
THE TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK

BY

JOHN E. KOEHLER, S.J.

In this paper, we shall show that the type set of a torsion-free group of finite
rank has certain lattices of types and of pure subgroups associated with it.
Conversely, if certain lattice requirements are met by a finite set of types T
and by associated subspaces, then a torsion-free group A can be constructed
having type set T. The construction of A suggests defining a class of groups
having a similar construction. For this class of groups, we shall next estab-
lish a set of quasi-isomorphism invariants, together with several other prop-
erties. Finally, we shall examine the structure both o the groups and of the
class.

1. Necessary conditions on the type set

DEFINITION 1.1 Throughout this paper, by "group" we shall mean "tor-
sion-free abelian group of finite rank" unless some further qualification is
given. Let denote the usual equivalence relation on the set of heights;
and let [h] denote the equivalence class, or type, to which the height h belongs.
Let _<, n, and u have their usual meaning for both heights and types. The
set of all types then forms a distributive lattice in which the meet and oin
of the types and t’ are given by n t’ and u t’ respectively, [4, pp. 146-147]

DEFINITION 1.2 Let A be a group of rank n. Use A* to denote the
minimal divisible group containing A. Without loss of generality, it can be
assumed that A

_
R and A* Rn, where R is an n-dimensional rational

vector space. Let 0 x e A A (x), or simply t(x), denotes the type of x in
A. Let tA (0) t, a type defined to be greater than all other types. T(A

/(x)] x e A} is called the (augmented) type set of A. Let C(A)
T(A) u {all finite intersections of members of T(A)}. C(A) is countable
since A is countable.

DEFINTION 1.3 Let be a type; define At {x e A t(x) >_ t}. At is a
pure subgroup of A, [4, p. 147]. Let

P(A) {At teC(A)} and P*(A) {At* teC(A)}.

We shall use Ak to denote At, if no confusion arises.

LEMMA 1.4 Let A be a group; let tl t2 C A such that t, > t. > tl Then
Rank(A) > Rank(A).

Received September 23, 1963.
This paper is based on a part of the author’s doctoral dissertation, written under

the inspiring and capable direction of Professor Ross A. Beaumont at the University
of Washington.

66



TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK 67

Proof SincetleC(A),tl sns.n nsk,wherese T(A).
one of these, say s., is not greater than or equal to t2, or else

At least

s n s n n sk >_ t > tl

a contradiction. There exists 0 x e A such that t(x) s >_ h. Thus
x e A1, x A.. Since A is pure, this implies Rank(A1) > Rank(A.).

LEMMA 1.5 Let A be a group, e C(A), and xl, x., ..., xr a maximal
independent set of elements in At. Then

A At(x) t (X) n (X).

Proof Let t’ x " x " x e C A t’ >_ since
t’(x) >_ for each i. Suppose t’ > t. Then Rank(At,) < Rank(At),
contradicting the fact that x, x, ..., x, At, and they form a maximal
independent set in At.
THEOREM 1.6 Let A be a group of rank n. Then C(A forms a lattice of

length at most n in which lattice meet is type intersection. Thus C(A has a
minimum type

to t(xl) n t(x) n n t(x,),

where xl x2 ..., x, is any maximal independent set in A.

Proof C(A) forms a semi-lattice in which meet is type intersection by
definition. Let t > t > > t be any linearly ordered subset of C(A).
Then 0 < Rank(A) < < Rank(A1) _< n. Thus k _< n, and the semi-
lattice C(A has length at most n. Since any two elements in C(A have an
upper bound t in C(A), they have a least upper bound in C(A). Therefore
C(A is a lattice;the rest follows from Lemma 1.5.

Remarlc 1 Theorem 1.6 answers conjectures l(b) and 2(d) of [2, p. 40].
Remark 2 C(A) is not necessarily a sublattice of the lattice of all types,

since groups exist (see example 1.10) in which tl, t. C(A and the 1.u.b. of
tl and t in C(A is greater than tl o t.

THEOREM 1.7 Let A be a group.
P*1 P(A) forms a lattice of pure subgroups of A; (A) forms a lattice of

subspaces of A*. As lattices, P(A) is isomorphic to P*(A), and both are
dually isomorphic to C(A ).

