THE TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK ${ }^{1}$

BY

John E. Koehler, S.J.

In this paper, we shall show that the type set of a torsion-free group of finite rank has certain lattices of types and of pure subgroups associated with it. Conversely, if certain lattice requirements are met by a finite set of types T and by associated subspaces, then a torsion-free group A can be constructed having type set T. The construction of A suggests defining a class of groups having a similar construction. For this class of groups, we shall next establish a set of quasi-isomorphism invariants, together with several other properties. Finally, we shall examine the structure both of the groups and of the class.

1. Necessary conditions on the type set

Definition 1.1 Throughout this paper, by "group" we shall mean "tor-sion-free abelian group of finite rank" unless some further qualification is given. Let \sim denote the usual equivalence relation on the set of heights; and let $[h]$ denote the equivalence class, or type, to which the height h belongs. Let \leq, n, and u have their usual meaning for both heights and types. The set of all types then forms a distributive lattice in which the meet and join of the types t and t^{\prime} are given by $t \cap t^{\prime}$ and $t \cup t^{\prime}$ respectively, [4, pp. 146-147]

Definition 1.2 Let A be a group of rank n. Use A^{*} to denote the minimal divisible group containing A. Without loss of generality, it can be assumed that $A \subseteq R^{n}$ and $A^{*}=R^{n}$, where R^{n} is an n-dimensional rational vector space. Let $0 \neq x \in A ; t^{A}(x)$, or simply $t(x)$, denotes the type of x in A. Let $t^{A}(0)=t_{\infty}$, a type defined to be greater than all other types. $T(A)$ $=\left\{t^{A}(x) \mid x \in A\right\}$ is called the (augmented) type set of A. Let $C(A)=$ $T(A) \mathrm{u}\{$ all finite intersections of members of $T(A)\} . \quad C(A)$ is countable since A is countable.

Defintion 1.3 Let t be a type; define $A_{t}=\{x \in A \mid t(x) \geq t\} . \quad A_{t}$ is a pure subgroup of $A,[4$, p. 147]. Let

$$
P(A)=\left\{A_{t} \mid t \in C(A)\right\} \quad \text { and } \quad P^{*}(A)=\left\{A_{t}^{*} \mid t \in C(A)\right\}
$$

We shall use A_{k} to denote $A_{t_{k}}$ if no confusion arises.
Lemma 1.4 Let A be a group; let $t_{1}, t_{2} \in C(A)$ such that $t_{\infty}>t_{2}>t_{1}$. Then $\operatorname{Rank}\left(A_{1}\right)>\operatorname{Rank}\left(A_{2}\right)$.

[^0]Proof Since $t_{1} \in C(A), t_{1}=s_{1} \cap s_{2} \cap \cdots \cap s_{k}$, where $s_{i} \in T(A)$. At least one of these, say s_{j}, is not greater than or equal to t_{2}, or else

$$
s_{1} \cap s_{2} \cap \cdots \cap s_{k} \geq t_{2}>t_{1}
$$

a contradiction. There exists $0 \neq x \in A$ such that $t(x)=s_{j} \geq t_{1}$. Thus $x \epsilon A_{1}, x \notin A_{2}$. Since A_{2} is pure, this implies $\operatorname{Rank}\left(A_{1}\right)>\operatorname{Rank}\left(A_{2}\right)$.

Lemma 1.5 Let A be a group, $t \in C(A)$, and $x_{1}, x_{2}, \cdots, x_{r}$ a maximal independent set of elements in A_{t}. Then

$$
t=t^{A}\left(x_{1}\right) \cap t^{A}\left(x_{2}\right) \cap \cdots \cap t^{A}\left(x_{r}\right)
$$

Proof Let $t^{\prime}=t^{A}\left(x_{1}\right) \cap t^{A}\left(x_{2}\right) \cap \cdots \cap t^{A}\left(x_{r}\right) \in C(A) . t^{\prime} \geq t$ since $t^{A}\left(x_{i}\right) \geq t$ for each i. Suppose $t^{\prime}>t$. Then $\operatorname{Rank}\left(A_{t^{\prime}}\right)<\operatorname{Rank}\left(A_{t}\right)$, contradicting the fact that $x_{1}, x_{2}, \cdots, x_{r} \in A_{t^{\prime}}$ and they form a maximal independent set in A_{t}.

Theorem 1.6 Let A be a group of rank n. Then $C(A)$ forms a lattice of length at most n in which lattice meet is type intersection. Thus $C(A)$ has a minimum type

$$
t_{0}=t\left(x_{1}\right) \cap t\left(x_{2}\right) \cap \cdots \cap t\left(x_{n}\right)
$$

where $x_{1}, x_{2}, \cdots, x_{n}$ is any maximal independent set in A.
Proof $C(A)$ forms a semi-lattice in which meet is type intersection by definition. Let $t_{\infty}>t_{k}>\cdots>t_{1}$ be any linearly ordered subset of $C(A)$. Then $0<\operatorname{Rank}\left(A_{k}\right)<\cdots<\operatorname{Rank}\left(A_{1}\right) \leq n$. Thus $k \leq n$, and the semilattice $C(A)$ has length at most n. Since any two elements in $C(A)$ have an upper bound t_{α} in $C(A)$, they have a least upper bound in $C(A)$. Therefore $C(A)$ is a lattice; the rest follows from Lemma 1.5.

Remark 1 Theorem 1.6 answers conjectures 1(b) and 2(d) of [2, p. 40].
Remark $2 C(A)$ is not necessarily a sublattice of the lattice of all types, since groups exist (see example 1.10) in which $t_{1}, t_{2} \in C(A)$ and the l.u.b. of t_{1} and t_{2} in $C(A)$ is greater than $t_{1} \cup t_{2}$.

Theorem 1.7 Let A be a group.

1. $P(A)$ forms a lattice of pure subgroups of $A ; P^{*}(A)$ forms a lattice of subspaces of A^{*}. As lattices, $P(A)$ is isomorphic to $P^{*}(A)$, and both are dually isomorphic to $C(A)$.
2. In the lattices $P(A)$ and $P^{*}(A)$, denote lattice meet by \wedge and lattice join by \vee. Then, if $A_{i}, A_{j} \in P(A)$,

$$
\begin{array}{ll}
A_{i} \wedge A_{j}=A_{i} \cap A_{j}, & A_{i}^{*} \wedge A_{j}^{*}=A_{i}^{*} \cap A_{j}^{*} \\
A_{i} \vee A_{j} \supseteq A_{i}+A_{j}, & A_{i}^{*} \vee A_{j}^{*} \supseteq A_{i}^{*}+A_{j}^{*}
\end{array}
$$

Proof (1) The correspondence $t_{k} \rightarrow A_{k}, t_{k} \in C(A), A_{k} \in P(A)$, is onto by definition. Suppose $A_{i}=A_{j}$ and $x_{1}, x_{2}, \cdots, x_{r}$ is a maximal independent set in both A_{i} and A_{j}. Then $t_{i}=t\left(x_{1}\right) \cap t\left(x_{2}\right) \cap \cdots \cap t\left(x_{r}\right)=t_{j}$ by Lemma
1.5. Thus $t_{k} \rightarrow A_{k}$ is also one-to-one. If $t_{j} \leq t_{k}$ and $x \in A_{k}$, then by definition, $x \in A_{j}$; hence $A_{j} \supseteq A_{k}$. Thus $P(A)$ forms a lattice dually isomorphic to $C(A)$.The lattice $P(A)$ is isomorphic to $P^{*}(A)$ since all the members of $P(A)$ are pure subgroups of A.
(2) Let $x \in A_{i} \cap A_{j} . \quad x \in A_{i} \Rightarrow t(x) \geq t_{i} ; x \in A_{j} \Rightarrow t(x) \geq t_{j}$. Hence $t(x) \geq t_{i} \cup t_{j}$; thus $t(x) \geq t_{i} \vee t_{j}$, the l.u.b. of the lattice $C(A)$. The argument reverses to give $t(x) \geq t_{i} \vee t_{j} \Rightarrow x \in A_{i} \cap A_{j}$. Thus $A_{i} \cap A_{j}=A_{t_{i} \vee t_{j}}=$ $A_{i} \wedge A_{j}$ by the dual isomorphism of $P(A)$ and $C(A)$ as lattices.

Let $x=y+z \epsilon A_{i}+A_{j}$, where $y \in A_{i}, z \in A_{j}$. Then

$$
t(x) \geq t(y) \cap t(z) \geq t_{i} \cap t_{j}
$$

and so $x \in A_{t_{i} \cap_{t_{j}}}$. Now $A_{t_{i} \cap_{t_{j}}}=A_{i} \vee A_{j}$ from the dual isomorphism. Thus $A_{i}+A_{j} \subseteq A_{i} \vee A_{j}$.

The relations in $P^{*}(A)$ hold because of the isomorphism of the lattices $P(A)$ and $P^{*}(A)$.

Example 1.10 will show that $A_{i} \vee A_{j} \supset A_{i}+A_{j}$ is possible.
Lemma 1.8 If $S_{1}, S_{2}, \cdots, S_{m}$ are proper subspaces of R^{n}, then there is a basis $x_{1}, x_{2}, \cdots, x_{n}$ of R^{n} such that $x_{i} \notin S_{j}$ for $1 \leq i \leq n, 1 \leq j \leq m$.

The proof is by induction on m.
Corollary 1.9 If $T(A)$ is finite, then $C(A)=T(A)$ and there are $\operatorname{Rank}\left(A_{t}\right)$ independent elements of type t in A for every $t \epsilon T(A)$.

Proof Let $t \epsilon C(A)$. Suppose $t_{1}, t_{2}, \cdots, t_{k}$ are all the types in $T(A)$ that are greater than t. By Theorem $1.7, A_{1}^{*}, A_{2}^{*}, \cdots, A_{k}^{*}$ are all proper subspaces of A_{t}^{*}. Thus by Lemma 1.8 there is a basis $x_{1}, x_{2}, \cdots, x_{r}$ of A_{t}^{*}, where $r=\operatorname{Rank}\left(A_{t}\right)$, such that $x_{i} \notin A_{j}^{*} ; i=1,2, \cdots, r ; j=1,2, \cdots, k$. Moreover, the x_{i} can be chosen so that they are in A_{t}. Since $x_{i} \notin A_{j}^{*}$, then $t\left(x_{i}\right) \neq t_{j}$. But $t\left(x_{i}\right) \geq t$; hence $t\left(x_{i}\right)=t \epsilon T(A)$. This proves both statements.

Remark Examples have been constructed of groups of rank 2 and infinite type set such that $T(A) \neq C(A),[2, \mathrm{p} .30]$.

