2 p}\right|$ converges,

$$
\lim \sup \left|b_{1}+b_{3}+\cdots+b_{2 p-1}\right|<\infty
$$

and

$$
\lim \sup \left|b_{2}+b_{4}+\cdots+b_{2 p}\right|=\infty
$$

then $\left\{D_{2 p-1}\right\}$ converges to a nonzero limit, $\left\{g_{2 p-1}\right\}$ is bounded, and $\left\{D_{2 p}\right\}$ is unbounded. Thus by (3.4), lim $\inf \left|g_{2 p+1}-g_{2 p}\right|=0$, and so there exists a finite point v, every neighborhood of which contains infinitely many even and infinitely many odd approximants of $g(b)$.

References

1. D. F. Dawson, Convergence of continued fractions of Stieltjes type, Proc. Amer. Math. Soc., vol. 10 (1959), pp. 12-17.
2. - On certain sequence to sequence transformations which preserve convergence, Proc. Amer. Math. Soc., vol. 14 (1963), pp. 542-545.
3. R. E. Lane and H. S. Wall, Continued fractions with absolutely convergent even and odd parts, Trans. Amer. Math. Soc., vol. 67 (1949), pp. 368-380.
4. W. T. Scott and H. S. Wall, On the convergence and divergence of continued fractions, Amer. J. Math., vol. 69 (1947), pp. 551-561.

North Texas State University
Denton, Texas