2. In the lattices P A and P*(A ), denote lattice meet by ^ and lattice join
by v Then, if A A e P(A ),

Ai ^ A AA, A’ ^ A AnA.,

Proof (1) The correspondence t -. A, t e C(A ), A, e P(A ), is onto by
definition. Suppose A A. and xl, x, ..-, xr is u maximal independent
set in both A and As. Then t t(xl) t(x) [ t(x) t by Lemma



68 JOHN E. KOEHLER,

1.5. Thus tk -- Ak is also one-to-one. If tj

_
t and x Ak, then by definition,

x e A.; hence A
_
A. Thus P(A) forms a lattice dually isomorphic to

C(A).Thc lattice P(A) is isomorphic to P*(A) since all the members of P(A)
are pure subgroups of A.

(2) LetxAinA. xAi t(x) >_ ti xAj t(x) >_ tj. Hence
t(x) _> ti t t thus t(x) >_ tiv t, the 1.u.b. of the lattice C(A). The argu-
ment reverses to give t(x) >_ ti v t x Ai A Thus Ai A Atvt
A ^ A by the dual isomorphism of P(A and C(A) as lattices.
Letx y-t-zeAi+A.,whereyeAi,zeA. Then

t(x) >_ t(y) t(z) >_ ti t,

and so xeAtfltj Now Atilti Ai v A from the dual isomorphism. Thus
Ai -- A Ai v A..
The relations in P*(A) hold because of the isomorphism of the lattices

P(A and P*(A ).
Example 1.10 will show that A v A A -- Aj is possible.

LEMMA 1.8 If S, S, "", S, are proper subspaces of R, then there is a
basis x x ..., x, of R such that x Sj for 1

_
i

_
n, 1

_
j

_
m.

The proof is by induction on m.

COnOAnV 1.9 If T A is finite, then C A T A and there are
Rank(A t) independent elements of type in A for every T(A ).

Proof Let teC(A). Suppose t, t, ,tk are all the types in T(A)
that are greater than t. By Theorem 1.7, A, A*, ..., A are all proper
subspaces of A t*. Thus by Lemma 1.8 there is a basis x, x, ..., x of At*,
where r Rank(At), such that xi e A- i 1, 2, r; j 1, 2, -.., k.
Moreover, the xi can be chosen sothat they are in At. Since x A, then
t(x) t. But t(xi) >_ t; hence t(xi) e T(A). This proves both
statements.
Remark Examples have been constructed of groups of rank 2 and infinite

type set such that T(A C(A ), [2, p. 30].

EXAMPLE 1.10 (1) Define h0, h, h, h by

ho(p) 0 for allp;

h(2) h(p) 0 otherwise;

h(3) h.(p) 0 otherwise;

h(2) ha(3) h(5) ; ha(p) 0 otherwise.

Let t [hi], i 0, 1, 2, 3. In the next section we shall show that there is a
rank3groupAsuchthat T(A Ito, h, t., ta, t}. NowC(A) T(A
has a lattice structure as illustrated. Clearly t v t ta > t t t. Thus
C(A is not a sublattice of the lattice of all types.
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(2) Let A be as in the previous example. Let B be a rank 1 group of
type t0-- Let At-- A B. Then Rank(A 4 and T(A) T(.At);!rt

A, A. A, [4, p. 146]. I-Ienee A
Thus P(A’) is not a sublattiee of the lattice of all subgroups of A’, nor is
P*(A’) sublattiee of the lattice of 11 subspaees of A’*

2. A partial converse to Theorems 1.6 and 1.7
THEOREM 2.1 Let T {t, to, tl "", tr} be a set of distinct types, where

t, is a type defined to be greater than all other types. Suppose T forms a lattice
under the operations ^ and v, where ti ^ ty ti ra t and v is the 1.u.b. in T.
Let L* {0, A, A, ..., A*} be a lattice of subspaces of R A under the,
operations ^ and v, where A ^ A A n A and v is the 1.u.b. in L*.
Suppose further that, as lattices, T is dually isomorphic to L*. Then a group A
can be constructed such that T A T and P* A L*.
Remark Theorem 2.1 assures the existence of the group A in Example

1.10, since the dual of the lattice of types is clearly realizable in R.
Theorems 1.7 and 2.1 show that the problem of finding all the possible

finite type sets which are type sets of groups of finite rank is equivalent to
the (unsolved) problem of finding all the possible finite lattices, under the
operations ^ and v, of subspaces of a rational vector space whose dimension
is equal to the given rank.
An example of a lattice of types of length 3 may be constructed which has

no corresponding lattice of subspaces in 3-space, due to the restrictions on the
latter that follow from Desargues’ Theorem when we intersect the subspaces
by a plane that does not pass through 0.
The actual construction of the group A will occupy the rest of the section.