Example 1.10 (1) Define $h_{0}, h_{1}, h_{2}, h_{3}$ by

$$
\begin{aligned}
& h_{0}(p)=0 \quad \text { for all } p \\
& h_{1}(2)=\infty ; \quad h_{1}(p)=0 \quad \text { otherwise } \\
& h_{2}(3)=\infty ; \quad h_{2}(p)=0 \quad \text { otherwise } \\
& h_{3}(2)=h_{3}(3)=h_{3}(5)=\infty ; \quad h_{3}(p)=0 \quad \text { otherwise. }
\end{aligned}
$$

Let $t_{i}=\left[h_{i}\right], i=0,1,2,3$. In the next section we shall show that there is a rank 3 group A such that $T(A)=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{\infty}\right\}$. Now $C(A)=T(A)$ has a lattice structure as illustrated. Clearly $t_{1} \vee t_{2}=t_{3}>t_{1} \cup t_{2}$. Thus $C(A)$ is not a sublattice of the lattice of all types.

(2) Let A be as in the previous example. Let B be a rank 1 group of type t_{0}. Let $A^{\prime}=A \oplus B$. Then $\operatorname{Rank}\left(A^{\prime}\right)=4$ and $T(A)=T\left(A^{\prime}\right)$; in $P\left(A^{\prime}\right), A_{1}^{\prime} \subseteq A, A_{2}^{\prime} \subseteq A,\left[4\right.$, p. 146]. Hence $A_{1}^{\prime}+A_{2}^{\prime} \subseteq A \subset A^{\prime}=A_{1}^{\prime} \vee A_{2}^{\prime}$. Thus $P\left(A^{\prime}\right)$ is not a sublattice of the lattice of all subgroups of A^{\prime}, nor is $P^{*}\left(A^{\prime}\right)$ a sublattice of the lattice of all subspaces of $A^{\prime *}=R^{4}$.

2. A partial converse to Theorems 1.6 and 1.7

Theorem 2.1 Let $T=\left\{t_{\infty}, t_{0}, t_{1}, \cdots, t_{N}\right\}$ be a set of distinct types, where t_{∞} is a type defined to be greater than all other types. Suppose T forms a lattice under the operations \wedge and \vee, where $t_{i} \wedge t_{j}=t_{i} \cap t_{j}$ and \vee is the l.u.b. in T. Let $L^{*}=\left\{0, A_{0}^{*}, A_{1}^{*}, \cdots, A_{N}^{*}\right\}$ be a lattice of subspaces of $R^{n}=A_{0}^{*}$ under the operations \wedge and \vee, where $A_{i}^{*} \wedge A_{j}^{*}=A_{i}^{*} \cap A_{j}^{*}$ and \vee is the l.u.b. in L^{*}. Suppose further that, as lattices, T is dually isomorphic to L^{*}. Then a group A can be constructed such that $T(A)=T$ and $P^{*}(A)=L^{*}$.

Remark Theorem 2.1 assures the existence of the group A in Example 1.10, since the dual of the lattice of types is clearly realizable in R^{3}.

Theorems 1.7 and 2.1 show that the problem of finding all the possible finite type sets which are type sets of groups of finite rank is equivalent to the (unsolved) problem of finding all the possible finite lattices, under the operations \wedge and \vee, of subspaces of a rational vector space whose dimension is equal to the given rank.

An example of a lattice of types of length 3 may be constructed which has no corresponding lattice of subspaces in 3 -space, due to the restrictions on the latter that follow from Desargues' Theorem when we intersect the subspaces by a plane that does not pass through 0 .

The actual construction of the group A will occupy the rest of the section.
Lemma 2.2 Let $\left\{t_{0}, t_{1}, \cdots, t_{N}\right\}$ be a set of types closed under intersection. Let $h_{0}, h_{1} ; \cdots, h_{N}$ be arbitrary heights such that $h_{i} \in t_{i}, i=0,1, \cdots, N$. Then there are heights $h_{0}^{\prime}, h_{1}^{\prime}, \cdots, h_{N}^{\prime}$ satisfying, for $0 \leq i, j, k \leq N$
(i) $h_{i}^{\prime} \sim h_{i}$;
(ii) $h_{i}^{\prime} \leq h_{i}$;
(iii) if $t_{i} \leq t_{j}$, then $h_{i}^{\prime} \leq h_{j}^{\prime}$;
(iv) if $t_{i} \cap t_{j}=t_{k}$, then $h_{i}^{\prime} \cap h_{j}^{\prime}=h_{k}^{\prime}$.

Proof For each $i=0,1, \cdots, N$, let $h_{i}^{\prime \prime}=\bigcap\left\{h_{k} \mid t_{i} \leq t_{k}\right\}$. It can be shown that $h_{0}^{\prime \prime}, h_{1}^{\prime \prime}, \cdots, h_{N}^{\prime \prime \prime}$ satisfy properties (i), (ii), and (iii).

For a fixed pair of indices $i, j, t_{i} \cap t_{j}=t_{k}$ for some k. Define

$$
\pi(i, j)=\left\{p \mid h_{k}^{\prime \prime}(p) \neq \min \left\{h_{i}^{\prime \prime}(p), h_{j}^{\prime \prime}(p)\right\}\right\}
$$

Each $\pi(i, j)$ is a finite set since $h_{k}^{\prime \prime} \sim h_{i}^{\prime \prime} \cap h_{j}^{\prime \prime}$. Therefore $\pi^{\prime}=\bigcup_{i, j} \pi(i, j)$ is a finite set.

Let $h_{0}^{\prime}=h_{0}^{\prime \prime} . \quad$ For $i=1,2, \cdots, N$ define h_{i}^{\prime} by

$$
\begin{aligned}
h_{i}^{\prime}(p) & =h_{0}^{\prime}(p) \quad \text { if } \quad p \in \pi^{\prime} \quad \text { and } \quad h_{i}^{\prime \prime}(p)<\infty \\
& =h_{i}^{\prime \prime}(p) \quad \text { otherwise }
\end{aligned}
$$

$h_{0}^{\prime}, h_{1}^{\prime}, \cdots, h_{N}^{\prime}$ is the desired set of heights.
2.3 The Construction of A. Let π denote the primes, Z the integers.

1. Let us first index T so that t_{0} is the minimum type in the lattice. Index L^{*} so that $t_{i} \rightarrow A_{i}^{*}$ gives the dual isomorphism $T \rightarrow L^{*}$.
2. Choose a basis $B_{0}=\left\{y_{1}^{0}, \cdots, y_{n}^{0}\right\}$ for $A_{0}^{*}=R^{n}$, where $y_{i}^{0} \notin A_{k}^{*} ; i=$ $1,2, \cdots, n ; k=1,2, \cdots, N$. This can be done by Lemma 1.8. Applying 1.8 to subspaces, we can choose a basis $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$ for each $A_{k}^{*}, 1 \leq k \leq N$, where for each $i=1,2, \cdots, n_{k}, y_{i}^{k} \not A_{l}^{*}$ if $A_{l}^{*} \subset A_{k}^{*}$ and where $y_{i}^{k}=\sum_{j=1}^{n} a_{i j}^{k} y_{j}^{0}$, with $a_{i j}^{k}$ integers such that g.c.d. $\left\{a_{i 1}^{k}, \cdots, a_{i n}^{k}\right\}=1$.
3. Choose heights $h_{0}, h_{1}, \cdots, h_{N}$ such that, for $0 \leq i, j, k \leq N ; h_{i} \in t_{i}$, $h_{i} \leq h_{j}$ if $t_{i} \leq t_{j}$, and $h_{i} \cap h_{j}=h_{k}$ if $t_{i} \cap t_{j}=t_{k}$ (Lemma 2.2).
4. Let A be the group generated by

$$
\begin{aligned}
G=\left\{p^{-s_{k}(p)} y_{i}^{k} \mid p \in \pi ; 0 \leq s_{k}(p)<h_{k}(p)\right. & +1 ; s_{k}(p) \in Z \\
& \left.k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
\end{aligned}
$$

Every element x of A can then be written in the form

$$
\begin{equation*}
\sum_{k=0}^{N} \sum_{i=1}^{n_{k}} \sum_{s_{k}(q)} \sum_{q \epsilon \pi} c_{i}^{k}(q) q^{-s_{k}(q)} y_{i}^{k} \tag{1}
\end{equation*}
$$

where $c_{i}^{k}(q) \in Z, s_{k}(q) \in Z, s_{k}(q)<h_{k}(q)+1$, and the sum has a finite number of terms.

Notation 2.4 Define

$$
\begin{aligned}
& \pi_{0}=\left\{p \mid h_{0}(p)=h_{i}(p), i=1,2, \cdots, N\right\}, \\
& \pi_{k}=\left\{p \mid h_{k}=\bigcap\left\{h_{j} \mid h_{j}(p)>h_{0}(p)\right\}\right\}, \quad k=1,2, \cdots, N
\end{aligned}
$$

It is easy to show that $\pi_{0}, \pi_{1}, \cdots, \pi_{N}$ partition the primes.
Let $A_{k}=A \cap A_{k}^{*}, k=0,1, \cdots, N$. If $x \in A$, let $A(x)=\bigcap\left\{A_{i} \mid x \in A_{i}\right\}$. Due to the lattice structure of $L^{*}, A(x)=A_{k}$ for some k; in particular, $A\left(y_{i}^{k}\right)=A_{k}$.

If $x \in A$, let $H^{A}(x)$, or simply $H(x)$, denote the height of x in A. Let $h_{p}^{A}(x)=H^{A}(x)(p)$. If $r \in R$, write $r=\prod_{p} p^{e_{p}}$, and define $h_{p}(r)=e_{p}$.

Remark If $A(x)=A_{k}$, then we can write $x=\sum_{i=1}^{n_{k}} a_{i} y_{i}^{k}$, where $a_{i} \in R$. Now $H\left(y_{i}^{k}\right) \geq h_{k}$ by the definition of G. Hence $t\left(y_{i}^{k}\right) \geq t_{k}$ and so $t(x) \geq t_{k}$. To get, as desired, that $t(x)=t_{k}$, it therefore suffices to show that for some integer $D(x), h_{p}^{A}(x) \leq h_{k}(p)+h_{p}(D(x))$ for all $p \epsilon \pi$. We now proceed to find this integer $D(x)$ for every x in A.

Definition 2.5 Let $B=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be an arbitrary set of independent elements in A. Let F_{B} be the free subgroup of A generated by B. We shall say that x is B-reduced if $x \in F_{B}$ and $h_{p}^{F_{B}}(x)=0$ for all $p \in \pi$.

Let $0 \neq x \in A$; then there is a unique $s \in R, s>0$, such that $s x$ is B_{0}-reduced, where $B_{0}=\left\{y_{1}^{0}, y_{2}^{0}, \cdots, y_{n}^{0}\right\}$. Since $t(x)=t(s x), T(A)$ is determined by the B_{0}-reduced members of A. Let $F_{B_{0}}=F$.

Lemma 2.6 If x is a B_{0}-reduced element of A, then $h_{p}^{A}(x)=h_{0}(p)$ for every $p \in \pi_{0}$.

Proof Write $x=\sum_{j=1}^{n} b_{j} y_{j}^{0}$. The lemma is obvious if $p \in \pi_{0}, h_{0}(p)=\infty$. Suppose $p \epsilon \pi_{0}, h_{0}(p)=s<\infty, p^{-s-1} x \in A$. Then we can write $p^{-s-1} x$ in the form (1). Since $p \in \pi_{0}, s_{k}(p) \leq h_{0}(p)$ for all i and k. Thus we may write

$$
p^{-s-1} x=\sum_{k=0}^{N} \sum_{i=1}^{n_{k}} d_{i}^{k} p^{-s} y_{i}^{k},
$$

where the d_{i}^{k} are rationals with denominators prime to p. But then

$$
\begin{aligned}
x & =\sum_{k=0}^{N} \sum_{i=1}^{n_{k}}\left(p d_{i}^{k}\right) y_{i}^{k}=\sum_{k=0}^{N} \sum_{i=1}^{n_{k}} p d_{i}^{k} \sum_{j=1}^{n} a_{i j}^{k} y_{j}^{0} \\
& =\sum_{j=1}^{n}\left(p \sum_{k=0}^{N} \sum_{i=1}^{n_{k}} d_{i}^{k} a_{i j}^{k}\right) y_{j}^{0}=\sum_{j=1}^{n} b_{j} y_{j}^{0} .
\end{aligned}
$$

Thus $p \mid b_{j}$ for each j, contradicting $h_{p}^{F}(x)=0$.
Definition 2.7 Let $p \in \pi, 0<r \in Z, x \in F$. We can write $x=\sum_{i=1}^{n} a_{i} y_{i}^{0}$, where $a_{i} \in Z$. Define $x\left(p^{r}\right)=\sum_{i=1}^{n} a_{i}^{\prime} y_{i}^{0}$, where $0 \leq a_{i}^{\prime}<p^{r}$ and $a_{i}^{\prime} \equiv a_{i}$ $\left(\bmod p^{r}\right), i=1,2, \cdots, n$. If A^{\prime} is a subgroup of A, define

$$
A^{\prime}\left(p^{r}\right)=\left\{x\left(p^{r}\right) \mid x \in A^{\prime} \cap F\right\}
$$

Lemma 2.8 Let $p \in \pi, 0<r \in Z, x \in F, A^{\prime}$ be a subgroup of A. Then
(i) $x\left(p^{r}\right) \in A$;
(ii) if $x \neq 0$ is B_{0}-reduced, then $x\left(p^{r}\right) \neq 0$;
(iii) $A^{\prime}\left(p^{r}\right)$ is a group, where addition is defined by

$$
x\left(p^{r}\right)+y\left(p^{r}\right)=(x+y)\left(p^{r}\right)
$$

(iv) if $p \nmid m,(m x)\left(p^{r}\right) \in A^{\prime}\left(p^{r}\right)$, then $x\left(p^{r}\right) \in A^{\prime}\left(p^{r}\right)$;
(v) if $A^{\prime \prime} \subseteq A^{\prime}$, then $A^{\prime \prime}\left(p^{r}\right) \subseteq A^{\prime}\left(p^{r}\right)$;
(vi) $F \cap A^{\prime} \subseteq\left\{x \mid x\left(p^{r+1}\right) \in A^{\prime}\left(p^{r+1}\right)\right\} \subseteq\left\{x \mid x\left(p^{r}\right) \in A^{\prime}\left(p^{r}\right)\right\}$;

The proof follows easily from the definitions. Note that $y \in A^{\prime}$ but $y\left(p^{r}\right) \in A^{\prime}\left(p^{r}\right)$ is possible as long as $y\left(p^{r}\right)=x\left(p^{r}\right)$ for some $x \in A^{\prime} \cap F$.

Lemma 2.9 Let x be a B_{0}-reduced element of A. If $p \in \pi_{l}$ and $h_{p}^{A}(x) \geq$ $h_{0}(p)+r$, where $0<r \in Z$, then $x\left(p^{r}\right) \in A_{l}\left(p^{r}\right)$.

Proof If $p \in \pi_{l}$, then $h_{l}=\bigcap\left\{h_{k} \mid h_{k}(p)>h_{0}(p)\right\}$. Let

$$
I=\left\{k \mid h_{k} \geq h_{l}\right\}, J=\left\{k \mid h_{k}<h_{l}\right\}
$$

Then

$$
\begin{gathered}
k \in I \Leftrightarrow h_{k}(p) \geq h_{l}(p) \Leftrightarrow A_{k}^{*} \subseteq A_{l}^{*} \Leftrightarrow y_{i}^{k} \in A_{l}^{*} \\
k \in J \Leftrightarrow h_{k}(p)=h_{0}(p) .
\end{gathered} \quad i=1,2, \cdots, n_{k} .
$$

Let $s=h_{0}(p)$; if $h_{p}^{A}(x) \geq s+r$, we may write $p^{-s-7} x$ in form (1). Since $p \epsilon \pi_{l}, s_{k}(p) \leq s$ for $k \epsilon J$, and we may rewrite

$$
\begin{equation*}
p^{-s-r} x=\sum_{k \in I} \sum_{i=1}^{n_{k}} d_{i}^{k} y_{i}^{k}+\sum_{k \epsilon J} \sum_{i=1}^{n_{k}} e_{i}^{k} p^{-s} y_{i}^{k} \tag{2}
\end{equation*}
$$

where the d_{i}^{k} are rationals, and the e_{i}^{k} are rationals with denominators prime to p. Let

$$
y=\sum_{k \in I} \sum_{i=1}^{n_{k}} p^{s+r} d_{i}^{k} y_{i}^{k}
$$

Then

$$
\begin{aligned}
x & =y+\sum_{k \epsilon J} \sum_{i=1}^{n_{k}} p^{r} e_{i}^{k} y_{i}^{k} \\
& =y+\sum_{j=1}^{n} p^{r}\left(\sum_{k \epsilon J} \sum_{i=1}^{n_{k}} e_{\imath}^{k} a_{i j}^{k}\right) y_{j}^{0}=y+z
\end{aligned}
$$

There is an integer m prime to p such that $m z \epsilon F$. But then $m y=$ $m x-m z \in F$; hence $m y \in A_{l} \cap F$ and

$$
(m y)\left(p^{r}\right)=(m x)\left(p^{r}\right)-(m z)\left(p^{r}\right)=(m x)\left(p^{r}\right) \in A_{l}\left(p^{r}\right)
$$

By Lemma 2.8(iv), $x\left(p^{r}\right) \in A_{l}\left(p^{r}\right)$.
We now proceed to find necessary conditions on the B_{0}-reduced elements x of A such that $x\left(p^{r}\right) \in A_{k}\left(p^{r}\right)$.

Lemma 2.10 Let S be a proper subspace of R^{n} and $u_{1}, u_{2}, \cdots, u_{m} \in R^{n}-S$. Then there is an $(n-1)$-dimensional subspace S^{\prime} of R^{n} containing S and such that $u_{1}, u_{2}, \cdots, u_{m} \in R^{n}-S^{\prime}$.

The proof is by induction on m.
Notation 2.11 For the rest of Section 2, let x be a B_{0}-reduced element of $A, x=\sum a_{j} y_{j}^{0}$. Let i be the first index such that $a_{i} \neq 0$. Then we define a new basis of $A_{0}^{*}, B_{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, where $x_{j}=y_{j}^{0}$ if $j \neq i$ and $x_{i}=x$.

For $k=1,2, \cdots, N$, choose $(n-1)$-dimensional subspaces $A_{k}^{\prime \prime} \supseteq A_{k}^{*}$ such that $y_{i}^{0} \in A_{k}^{\prime \prime}$ for all i, and also $x_{\star} A_{k}^{\prime \prime}$ whenever $x \notin A_{k}^{*}$ (Lemma 2.10). Extend the basis $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$ of A_{k}^{*} to a basis $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n-1}^{k}$ of $A_{k}^{\prime \prime}$. Let $A_{k}^{\prime \prime}$ and this basis be fixed for each B_{0}-reduced x.

Let m_{i}^{k} be the unique positive rationals such that $m_{i}^{k} y_{i}^{k}$ is B_{x}-reduced, $1 \leq k \leq N, 1 \leq i \leq n-1$. Write $m_{i}^{k} y_{i}^{k}=\sum_{j=1}^{n} b_{i j}^{k} x_{j}$, where $b_{i j}^{k} \in Z$. Let
$M^{k}=\left(\left(b_{i j}^{k}\right)\right)$, a matrix whose $i j^{\text {th }}$ entry is $b_{i j}^{k}$. Let M_{i}^{k} be the $(n-1) \times$ ($n-1$) matrices formed by deleting the $i^{\text {th }}$ columns from M^{k}.

Let δ_{i}^{k} be the determinant of M_{i}^{k}. $\delta_{i}^{k} \in Z$, since all $b_{i j}^{k} \in Z$. Let $D_{i}^{k}=$ $\delta_{i}^{k} /$ g.c.d. $\left\{5_{1}^{k}, \cdots, \delta_{n}^{k}\right\} \in Z$. Finally, define

$$
u_{i j}^{k}=D_{i}^{k} x_{j}+(-1)^{i+j+1} D_{j}^{k} x_{i}, \quad 1 \leq k \leq N, 1 \leq i<j \leq n
$$

Lemma 2.12

$$
D_{i}^{k} \neq 0 \quad \Leftrightarrow \quad x_{i} \notin A_{k} ; \quad i=1,2, \cdots, n, k=1,2, \cdots, N
$$

Proof For each index i and k, let N_{i}^{k} be the $(n) \times(n)$ matrix whose first $n-1$ rows are those of M^{k} and whose last row has 1 in the $i^{\text {th }}$ place, 0 elsewhere.

By choice of $A_{k}^{\prime \prime}$, and since $x_{i} \in A$, we have $x_{i} \notin A_{k} \Leftrightarrow x_{i} \notin A_{k}^{\prime \prime}$. From vector space theory,

$$
\begin{aligned}
x_{i} \notin A_{k}^{\prime \prime} & \Leftrightarrow y_{1}^{k}, \cdots, y_{n-1}^{k}, x_{i} \text { form a basis of } A^{*} \\
& \Leftrightarrow \text { the row vectors of } N_{i}^{k} \text { are independent } \\
& \Leftrightarrow 0 \neq \operatorname{determinant}\left(N_{i}^{k}\right)=(-1)^{n+i} \delta_{i}^{k} \\
& \Leftrightarrow 0 \neq D_{i}^{k} .
\end{aligned}
$$

Lemma 2.13 Each $u_{i j}^{k} \in A_{k}^{\prime \prime} \cap A$.
Proof $u_{i j}^{k} \in A$ clearly. The lemma is obvious from 2.12 if x_{i} or x_{j} are in A_{k}. Suppose $x_{i}, x_{j} \notin A_{k}$, where $i<j$; then $x_{i}, x_{j} \notin A_{k}^{\prime \prime}$. Since $A_{k}^{\prime \prime}$ is $(n-1)$ dimensional and x_{i} and x_{j} are independent, $d_{i}^{k} x_{i}+d_{j}^{k} x_{j} \epsilon A_{k}^{\prime \prime} \cap A$ for some non-zero rationals d_{i}^{k}, d_{j}^{k}.