IEMMA 2.2 Let {to, tl, ..., t} be a set of types closed under intersection.
Let ho hl ., hr be arbitrary heights such that hi t i O, 1, ..., N. Then
there are eights ho h ..., h satisfying, for 0 <_ i, j, k <_ N

(i) h’i hi
(ii) h_<h;
(iii) if t <_ t, then h < h
(iv) if t n t t. then h n h hk.
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Proof For each i 0, 1, ..., N, let h ["l{hklti <_ tk}. It can be
shown that h’, h, ..., h satisfy properties (i), (ii), and (iii).

For a fixed pair of indices i, j, ti n t t for some It. Define

r(i, j) {p h’’(p) min {hT(p), h:(p)} }.

Each r(i,j) is a finite set since h h’ n h. Therefore v’ [Ji, (i, j) is
a finite set.

Leth’0 h’. Fori 1,2, ...,Ndefineh’iby
h’i(p) h’o(p) if p er’ and h’((p) <

h7 (p) otherwise.

hi, .-., hN is the desired set of heights.

2.3 THE CONSTRUCTION OF A. Let denote the primes, Z the integers.
1. Let us first index T so that to is the minimum type in the lattice. Index

L* so that ti -- A’ gives the dual isomorphism T -- L*.
2. Choose a basis Bo {y0, "", y0} for A0* Rn, where y?A:;i

1, 2, ..., n; k 1, 2, ..., N. This can be done by Lemma 1.8. Applying
1.8 to subspaces, we can choose a basis y, y, ", Yk for each A, 1 _/c

_
N,

where for each i 1 2, .., n, y A ifA c A’ and where y " k
i--lail Y

with a. integers such that g.c.d. {al, ..., an} 1.
3. Choose heights h0, h, ..., hN such that, for 0

_
i, j, k

_
N; hi e ti,

hi

_
h if ti

_
t., and hi h. h if ti t. t (Lemma 2.2).

4. Let A be the group generated by

G {p-k()ylper; 0 <_ s(p) < h(p) + 1; sk(p)eZ;

Every element x of A can then be written in the form
.-s(q) k

where c(q) Z, s(q) Z, s(q) < hk(q) + 1, and the sum has a finite number
of terms.

:NOTATION 2.4 Define

ro Ip ho(p) hi(p), i 1, 2, ..., N},

plh h h(p > h0(p)}}, / 1, 2, -.., N.
It is easy to show that 0, , partition the primes.
LetA-- AA,/ 0, 1, ...,N. IfxeA, letA(x)

Due to the lattice structure of L*, A (x) A for some k; in particular,
A(y) Ak.

If x e A, let H(x), or simply H(x), denote the height of x in A. Let
h(x) H(x)(p). If re R, write r I-I, p and define h(r)



TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK 71

Remark If A (x) A, then we can write x -1 a y, where ai e R.
Now H(y) >_ hk by the definition of G. Hence t(y) >_ tk and so t(x) >_ t.
To get, as desired, that t(x) t, it therefore suffices to show that for some
integer D(x), h(x) <_ hk(p) h(D(x)) for all p e r. We now proceed to
find this integer D (x) for every x in A.

DEFINITION 2.5 Let B {Xl, x2, .’-, x} be an arbitrary set of inde-
pendent elements in A. Let FB be the free subgroup of A generated by B.
We shall say that x is B-reduced if x e FB and hB(x) 0 for all p e v.

Let 0 # x e A; then there is a unique s R, s > 0, such that sx is B0-reduced,
where B0 ly, y, ..., y0}. Since t(x) t(sx), T(A) is determined by
the B0-reduced members of A. Let F0 F.

LEMMA 2.6 If X is a Bo-reduced element of A, then h(x) ho(p) for every
p ero.