Thus $y_{1}^{k}, \cdots, y_{n-1}^{k}, d_{i}^{k} x_{i}+d_{j}^{k} x_{j}$ are dependent. Thus the determinant of their coefficients, namely $(-1)^{n+j} d_{j}^{k} \delta_{j}^{k}+(-1)^{n+i} d_{i}^{k} \delta_{i}^{k}$, is 0 . Hence $d_{i}^{k}=(-1)^{i+j+1} d_{j}^{k} D_{j}^{k} / D_{i}^{k}$. Substituting this value for d_{i}^{k} into $d_{i}^{k} x_{i}+d_{j}^{k} x_{j}$ and multiplying both coefficients by D_{i}^{k} / d_{j}^{k} yields $u_{i j}^{k}$. Thus $u_{i j}^{k} \in A_{k}^{\prime \prime} \cap A$.

Lemma 2.14 Let $x=x_{i} \notin A_{k}^{\prime \prime}$. Suppose there is a $y \in A_{k}^{\prime \prime}$ such that $y=\sum b_{j} x_{j}$, where $h_{p}\left(b_{i}\right)=0$ and $h_{p}\left(b_{j}\right)>0$ for all $j \neq i$. Then

$$
\min _{j \neq i}\left\{h_{p}\left(b_{j}\right)\right\} \leq h_{p}\left(D_{i}^{k}\right)
$$

Proof $\left\{u_{i j}^{k} \mid j \neq i\right\}$ are independent, and therefore form a basis for $A_{k}^{\prime \prime}$. This is clear since x_{j} appears with a non-zero coefficient only in the expression for $u_{i j}^{k}, j \neq i$ (Lemma 2.12). Hence no linear combination of the $u_{i j}^{k}$ can be 0 unless all coefficients are 0 .

Thus we may write $y=\sum_{j \neq i} c_{j} u_{i j}^{k}$, where $c_{j} \in R$. Since

$$
b_{i}=\sum_{j \neq i}(-1)^{i+j+1} c_{j} D_{j}^{k}
$$

then $\min _{j \neq i}\left\{h_{p}\left(c_{j}\right)\right\} \leq 0$ or else $h_{p}\left(b_{\imath}\right)>0$. Since $b_{j}=c_{j} D_{i}^{k}$, then $h_{p}\left(b_{j}\right)=$

$$
\begin{aligned}
h_{p}\left(c_{j}\right)+ & h_{p}\left(D_{i}^{k}\right) . \text { Hence } \\
& \min _{j \neq i}\left\{h_{p}\left(b_{j}\right)\right\}=\min _{j \neq i}\left\{h_{p}\left(c_{j}\right)\right\}+h_{p}\left(D_{i}^{k}\right) \leq h_{p}\left(D_{i}^{k}\right)
\end{aligned}
$$

Lemma 2.15 Let $x=x_{i}=\sum_{j \geq i} a_{j} y_{j}^{0}$. Then $x\left(p^{r}\right) \in A_{k}\left(p^{r}\right), 0<r \in Z$, only if $r \leq h_{p}\left(a_{i} D_{i}^{k}\right)$.

Proof If $x \in A_{k}$, then $D_{i}^{k}=0$ by 2.12 and $h_{p}\left(a_{i} D_{i}^{k}\right)=\infty>r$. If $x \notin A_{k}$ and $x\left(p^{r}\right) \in A_{k}\left(p^{r}\right)$, then there is a $y \in A_{k} \cap F$ such that $x\left(p^{r}\right)=y\left(p^{r}\right)$. Write

$$
y=\sum b_{j} x_{j}=b_{i} a_{i} y_{i}^{0}+\sum_{j \neq i}\left(b_{j}+b_{i} a_{j}\right) y_{j}^{0}
$$

where each $b_{k} \in R$. Since $y\left(p^{r}\right)=x\left(p^{r}\right)$, then $b_{i} a_{i} \equiv a_{i}\left(\bmod p^{r}\right)$. If $h_{p}\left(a_{i}\right) \geq r$, then $h_{p}\left(a_{i} D_{i}^{k}\right) \geq r$. If $h_{p}\left(a_{i}\right)<r$, then $h_{p}\left(b_{i}\right)=0$. Let $s=r-h_{p}\left(a_{i}\right)$; find the smallest positive integer m such that $m b_{i} \in Z$. $h_{p}(m)=0$ since $h_{p}\left(b_{i}\right)=0$. Now $(m y)\left(p^{r}\right)=(m x)\left(p^{r}\right)$, yielding

$$
m b_{i} a_{i} \equiv m a_{i}
$$

and

$$
m b_{j}+m b_{i} a_{j} \equiv m a_{j} \quad\left(\bmod p^{r}\right)
$$

Thus $m b_{i} \equiv m\left(\bmod p^{s}\right)$. This implies that $m b_{j} \in Z$ and $m b_{j} \equiv 0\left(\bmod p^{s}\right)$ if $j \neq i$. Hence $h_{p}\left(b_{j}\right)=h_{p}\left(m b_{j}\right) \geq s>0$ if $j \neq i$. Thus by Lemma 2.14, $h_{p}\left(D_{i}^{k}\right) \geq \min _{j \neq i}\left\{h_{p}\left(b_{j}\right)\right\} \geq s$. Therefore $r=s+h_{p}\left(a_{i}\right) \leq h_{p}\left(a_{i} D_{i}^{k}\right)$.

Corollary 2.16 If $A(x)=A_{0}$, then there is an integer $D(x)$ such that, for all $p \in \pi$,

$$
h_{0}(p)+h_{p}(D(x)) \geq h_{p}^{A}(x) \geq h_{0}(p)
$$

thus $t(x)=t_{0}$.
Proof Write $x=\sum_{j \geq i} a_{j} y_{j}^{0}, a_{j} \in Z$. By Lemma 2.6, if $p \in \pi_{0}$, then $h_{p}^{A}(x)=h_{0}(p)$. If $p \in \pi_{k}$ for some $k=1,2, \cdots, N$, then, since $x \notin A_{k}$, we may combine Lemmas 2.9 and 2.15 to get

$$
h_{p}^{A}(x) \geq h_{0}(p)+r \Rightarrow x\left(p^{r}\right) \in A_{k}\left(p^{r}\right) \Rightarrow h_{p}\left(a_{i} D_{i}^{k}\right) \geq r
$$

whenever $r>0$. Thus if $D(x)=a_{i} \prod_{k=1}^{N} D_{i}^{k}$, then $D(x) \neq 0$ and

$$
h_{0}(p)+h_{p}(D(x)) \geq h_{p}^{A}(x) \geq h_{0}(p)
$$

for all $p \in \pi . \quad t(x)=t_{0}$ follows at once.
Lemma 2.17 If $A(x)=A_{k_{0}}$, then $t(x)=t_{k_{0}}$.
Proof Define $\pi_{0}^{k_{0}}=\left\{p \mid h_{k}(p) \leq h_{k_{0}}(p)\right.$ for all $\left.k\right\}$, and if $k>0$,

$$
\pi_{k}^{k_{0}}=\left\{p \mid h_{k}=\bigcap\left\{h_{j} \mid h_{j}(p)>h_{k_{0}}(p)\right\}\right\} .
$$

Note that $\pi_{k}^{k_{0}}$ is empty unless $t_{k}>t_{k_{0}}$, and that $\pi_{0}^{k_{0}}, \pi_{1}^{k_{0}}, \cdots, \pi_{N}^{k_{0}}$ partition π.
If $p \in \pi_{0}^{k_{0}}$, then $h_{p}^{A}(x) \leq h_{k_{0}}(p)$ following the same proof as in Lemma 2.6, letting now $s=h_{k_{0}}(p)$.

If $p \in \pi_{l}^{k_{0}}$, then, defining I and J as in 2.9 , we get

$$
k \epsilon J \Leftrightarrow h_{k}(p) \leq h_{k_{0}}(p)
$$

This is sufficient to obtain the conclusion of Lemma 2.9, that $h_{p}^{A}(x) \geq$ $h_{k_{0}}(p)+r$, where $0<r \in Z$, only if $x\left(p^{r}\right) \in A_{l}\left(p^{r}\right)$. By 2.15, $x\left(p^{r}\right) \in A_{l}\left(p^{r}\right)$ only if $r \leq h_{p}\left(a_{i} D_{i}^{l}\right)$. By 2.12, $D_{i}^{l} \neq 0$ since $A(x)=A_{k_{0}} \supset A_{l}$, implying that $x \in A_{l}$.

Let $S=\left\{k \mid t_{k}>t_{k_{0}}\right\}$ and $D(x)=a_{i} \prod_{k \in S} D_{i}^{k}$. We have just showed that $h_{k_{0}}(p)+h_{p}(D(x)) \geq h_{p}^{A}(x)$ for all p; therefore $t(x)=t_{k_{0}}$.

Corollary $2.18 T(A)=T, P^{*}(A)=L^{*}$ and therefore Theorem 2.1 is proved. For each $k=0,1, \cdots, N$, the elements $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$ demonstrate explicitly $\operatorname{Rank}\left(A_{k}\right)$ independent elements in A of type t_{k}. For each $x \in A$ and $p \epsilon \pi$, an upper bound of $h_{p}^{A}(x)$ may be found by calculating the integer $D(r x)$ as defined above, where $r x$ is B_{0}-reduced.

3. Quasi-essential groups

Following the construction of the previous section, we define a class of groups as follows:

Definition 3.1 (1) Let A be a group. We shall call A an essential group if A has for a set of generators

$$
\left\{p^{-s_{k}(p)} y_{i}^{k} \mid p \in \pi ; 0 \leq s_{k}(p)<h_{k}(p)+1\right.
$$

$$
\left.k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
$$

where
(a) $h_{0}, h_{1}, \cdots, h_{N}$ are heights satisfying

$$
\begin{aligned}
& {\left[h_{i}\right]=t_{i},} \\
& h_{i} \leq h_{j} \\
& h_{i} \cap h_{j}=h_{k} \\
& \text { if } t_{i} \leq t_{j} \\
& t_{i} \cap t_{j}=t_{k} ; 0 \leq i, j, k \leq N
\end{aligned}
$$

(b) $\quad n_{k}=\operatorname{Rank}\left(A_{k}\right), k=0,1, \cdots, N$;
(c) $B_{0}=\left\{y_{1}^{0}, y_{2}^{0}, \cdots, y_{n_{0}}^{0}\right\}$ is a basis of A^{*} such that

$$
y_{i}^{0} \notin A_{k}^{*}, \quad 1 \leq k \leq N, 1 \leq i \leq n_{0}
$$

(d) for each $k=1,2, \cdots, N,\left\{y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}\right\}$ is a basis of A_{k}^{*} such that y_{i}^{k} is B_{0}-reduced and $y_{i}^{k} \notin A_{j}^{*}$ if $A_{j}^{*} \subset A_{k}^{*}$.
(2) B is a quasi-essential (q.e.) group if B is quasi-isomorphic to some essential group A.

Remark If A is the essential group constructed above, then it is clear from Corollary 2.18 that

$$
T(A)=\left\{t_{\infty}, t_{0}, t_{1}, \cdots, t_{N}\right\}
$$

and

$$
P^{*}(A)=L^{*}=\left\{0, A_{0}^{*}, A_{1}^{*}, \cdots, A_{N}^{*}\right\}
$$

Notation 3.2 Let y_{γ} be in R^{n} and let h_{γ} be corresponding heights, where $\gamma \in \Gamma, \Gamma$ some indexing set; by $A=\left\{\left(y_{\gamma}, h_{\gamma}\right) \mid \gamma \in \Gamma\right\}$ we shall mean that A is the group generated by

$$
\left\{p^{-s_{\gamma}(p)} y_{\gamma} \mid p \in \pi ; 0 \leq s_{\gamma}(p)<h_{\gamma}(p)+1 ; \gamma \in \Gamma\right] .
$$

Thus in 3.1, $A=\left\{\left(y_{i}^{k}, h_{k}\right)\right\}$.

4. Quasi-isomorphism invariants for q.e. groups

Definition 4.1 Let A and B be groups; define
(1) $A \subseteq B$ if there is some $0<n \in Z$ such that $n A \subseteq B$;
(2) $A \doteq B(A$ is quasi-equal to $B)$ if $A \doteq B, B \doteq A$;
(3) $A \leftharpoonup B(A$ is quasi-isomorphic to $B)$ if there are subgroups A^{\prime} of A and B^{\prime} of B such that $A^{\prime} \doteq B^{\prime}, A \subseteq A^{\prime}, B \subseteq B^{\prime},[1, \mathrm{p} .62]$.

Lemma 4.2 Let A and B be groups; then the following are equivalent:
(i) $A \subset B$.
(ii) There is a subgroup B^{\prime} of B and a monomorphism ϕ from B^{\prime} to A such that $A \subseteq \phi\left(B^{\prime}\right)$ and $B \subseteq B^{\prime}$.
(iii) There is a monomorphism ϕ from B to A such that $A \subseteq \phi(B) \subseteq A$.
(iv) There is a subgroup A^{\prime} of A such that $B \cong A^{\prime} \doteq A$.
(v) There are non-singular linear transformations L_{1} and L_{2} of R^{n} such that $L_{1}(A) \subseteq B$ and $L_{2}(B) \subseteq A$.

The proofs are routine.
Corollary 4.3 Let A and B be quasi-isomorphic subgroups of R^{n}. Then
(i) $\operatorname{Rank}(A)=\operatorname{Rank}(B)$;
(ii) $T(A)=T(B)$;
(iii) A_{t} ¿ B_{t}, for all types t;
(iv) there is a non-singular linear transformation L of R^{n} such that $L\left(B_{t}^{*}\right)=A_{t}^{*}$ for all t;
(v) if $A \doteq B$, then $A_{t}=B_{t}, A_{t}^{*}=B_{t}^{*}$ for all t.

Proof That $\operatorname{Rank}(A)=\operatorname{Rank}(B)$ is obvious. For the rest, let $\phi: B \rightarrow A$ be a monomorphism such that $N A \subseteq \phi(B) \subseteq A$ for some integer $N>0$. Then for every $x \in B$,
$H^{B}(x) \sim H^{B}(N x)=H^{\phi(B)}(N \phi(x)) \leq H^{A}(N \phi(x)) \sim H^{N A}(N \phi(x))$ $\leq H^{\phi(B)}(N \phi(x))$.
Thus $t^{B}(x)=t^{A}(\phi(x))$ and so

$$
T(B) \subseteq T(A) \quad \text { and } \quad A_{t} \subseteq \phi\left(B_{t}\right) \subseteq A_{t}
$$

The argument reverses to get $T(A) \subseteq T(B) . \quad \phi$ extends naturally to a non-singular linear transformation L of R^{n}, yielding

$$
A_{t}^{*}=\left(N A_{t}\right)^{*} \subseteq L\left(B_{t}^{*}\right) \subseteq A_{t}^{*}
$$

Remark The converse to this corollary is not true in general, as may be seen from the theory of rank 2 groups [2]. However, in the case of q.e. groups, we get

Theorem 4.4 Let A and B be q.e. groups. Then $A \propto B$ if and only if (i) $T(A)=T(B)$; (ii) there exists a non-singular linear transformation L of R^{n} such that $t \in T(B) \Rightarrow L\left(B_{t}^{*}\right)=A_{t}^{*}$.

Proof If $A \lessdot B$, then (i) and (ii) follow from 4.3.
Conversely, assume that A and B are essential groups. Then

$$
A=\left\{\left(y_{j}^{k}, h_{k}\right) \mid k=0,1, \cdots, N ; j=1,2, \cdots, n_{k}\right\}
$$

Similarly,

$$
B=\left\{\left(x_{j}^{k}, h_{k}^{\prime}\right) \mid k=0,1, \cdots, N ; j=1,2, \cdots, m_{k}\right\}
$$

where all the conditions of Definition 3.1 are satisfied.
Let L be a non-singular linear transformation of R^{n} such that $L\left(B_{t}^{*}\right)=A_{t}^{*}$ for every $t \in T(B)$. This implies that $m_{k}=\operatorname{Dim}\left(B_{k}^{*}\right)=\operatorname{Dim}\left(A_{k}^{*}\right)=n_{k}$ for every $t_{k} \in T(B)=T(A)$. For each j and $k, L\left(x_{j}^{k}\right)=\sum_{i} r_{i j}^{k} y_{i}^{k}$, where the $r_{i j}^{k} \in R$. Let M be the product of the denominators of all the $r_{i j}^{k}$. Find integers J_{k} such that $J_{k} h_{k}(p) \leq h_{k}^{\prime}(p)$ for all p; this can be done since $h_{k} \sim h_{k}^{\prime}$. Let $J=J_{0} J_{1} \cdots J_{N} . \quad(J M) L$ is also non-singular. A simple computation shows that $(J M) L\left(p^{-s_{k}(p)} x_{j}^{k}\right) \in A$ for every generator $p^{-s_{k}(p)} x_{j}^{k}$ of B. Hence $(J M) L(B) \subseteq A$. Similarly, there are non-zero integers J^{\prime} and M^{\prime} such that $\left(J^{\prime} M^{\prime}\right) L^{-1}(A) \subseteq B$. Hence $A \leadsto B$ by 4.2.

Finally, if A and B are q.e., then there are essential groups A^{\prime} and B^{\prime} such that $A \doteq A^{\prime}, B \doteq B^{\prime}$. By 4.3, $T\left(A^{\prime}\right)=T(A)=T(B)=T\left(B^{\prime}\right)$ and $A_{t}^{*}=A_{t}^{\prime *}, B_{t}^{*}=B_{t}^{\prime *}$ for all types t. Hence $L\left(B_{t}^{\prime *}\right)=A_{t}^{\prime *}$ for every $t \in T(B)$. By the above argument, $A^{\prime} \propto B^{\prime}$; hence $A \rightleftharpoons B$.

Corollary 4.5 If A and B are q.e. groups, then $A \doteq B$ if and only if (i) $T(A)=T(B)$; (ii) $P^{*}(A)=P^{*}(B)$.

Definition 4.6 Let A^{\prime} be an essential subgroup of A. We shall call A^{\prime} a maximal essential subgroup if, whenever $A^{\prime} \subseteq B \subseteq A$, where B is an essential subgroup of A, then $A^{\prime} \doteq B$. Similarly define a maximal q.e. subgroup.

Theorem 4.7 Let A be a group with finite type set.
(1) A has a maximal essential subgroup A^{\prime} such that $T\left(A^{\prime}\right)=T(A)$ and $P^{*}\left(A^{\prime}\right)=P^{*}(A) . \quad A^{\prime}$ is unique up to quasi-equality.
(2) If $x \in A$, there is a maximal essential subgroup A^{\prime} of A containing x.
(3) A is q.e. if and only if A / A^{\prime} is a finite group for every maximal essential subgroup A^{\prime} of A.
(4) If A^{\prime} is a maximal essential subgroup of A, then A / A^{\prime} is a torsion group.

Proof (1) and (2). Assume $\operatorname{Rank}(A)=n, T(A)=\left\{t_{\infty}, t_{0}, t_{1}, \cdots, t_{N}\right\}$; assume also that $x \neq 0$. There is an independent set $\left\{x, y_{2}^{0}, \cdots, y_{n}^{0}\right\}$ where the y_{i}^{0} are of type t_{0}, the minimal type in $T(A)$. These elements can always
be found since $T(A)$ is finite (Corollary 1.9). If $t(x)=t_{0}$, let $y_{1}^{0}=x$. If $t(x)>t_{0}$, then consider the pure subgroup P in A generated by $\left\{x, y_{2}^{0}\right\}$. P has finite type set, since $t^{P}(y)=t^{A}(y)$ for all $y \in P$. In particular, $t^{P}\left(y_{2}^{0}\right)=t_{0}$. For some $m \in Z$,

$$
t^{P}\left(x+m y_{2}^{0}\right)=t_{0}=t^{A}\left(x+m y_{2}^{0}\right)
$$

[2, p. 27]. Let $y_{1}^{0}=x+m y_{2}^{0} ; B_{0}=\left\{y_{1}^{0}, y_{2}^{0}, \cdots, y_{n}^{0}\right\} . \quad x$ is B_{0}-reduced, since $x=y_{1}^{0}-m y_{2}^{0}$.

For each $t_{k} \in T(A), t_{k} \neq t_{0}$, we can find $n_{k}=\operatorname{Rank}\left(A_{k}\right)$ independent B_{0}-reduced elements of type t_{k} in $A, y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$. Let $h_{k}=\bigcap_{j} H^{A}\left(y_{j}^{k}\right)$, $k=0,1, \cdots, N$. Find heights $h_{0}^{\prime}, h_{1}^{\prime}, \cdots, h_{N}^{\prime}$ such that, for $0 \leq i, j, k \leq N$, (i) $h_{i}^{\prime} \leq h_{i}$; (ii) $h_{i}^{\prime} \sim h_{i}$; (iii) if $t_{i} \leq t_{j}$, then $h_{i}^{\prime} \leq h_{j}^{\prime}$; (iv) if $t_{i} \cap t_{j}=t_{k}$, then $h_{i}^{\prime} \cap h_{j}^{\prime}=h_{k}^{\prime}$ (Lemma 2.2).