Proof Write x -]= b y. The lemma is obvious if p
Suppose p e ’o ho(p s < p--x e A. Then we can write p-*-z in
the form (1). Sincepez0, s(p) ho(p) forMliand . Thuswemy
write

p x XZ=0X   ap y,

where the d are rationals with denominators prime to p. But then

x o(pd)y =0 p d a y
k=(p=0 d a)y =b y.

Thus p]b for each j, contradicting h(x) O.

DEfINItION 2.7 Let pe z, 0 < r e Z, x e F. We can write x a y,
whereaeZ. Definex =ay,where0 a < anda m a
(mod p), i 1, 2, ..., n. If A’ is a subgroup of A, define

A’(ff) {x(p)[ x eA’ n F}.

LEMMA 2.8 Let p , 0 < r Z, x F, A’ be a subgroup of A.
(i) x(pr) eA;
(fi) if x 0 is Bo-reduced, then x(pr) 0;
(iii) A’(ff is a group, where addition is defined by

(iv)
(v)
(vi)

Then

x(pr) 27 y(p) (x + y)(p);

if p X m, (mx)(p) eA’(p), then x(p) eA’(pr);
if A pp

__
A’, then A"(p) A’(pr);

F n A’ {x[x(p+l) eA’(pr+l)}
__

{xlx(p)eA’(pr)};

The proof follows easily from the definitions. Note that y .A’ but
y(pr) e A,(p) is possible as long as y(pr) x(p) for some x A’ n F.
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LEMMA 2.9 Let x be a Bo-reduced element of A.
ho(p) - r, where 0 < r Z, then x(pr) A(p).

Proof If p e t, then h {hk hk(p) > ho(p)}.

Then

If p e ’z and h(x) >_

Let

> h },J <

k e I :, h(p) >_ h(p) = A A =, ye A,
i 1, 2, ..., n.

t eJ =, h(p) ho(p).

Let s h0(p); if h(x) >_ s + r, we may write p-8-’x in form (1).
p -, s(p) <_ s for k e J, and we may rewrite

(2) p--8-rx kr ’1d y + j’1e p yl

Since

where the d are rationals, and the e are rationals with denominators prime
to p. Let

p ai Yi
Then

There is an integer m prime to p such that mzeF.
mx- mz F; hence my At n F and

But then my

(my)(p) (mx)(p) (mz)(p) (mx)(p) e A(p).

By Lemma 2.8 (iv), x(pr) e A (p).
We now proceed to find necessary conditions on the B0-reduced elements

x of A such that x(p) A(p).

RLEMMA 2.10 Let S be a proper subspace of R and u u ..., u,, e S.
Then there is an (n 1 )-dimensional subspace S’ of R containing S and such

R S’othat u u u e

The proof is by induction on m.

NOTaTiON 2.11 For the rest of Section 2, let x be a B0-reduced element of
A, x ay. Let i be the first index such that a 0. Then we define
a new basis of A, B {x, x, ..., x}, where x y if j i and x x.

For k 1, 2, ..., N, choose (n 1)-dimensional subspaces A’ A
such that y A’ for all i, and also x A’ whenever x A (Lemma 2.10).

k k f
Extend the basis y, y, y of A to a basis y, y, y,- of A.
Let A and this basis be fixed for each B0-reduced x.

Let m be the unique positive rationals such that m y is B-reduced,
1 k N, 1 i n- 1. Writemy= bx,wherebeZ. Let
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M (bij)), a matrix whose ijh entry is b.. Let M be the (n 1) X
(n 1 matrices formed by deleting the ih columns from M.
Let i be the determinant of M. eZ, since all bjeZ. Let D

i/g.c.d.15, ", } e Z. Finally, define
k k i++lku Dx+ (--1) -- xi, 1 k N, 1 i < j n.

LEMMA 2.12

D 0 xeA; i 1,2, ...,n, 1,2, ...,N.

Proof For each index i and k, let N be the (n) X (n) matrix whose first
n 1 rows are those of M and whose last row has 1 in the it place, 0 else-
where.

ffBy choice of A, and since x e A, we have x A x A’. From vector
space theory,

xieA y, ...,y-, x form a basis of A*
the row vectors of N are independent

k n+ik0 determmant(N) (-1) .
0D.

fLEMMA 2.13 Each ui e Ae A.