Let $A^{\prime}=\left\{\left(y_{j}^{k}, h_{k}^{\prime}\right) \mid k=0,1, \cdots, N ; j=1,2, \cdots, n_{k}\right\} ; A^{\prime}$ is an essential group. Since $h_{k}^{\prime} \leq h_{k} \leq H^{A}\left(y_{j}^{k}\right)$, all the generators of A^{\prime} are in A and A^{\prime} is a subgroup of $A . \quad T\left(A^{\prime}\right)=T(A)$ and $P^{*}\left(A^{\prime}\right)=P^{*}(A)$ (Corollary 2.18). If B is any other essential subgroup of A with $A^{\prime} \subseteq B \subseteq A$, then it is clear that $T(B)=T\left(A^{\prime}\right), P^{*}(B)=P^{*}\left(A^{\prime}\right)$. Hence by $4.5, A^{\prime} \doteq B$. Thus A^{\prime} is maximal essential, contains x, and by 4.5 is unique up to quasi-equality.
(3) A is q.e. $\Leftrightarrow A \doteq A^{\prime}$ for any maximal essential subgroup A^{\prime} of $A \Leftrightarrow N A \subseteq A^{\prime} \subseteq A$ for some $0<N \epsilon Z \Leftrightarrow A / A^{\prime}$ is a finite group (A being of finite rank).
(4) This is obvious. Thus a maximal essential subgroup A^{\prime} furnishes a "large" subgroup of A that is also "standard" since A^{\prime} is unique up to quasiequality. The problem of finding quasi-isomorphism invariants for torsionfree groups A with finite rank and finite type set could possibly be solved by examining the groups A / A^{\prime}, where A^{\prime} is a maximal essential subgroup of A.

5. The structure of q.e. groups

Theorem 5.1 Let $A=\left\{\left(y_{k}, h_{k}\right) \mid k=1,2, \cdots, N\right\}$, where the h_{k} are arbitrary heights and $y_{k} \in R^{n}$. Then A is a q.e. group and $T(A)$ and $P(A)$ may be found in a natural way.

Proof In (1) we shall describe this "natural way". Then we shall show that this method does yield $T(A)$ and $P(A)$. Finally, we shall show that A is q.e.
(1) Assume that $\operatorname{Rank}(A)=n$. For each $h_{i}, 1 \leq i \leq N$, let A_{i}^{*} be the subspace of R^{n} generated by all the y_{k} such that $h_{k} \geq h_{i}$. Clearly every $x \in A \cap A_{i}^{*}$ will have type $t(x) \geq\left[h_{i}\right]$. Let F be the (finite) set of all subsets of the indices $\{1,2, \cdots, N\}$. For each $f \in F, f \neq \phi$, define $A_{f}^{*}=\sum_{i \epsilon f} A_{i}^{*}$ and $t_{f}=\bigcap_{i \epsilon f}\left[h_{i}\right]$. Define $A_{\phi}^{*}=0, t_{\phi}=t_{\alpha}$.

If $x \in A \cap A_{f}^{*}$, then $x=\sum_{i \epsilon f} a_{i} x_{i}$, where $a_{i} \in R, x_{i} \in A_{i}^{*}$. Hence

$$
t(x) \geq \bigcap_{i \epsilon f} t\left(x_{i}\right) \geq \bigcap_{i \epsilon f}\left[h_{i}\right]=t_{f}
$$

If $x \in A$, define $t_{x}=\bigcup\left\{t_{f} \mid x \in A_{f}^{*}\right\}$. By the above remarks, $t(x) \geq t_{x}$, $t(0)=t_{\infty}=t_{0}$. We shall show eventually that $t_{x}=t(x)$. Let $T=\left\{t_{x} \mid x \in A\right\} \cup\left\{\right.$ all finite intersections of members of $\left.\left\{t_{x} \mid x \in A\right\}\right\} . T$ is finite since F is finite, and forms a lattice $\left\{t_{\infty}, t_{0}, t_{1}, \cdots, t_{k}\right\}$.
(2) $\left\{x \in A \mid t_{x} \geq t_{k}\right\}$ is a pure subgroup B_{k} of A for each $k=0,1, \cdots, K$.

Proof The only difficult part is to show closure, since $t_{0}=t_{\infty} \geq t_{k}, t_{-x}=t_{x}$, $t_{r x}=t_{x}$ if $r x \in A$.

First note that, if $f, g \in F$, then

$$
t_{f} \cap t_{g}=\bigcap_{i \epsilon f}\left[h_{i}\right] \cap \bigcap_{j \epsilon g}\left[h_{j}\right]=\bigcap_{i \epsilon f \cup}\left[h_{i}\right]=t_{f \cup g} .
$$

Since the lattice of all types is distributive,

$$
\left(\bigcup_{\alpha} t_{\alpha}\right) \cap\left(\bigcup_{\beta} t_{\beta}\right)=\bigcup_{\alpha, \beta}\left(t_{\alpha} \cap t_{\beta}\right)
$$

if α, β are finite sets. If $x \in A_{f}^{*}, y \in A_{g}^{*}$, then

$$
x+y \epsilon A_{f}^{*}+A_{g}^{*}=A_{f \cup \cup}^{*} ;
$$

thus

$$
\left\{f \cup g \mid x \in A_{f}^{*}, y \in A_{g}^{*}\right\} \subseteq\left\{h \mid x+y \in A_{h}^{*}\right\}
$$

Now let $x, y \in B_{k}$; that is, $x, y \in A$ and $t_{x}, t_{y} \geq t_{k}$. Combining the above properties, we get

$$
\begin{aligned}
t_{k} \leq t_{x} \cap t_{y} & =\bigcup\left\{t_{f} \mid x \in A_{f}^{*}\right\} \cap \bigcup\left\{t_{g} \mid y \in A_{g}^{*}\right\} \\
& =\bigcup\left\{t_{f} \cap t_{g} \mid x \in A_{f}^{*}, y \in A_{g}^{*}\right\} \\
& =\bigcup\left\{t_{f \mathrm{U}_{g}} \mid x \in A_{f}^{*}, y \in A_{g}^{*}\right\} \leq \bigcup\left\{t_{h} \mid x+y \in A_{h}^{*}\right\}=t_{x+y}
\end{aligned}
$$

(3) $P=\left\{0, B_{0}, B_{1}, \cdots, B_{K}\right\}$ forms a lattice dually isomorphic to the lattice T. In P, the meet of B_{i}, B_{j} is $B_{i} \cap B_{j}$ and the join of B_{i}, B_{j} is the member of P that corresponds to $t_{i} \cap t_{j}$ in the dual isomorphism.

Proof Let $t_{r}, t_{s} \in T$. If $t_{r} \geq t_{s}$, then

$$
B_{r}=\left\{x \in A \mid t_{x} \geq t_{r} \geq t_{s}\right\} \subseteq\left\{x \in A \mid t_{x} \geq t_{s}\right\}=B_{s}
$$

If $B_{r} \subseteq B_{s}$, then

$$
t_{r}=\bigcap\left\{t_{x} \mid x \in B_{r}\right\} \geq \bigcap\left\{t_{x} \mid x \in B_{s}\right\}=t_{s}
$$

where the equalities hold because T is a finite lattice closed under \cap and because of the definition of B_{k}. Therefore P forms a lattice dually isomorphic to T and lattice join in P is as asserted. That lattice meet is group intersection is an easy computation (or see Theorem 1.7).
(4) Clearly $P^{*}=\left\{0, B_{0}^{*}, B_{1}^{*}, \cdots, B_{K}^{*}\right\}$ forms a lattice isomorphic to P. Following 2.1 and 3.1, let B be an essential group with $T(B)=T$ and $P^{*}(B)=P^{*}$.

If $x \in A \cap B$, then $t^{B}(x)=t_{x}$. For $t_{x}=t_{k}$ for some $k, 1 \leq k \leq K$, by
definition of T. Hence $x \in B_{k}$ and $t^{B}(x) \geq t_{k}=t_{x}$. If $t^{B}(x)=t_{j}>t_{k}$, then $x \in B_{j} \subset B_{k}$, implying $t_{x} \geq t_{j}>t_{k}$, a contradiction. Also if $x \in A \cap B$, then $t^{A}(x) \geq t_{x}=t^{B}(x)$. Hence $t^{A} \cap^{B}(x)=t^{B}(x)$. Since $A^{*}=B^{*}$, some integral multiple of every element in A or B is in $A \cap B$. Hence $T(A \cap B)=$ $T(B)=T$ and $P^{*}(A \cap B)=P^{*} . \quad$ By Theorem 4.7, there is an essential subgroup A^{\prime} of $A \cap B$ such that $T\left(A^{\prime}\right)=T(A \cap B)$ and $P^{*}\left(A^{\prime}\right)=P^{*}(A \cap B)$. By Corollary 4.5, $A^{\prime} \doteq B$.

```
A'\doteq}\doteqA
```

Proof Let M_{k} be integers such that $M_{k} y_{k} \in A^{\prime}$, where the y_{k} are as in the statement of the theorem. Then

$$
t^{A^{\prime}}\left(M_{k} y_{k}\right)=t^{B}\left(M_{k} y_{k}\right)=t_{M_{k} y_{k}}=t_{y_{k}} \geq\left[h_{k}\right]
$$

Thus there are integers N_{k} such that

$$
h_{p}^{A^{\prime}}\left(M_{k} y_{k}\right)+h_{p}\left(N_{k}\right) \geq h_{k}(p)
$$

for all p. Thus $M_{k} N_{k} p^{-s} y_{k} \in A^{\prime}$ for all p and k, where $s<h_{k}(p)+1$. If $M=\prod M_{k} N_{k}$, then $M u \epsilon A^{\prime}$ for every generator u of A. Therefore $M A \subseteq A^{\prime} \subseteq A \cap B \subseteq A$ and $A^{\prime} \doteq A$.

Thus A is a q.e. group, and $t^{A}(x)=t^{A^{\prime}}(M x)=t_{M x}=t_{x}$ for every $x \in A$. This completes the proof of the theorem.

Corollary 5.2 Let T and L^{*} be as in 2.1. For each $k=0,1, \cdots, N$, let $n_{k}=\operatorname{Dim}\left(A_{k}^{*}\right)$ and let $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$ be arbitrary independent members of $A_{k}^{*}, h_{1}^{k}, h_{2}^{k}, \cdots, h_{n_{k}}^{k}$ be arbitrary heights in the equivalence class t_{k}. Then

$$
A=\left\{\left(y_{i}^{k}, h_{i}^{k}\right) \mid k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
$$

is a q.e. group, with $T(A)=T, P^{*}(A)=L^{*}$.
Corollary 5.3 Let A be a group with $T(A)=\left\{t_{\infty}, t_{0}, t_{1}, \cdots, t_{N}\right\}$. For each k, let $n_{k}=\operatorname{Rank}\left(A_{k}\right)$ and let $y_{1}^{k}, y_{2}^{k}, \cdots, y_{n_{k}}^{k}$ be independent elements in A_{k}. Then

$$
B=\left\{\left(y_{i}^{k}, H^{A}\left(y_{i}^{k}\right)\right) \mid k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
$$

is a maximal q.e. subgroup of A such that $T(B)=T(A)$ and $P^{*}(B)=P^{*}(A)$. B is unique up to quasi-equality.

Theorem 5.4 If A is a q.e. group, then there are elements $y_{1}, y_{2}, \cdots, y_{N}$ of R^{n} and heights $h_{1}, h_{2}, \cdots, h_{N}$ such that

$$
A=\left\{\left(y_{k}, h_{k}\right) \mid k=1,2, \cdots, N\right\}
$$

Proof Let A^{\prime} be a maximal essential subgroup of A,

$$
A^{\prime}=\left\{\left(y_{k}, h_{k}\right) \mid k=1,2, \cdots, M\right\}
$$

By Theorem 4.7, A / A^{\prime} is a finite group, generated by $y_{M+1}+A^{\prime}, \cdots, y_{N}+A^{\prime}$.

Then

$$
A=\left\{\left(y_{k}, h_{k}\right) \mid k=1,2, \cdots, N\right\}
$$

where $h_{k}(p)=0$ for all p if $M+1 \leq k \leq N$.
Corollary 5.5 If A and B are q.e. groups, then so is $A+B$.
Lemma 5.6 If A and B are q.e., then so is $A \cap B$.
Proof (1) Let

$$
\begin{aligned}
A & =\left\{\left(y_{j}, h_{j}\right) \mid j=1,2, \cdots, N\right\} \\
B & =\left\{\left(u_{j}, k_{j}\right) \mid j=1,2, \cdots, M\right\}
\end{aligned}
$$

We proceed by induction on $N+M$. The lemma is certainly true if $N+M \leq 3$, since then $A \cap B$ is 0 or of Rank 1. If we let

$$
A_{i}=\left\{\left(y_{j}, h_{j}\right) \mid j=1,2, \cdots, N ; j \neq i\right\}
$$

and define B_{i} similarly, then for all $i, A_{i} \cap B, B_{i} \cap A$ are q.e. by the induction hypothesis.

Let $D=A \cap B$. Since $T(A)$ and $T(B)$ are both finite, so is $T(D)$ because each $x \epsilon D$ has type $t^{A}(x) \cap t^{B}(x)$. For each $t \in T(D)$, there is a maximal independent set $B_{t}=\left\{z_{i}^{t}\right\}$ in D such that

$$
z_{i}^{t}=\sum_{j=1}^{N} r_{i j}^{t} y_{j}=\sum_{j=1}^{M} s_{i j}^{t} u_{j}
$$

for each i, where $0 \neq r_{i j}^{t}, s_{i j}^{t} \in Z$ and where all the z_{i}^{t} have the same height in D Let $A_{0}=\left\{\left(z_{i}^{t}, H^{D}\left(z_{i}^{t}\right)\right)\right\}$. We shall show that

$$
C=A_{0}+\sum_{i=1}^{N} A_{i} \cap B+\sum_{i=1}^{M} B_{i} \cap A \doteq D
$$

Since C is q.e. by Corollary 5.5 , this will prove the lemma.
(2) Since $C \subseteq D, H^{C}(y) \leq H^{D}(y)$ for all $y \in C$. As a corollary of the induction hypothesis, there is $0<K \in Z$ such that $H^{C}(K y) \geq H^{D}(y)$ if $y \in A_{i} \cap B, B_{i} \cap A$. Thus we need only show that $H^{C}(K x) \geq H^{D}(x)$ if $x=\sum_{j=1}^{N} a_{j} y_{j}=\sum_{j=1}^{M} b_{j} u_{j} \in C$, where $a_{j}, b_{j} \neq 0$.

Let us now fix p and assume that $\min _{j}\left\{h_{p}^{A}\left(z_{j}^{t}\right)\right\} \leq h_{p}^{B}\left(z_{i}^{t}\right)$ for all i. If $\min _{j}\left\{h_{p}^{B}\left(z_{j}^{t}\right)\right\} \leq h_{p}^{A}\left(z_{i}^{t}\right)$ for all i, a similar process to that described below, with the roles of A and B interchanged, will give us the same results. If $t^{D}(x)=t$, we may assume that x is B_{t}-reduced. We may further assume that $p^{-k} a_{j} y_{j} \epsilon A$ for every j and every $k<h_{p}^{A}(x)+1$; for if this condition does not hold, then x is in some A_{i} by another representation $x=\sum_{j \neq i} a_{j}^{\prime} y_{j}$ and $h_{p}^{A_{i}}(x)=h_{p}^{A}(x)$, implying that $h_{p}^{C}(K x) \geq h_{p}^{D}(x)$.

Let

$$
x=\sum_{i} c_{i} z_{i}^{t}=\sum_{j=1}^{N} \sum_{i} c_{i} r_{i j}^{t} y_{j}=\sum_{j=1}^{N} a_{j} y_{j}
$$

where each $c_{i} \in Z, \min _{i}\left\{h_{p}\left(c_{i}\right)\right\}=0$ for all $p, a_{j} \neq 0$ for all j. By our assumptions on x,

$$
\begin{aligned}
h_{p}^{D}(x) \leq h_{p}^{A}(x) & =\min _{j}\left\{h_{p}\left(a_{j}\right)+h_{p}^{A}\left(y_{j}\right)\right\} \\
& =\min _{j}\left\{\min _{i}\left\{h_{p}\left(r_{i j}^{t}\right)\right\}+h_{p}^{A}\left(y_{j}\right)\right\} \leq \min _{i}\left\{h_{p}^{A}\left(z_{i}^{t}\right)\right\} \leq h_{p}^{D}\left(z_{i}^{t}\right)
\end{aligned}
$$

for all i, and therefore $h_{p}^{D}(x) \leq h_{p}^{C}(x)$, unless $h_{p}\left(a_{j}\right)>\min _{i}\left\{h_{p}\left(r_{i j}^{t}\right)\right\}$ for some j.
(3) Suppose $r=\max _{j}\left\{h_{p}\left(a_{j}\right)-m_{j}\right\}>0$ for some j, where

$$
m_{j}=\min _{i}\left\{h_{p}\left(r_{i j}^{t}\right)\right\}
$$

For simplicity's sake, suppose $j=1$ and $h_{p}\left(r_{11}^{t}\right)=m_{1}=h$. Then find $m \in Z$ such that

$$
-m\left(r_{11}^{t} / p^{h}\right) \equiv 1 \quad\left(\bmod p^{r}\right)
$$

Since

$$
\sum_{i} c_{i} r_{i 1}^{t}=a_{1} \equiv 0 \quad\left(\bmod p^{r+h}\right)
$$

then

$$
\sum_{i>1} c_{i} r_{i 1}^{t} / p^{h} \equiv-c_{1} r_{11}^{t} / p^{h} \quad\left(\bmod p^{r}\right)
$$

Thus

$$
m \sum_{i>1} c_{i} r_{i 1}^{t} / p^{h} \equiv-m c_{1} r_{11}^{t} / p^{h} \equiv c_{1} \quad\left(\bmod p^{r}\right)
$$

Hence we may rewrite x as $x=x_{1}+x_{2}$, where

$$
x_{2}=m\left(\left(\sum_{i>1} c_{i} r_{i 1}^{t} / p^{h}\right) z_{1}^{t}-\sum_{i>1}\left(c_{i} r_{11}^{t} / p^{h}\right) z_{i}^{t}\right)
$$

and

$$
x_{1}=p^{r}\left(\sum d_{i} z_{i}^{t}\right), \quad d_{i} \in Z
$$

Since $h_{p}\left(a_{j}\right) \leq r+h$ for each j, then

$$
\begin{aligned}
h_{p}^{C}\left(x_{1}\right) & \geq \min _{i}\left\{r+h_{p}^{D}\left(d_{i} z_{i}^{t}\right)\right\} \\
& \geq \min _{j}\left\{h_{p}\left(a_{j}\right)+h_{p}^{A}\left(y_{j}\right)\right\}=h_{p}^{A}(x) \geq h_{p}^{D}(x)
\end{aligned}
$$

$x_{2}=\sum_{j>1} a_{j}^{\prime} y_{j}$ since the coefficient of y_{1} is 0 in the expression for x_{2}. Hence $x_{2} \in A_{1}$ and $h_{p}^{C}\left(K x_{2}\right) \geq h_{p}^{D}\left(x_{2}\right)$. Now

$$
h_{p}^{A}\left(x_{2}\right) \geq \min \left\{h_{p}^{A}(x), h_{p}^{A}\left(x_{1}\right)\right\} \geq \min \left[h_{p}^{D}(x), h_{p}^{C}\left(x_{1}\right)\right] \geq h_{p}^{D}(x)
$$

Similarly, $h_{p}^{B}\left(x_{2}\right) \geq h_{p}^{D}(x)$. Thus $h_{p}^{D}\left(x_{2}\right) \geq h_{p}^{D}(x)$. Therefore

$$
h_{p}^{c}(K x) \geq \min \left\{h_{p}^{c}\left(K x_{1}\right), h_{p}^{c}\left(K x_{2}\right)\right\} \geq h_{p}^{D}(x)
$$

Continuing this process for all p, we get $H^{c}(K x) \geq H^{D}(x)$. Hence $K(A \cap B)=K D \subseteq C \subseteq A \cap B ; A \cap B \doteq C$ is q.e.

Corollary 5.7 Every pure subgroup of a q.e. group is q.e.
Proof Let P be a pure subgroup of the q.e. group $A . \quad P^{*}$, being a rational vector space, is q.e. $P=A \cap P^{*}$ is therefore q.e.

Corollary 5.8 If A and B are direct sums of a finite number of rank 1 groups, then $A \cap B$ is q.e.

Remark (1) Thus, although even pure subgroups of A or B are not com-
pletely decomposable in general [4, p. 166], they are at least q.e. groups. To see what $A \cap B$ looks like, we give the following construction:

Let $A=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}, B=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{m}$, where each $A_{j}=\left\{\left(u_{j}, h_{j}\right)\right\}$ and each $B_{j}=\left\{\left(v_{j}, k_{j}\right)\right\} . \quad$ Let F and G be, respectively, the set of all subsets of the indices $\{1,2, \cdots, n\}$ and $\{1,2, \cdots, m\}$. For each $f \epsilon F$ and $g \epsilon G$, there is a maximal independent set $B_{f g}=\left\{z_{i}^{f g}\right\}$ in $A \cap B$, where for each i,

$$
z_{i}^{f g}=\sum_{j \epsilon j} r_{i j}^{f g} u_{j}=\sum_{j \epsilon \theta} s_{i j}^{f \theta} v_{j}, \quad 0 \neq r_{i j}^{f g}, s_{i j}^{f \theta} \in Z
$$

Let $C=\left\{\left(z_{i}^{f g}, H^{A}{ }^{B}\left(z_{i}^{f g}\right)\right) \mid f \in F, g \epsilon G\right.$, all $\left.i\right\}$. By a proof much the same as that of Lemma 5.6, it can be shown that $C \doteq A \cap B$.
(2) If A, B, C, D are groups, $A \doteq B, C \doteq D$, then $A \cap C \doteq B \cap D$, $A+C \doteq B+D$. Thus if ε is the set of equivalence classes of quasi-equal subgroups of R^{n}, then ε forms a lattice with meet \wedge and join \vee defined as follows: let $E, F \in \mathcal{E}$, define $E \wedge F=[A \cap B]$ and $E \vee F=[A+B]$, where $A \in E, B \in F$.

Corollary 5.9 The set of equivalence classes of quasi-equal q.e. subgroups of R^{n} form a sublattice of ε, the set of all equivalence classes of quasi-equal subgroups of R^{n}.

6. Quotient divisible groups

Definition 6.1 Let A be a torsion-free group. Then A is called quotient divisible (q.d.) if A contains a free subgroup F such that A / F is a torsion group $D \oplus B$, where D is divisible and B is of bounded order. (If A is of finite rank, then B is necessarily a finite group.)
Q.d. groups are of importance in the study of rings over torsion-free groups [1]. We shall prove a few facts concerning the types of the elements in such groups.

Lemma 6.2 (i) If A is q.d. and $A \sim A^{\prime}$, then A^{\prime} is q.d. (ii) If A is q.d., then there is a free subroup F of A such that A / F is divisible. (iii) Any torsionfree homomorphic image of a q.d. group of finite rank is also q.d.

The proofs are given in [1].
Definition 6.3 A height H is said to be non-nil if $H(p)=0$ or ∞ for all but a finite number of primes p.

A type t is said to be non-nil if $t=[H]$, where H is a non-nil height. If t is non-nil, then there is a unique $H \epsilon t$ such that $H(p)=0$ or ∞ for all p.

Theorem 6.4 Let A be a q.d. group of finite rank and let

$$
C(A)=T(A) \cup\{\text { all finite intersections of members of } T(A)\}
$$

(see 1.2). Then t_{0}, the minimal type in $C(A)$, is non-nil.
Proof Let A be of rank n, F a free rank n subgroup such that $A / F=D$,
where D is divisible. Let $x_{1}, x_{2}, \cdots, x_{n}$ be independent generators of F. Then for each prime p, either $h_{p}^{A}\left(x_{i}\right)=\infty$ for all i, or $h_{p}^{A}\left(x_{i}\right)=0$ for some x_{i}.

For let p be a prime such that $\infty>h_{p}^{A}\left(x_{j}\right)=h>0$ for some generator x_{j} of F. Since $p^{-h} x_{j} \notin F$, it follows that $p^{-h} x_{j}+F \neq 0$ in $A / F=D$. Hence there is a $y \in A$ such that $y+F=p^{-h} x_{j}+F$ and $p^{-1} y \in A$. Write

$$
p^{-h} x_{j}=y+a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

where each $a_{i} \in Z$. Since $p^{-1} y \in A$ and $p^{-1} p^{-h} x_{j} \notin A$, we must have

$$
p^{-1}\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right) є A
$$

Hence $p^{-1} x_{i} \notin A$ for some i, that is, $h_{p}^{A}\left(x_{i}\right)=0$ as we asserted.
Thus $\min _{i}\left\{h_{p}^{A}\left(x_{i}\right)\right\}=0$ or ∞. Hence

$$
t_{0}=\bigcap_{i} t\left(x_{i}\right)=\bigcap_{i}\left[H\left(x_{i}\right)\right]=\left[\min _{i}\left\{h_{p}^{A}\left(x_{i}\right)\right\}\right]
$$

is non-nil.
Lemma 6.5 Let

$$
A=\left\{\left(y_{i}^{k}, h_{k}\right) \mid k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
$$

be an essential group, where $h_{k}(p)=0$ or ∞ for all p and all k. Let F be the free group generated by $\left\{y_{1}^{0}, y_{2}^{0}, \cdots, y_{n_{0}}^{0}\right\}$. Then A / F is divisible.

Proof By the definition of an essential group, the y_{i}^{k} and h_{k} satisfy the conditions of Definition 3.1. The added condition above on the h_{k} in no way conflicts with these conditions. To show that A / F is divisible, it is sufficient to show that, if $x \in A-F$ and $p x \in F$, then $x+F$, as an element of A / F, is divisible. If $h_{0}(p)=\infty$, then $h_{p}^{A}(x)=\infty$ and so $x+F$ is divisible. If $h_{0}(p)=0$, then $h_{p}^{A}(p x) \geq 1$ implies that $p x=y+p z$ where $z \epsilon F$ and $y \epsilon A_{k} \cap F$ for some k such that $h_{k}(p) \geq 1$, (Lemmas 2.6,2.9). But then $h_{k}(p)=\infty$; therefore $h_{p}^{A}(y)=\infty=h_{p}^{A}\left(p^{-1} y\right)$. Hence $x=p^{-1} y+z$ and $x+F=p^{-1} y+F$ is divisible.

Lemma 6.6 Let

$$
A=\left\{\left(y_{i}^{k}, h_{k}\right) \mid k=0,1, \cdots, N ; i=1,2, \cdots, n_{k}\right\}
$$

be an essential group, where some h_{k} is not non-nil. Then A is not a q.d. group.
Proof Let h_{k} be a minimal not non-nil height among all the h_{j}. If $h_{k}=h_{0}$, then A is not q.d. by Theorem 6.4. If $h_{k}>h_{0}$, let

$$
\pi^{\prime}=\left\{p \mid 0=h_{0}(p)<h_{k}(p)=h_{p}^{A}\left(y_{1}^{k}\right)=\cdots=h_{p}^{A}\left(y_{n_{k}}^{k}\right)<\infty\right\}
$$

π^{\prime} is infinite since h_{0} is non-nil, h_{k} is not non-nil, and

$$
H\left(y_{1}^{k}\right) \sim \cdots \sim H\left(y_{n_{k}}^{k}\right) \sim h_{k} .
$$

Since h_{k} is a minimal non-nil height, then $h_{j} \cap h_{k}$ is non-nil unless $h_{j} \geq h_{k}$.

Hence for all but a finite number of primes in $\pi^{\prime}, h_{j}(p)=0$. Thus for an infinite set of primes $\pi^{\prime \prime} \subseteq \pi^{\prime}, h_{j}(p)>0$ only if $h_{j} \geq h_{k}$; that is, $y_{i}^{j} \in A_{k}$ for all i.

Let A^{\prime} be the projection of A upon $A_{k}^{*} . \quad A^{\prime}$ is then a torsion-free homomorphic image of A and hence $H^{A^{\prime}}\left(y_{i}^{k}\right) \geq H^{A}\left(y_{i}^{k}\right)$ [4, p. 146]. Extend $y_{1}^{k}, \cdots, y_{n_{k}}^{k}$ to a basis B of A^{*} by proper choice of members $y_{j^{\prime}}^{0}$ of B_{0}. Let

$$
x=a y_{i}^{k}+\sum a_{j} y_{j_{j}}^{0}
$$

be a B_{0}-reduced member of A, where $\sum a_{j} y_{j^{\prime}}^{0} \notin A_{k}$. If $p \epsilon \pi^{\prime \prime}$ and $h_{p}^{A}(x)=$ $r>0=h_{0}(p)$, then $x\left(p^{r}\right) \in A_{k}\left(p^{r}\right)$ by Lemma 2.9. $a y_{i}^{k}\left(p^{r}\right) \in A_{k}\left(p^{r}\right)$ and therefore $\sum a_{j} y_{j^{\prime}}^{0} \in A_{k}\left(p^{r}\right)$ by Lemma 2.8.

Thus there is a $y=\sum a_{j} y_{j^{\prime}}^{0}+\sum p^{r} c_{j} y_{j}^{0} \in A_{k}$, where $c_{j} \in Z$ and $h_{p}^{A}(y) \geq r$. (This statement is almost equivalent to the definition of $A_{k}\left(p^{r}\right)$.) Hence $r \leq h_{p}^{A}\left(\sum a_{j} y_{j^{\prime}}^{0}\right)$ and

$$
h_{p}^{A}(x)=r \leq h_{p}^{A}\left(x-\sum a_{j} y_{j^{\prime}}^{0}\right)=h_{p}^{A}\left(a y_{i}^{k}\right)
$$

If $a^{-1} x \in A$, then $h_{p}^{A}\left(a^{-1} x\right) \leq h_{p}^{A}\left(y_{i}^{k}\right)$.

$$
h_{p}^{A^{\prime}}\left(y_{i}^{k}\right)=\sup \left\{h_{p}^{A}(x) \mid x=y_{i}^{k}+\sum b_{j} y_{j^{\prime}}^{0} \epsilon A, b_{j} \in R\right\}=S
$$

When x is in the above form, $h_{p}^{A}(x) \neq \infty$, since $t^{A}(x) \leq t_{k}$, for all $p \in \pi^{\prime \prime}$. Hence we have just showed that $S \leq h_{p}^{A}\left(y_{i}^{k}\right)$ if $p \in \pi^{\prime \prime}$. For such p, an infinite set, $0<h_{p}^{A^{\prime}}\left(y_{i}^{k}\right)=h_{p}^{A}\left(y_{i}^{k}\right)<\infty$. Since the minimal type in A^{\prime} is given by $\left[H^{A^{\prime}}\left(y_{1}^{k}\right) \cap \cdots \cap H^{A^{\prime}}\left(y_{n_{k}}^{k}\right)\right]$, it cannot be non-nil. Therefore by 6.4 , A^{\prime} is not q.d., and by 6.2 , neither is A.

Theorem 6.7 Let A be a g.e. group. Then A is q.d. if and only if every type in $T(A)$ is non-nil.

Proof Necessity was proved in Lemma 6.6. For sufficiency, we may assume that A is essential, since quotient divisibility is a quasi-isomorphism invariant (Lemma 6.2). Thus $A=\left\{y_{i}^{k}, h_{k}\right.$) $\}$, where every h_{k} is non-nil. For each k, let h_{k}^{\prime} be the unique height such that $h_{k}^{\prime} \sim h_{k}$ and $h_{k}^{\prime}(p)=0$ or ∞ for all p. It is easy to check that the h_{k}^{\prime} satisfy all the conditions of 3.1. Hence $A^{\prime}=\left\{\left(y_{i}^{k}, h_{k}^{\prime}\right)\right\}$ is essential, and $A^{\prime} \doteq A$ by Corollary 4.5. A^{\prime} is q.d. by Lemma 6.5, and so A is q.d.

Corollary 6.8 (1) If A is a q.d. group and $T(A)$ possesses some type that is not non-nil, then A requires among its generators an infinite number of pairwise independent elements of A.
(2) If A is a q.d. group that has a set of generators containing only a finite number of pairwise independent elements of A, then $T(A)$ is finite and every type in $T(A)$ is non-nil.

Proof Apply Theorem 6.7 and Theorem 5.4.
Remark There are many q.d. groups whose type sets possess some type that is not non-nil [5].

References

1. R. A. Beaumont, and R. S. Pierce, Torsion-free rings, Illinois J. Math., vol. 5 (1961), pp. 61-98.
2. -_, Torsion free groups of rank two, Mem. Amer. Math. Soc., no. 38 (1961).
3. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, vol. 25, 1948.
4. L. Fuchs, Abelian groups, New York, Pergamon Press, 1960.
5. J. Koehler, Some torsion free rank two groups, Acta Sci. Math. Szeged., to appear.

Seattle University
Seattle, Washington

[^0]: Received September 23, 1963.
 ${ }^{1}$ This paper is based on a part of the author's doctoral dissertation, written under the inspiring and capable direction of Professor Ross A. Beaumont at the University of Washington.