Proof ui e A clearly. The lemma is obvious from 2.12 if x or x are in
A. Suppose x, xi e A, where i < j; then x, xi A. Since A is (n 1)-
dimensional and x and xi are independent, d xi + d xi e A A for some
non-zero rationals d, d.
Thus y, ., y-, d x W d x are dependent. Thus the determinant

of their coefficients, namely (-1) d + (--1 b, is O.
i+]Tlk k kHence d 1 D/D. Substituting this value for d into dx+ dx

and multiplying both coefficients by D/d yields u. Thus u e A A.

LEMMA 2.14 Let x x e A. Suppose there is a y e A such that
y bix,whereh(bi) Oandh(bi) > Oforallj i. Then

mini{h(b)} h(D).

Proof {ui]j i} are independent, and therefore form a basis for A.
This is clear since x appears with a non-zero coefficient only in the expression
for u, j i (Lemma 2.12). Hence no linear combination of the ui can be
0 unless all coefficients are 0.
Thus we may write y ii ci u, where c e R. Since

then minih(c)} 0orelseh,(b) > 0. Since b cD,thenh(bi)
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h(c) h(D). Hence

mins{h(bs)} mins{h(cs)} -t- h(D) <_ h(D).
LEMMA 2.15 Let x x s> as y Then x(pr) A(pr), 0 < r e Z,

only if r <_ h(a D).

Proof IfxeAk,thenD 0by2.12andh(aD) > r. IfxAk
and x(p) A(p), then there is a y e A n F such that x(p) y(p). Write

y

_
bs x b a y + -’s (bs + b as)y,

where each b e R. Since y(pr) x(p), then ba =- ai (mod p). If
h(a) >_ r, then h(aD) >_ r. If h(a) < r, thenh(b)= 0. Let
s r h(a); find the smallest positive integer m such that mb e Z.
h(m) 0 since h(b) O. Now (my)(p) (mx)(p), yielding

mb ai -- mai

and
mbs -t- mb as mas (mod pr).

Thus mb m mod ps). This implies that mbs e Z and robs 0 mod pS) if
j i. Henceh(b) h(mbs) _> s > 0ifj i. Thus byLemma 2.14,
h(D) >_ mins{h(bs)} _> s. Therefore r s-t" h(a) h(aD).
COROLLRY 2.16 If A(x) Ao, then there is an integer D(x) such that,

for all p r,
ho(p) - h(D(x)) >_ h(z) >_ ho(p);

thus t(x to.

Proof Write x s>asY, aeZ. By Lemma2.6, if pe0, then
h(x) ho(p). If pe for some k 1, 2, ..., N, then, since xeAk,
we may combine Lemmas 2.9 and 2.15 to get

h(x) >_ ho(p) -t- r x(p) e A(p) h(a D) >_ r

whenever r > 0. Thus if D(x) aII-- D, then D(x) 0 and

ho(p) + h(D(z)) >_ h(x) >_ ho(p)

for all p r. t(x) to follows at once.

LEMMA 2.17 IrA(x) Ao then t(x) to

Proof Define ro {plh(p) <_ hko(p) for all k}, and if k > 0,
k0r Ip h l {h h(p) > ho(p)}}.

kONote that is empty unless tk > to, and that 0, o, partition .
If p e o, then h(x) <_ ho(p) following the same proof as in Lemma 2.6,

letting now s ho(p).
k0If p e , then, defining I andJ as in 2.9, we get



TYPE SET OF A TORSION-FREE GROUP OF FINITE RANK

keJ :, h(p) <_ ho(p).

This is sufficient to obtain the conclusion of Lemma 2.9, that h(x) >
ho(p) + r, where 0 < r e Z, only if x(pr) e A(pr). By 2.15, x(pr) e A(pr)
only if r <_ h(ai D). By 2.12, D 0 since A(x) Ako As, implying
that x A.

Let S {klt > t0} and D(x) aiIXksD. We have just showed
that ho(p) -4- h(D(x) > h(x) for all p; therefore t(x)

COIOLLARY 2.18 T(A T, P*(A L* and therefore Theorem 2.1 is
proved. For each k O, 1, N, the elements y y2 y, demonstrate
explicitly Rank(A) independent elements in A of type t. For each x e A
and p e -, an upper bound of h(x) may be found by calculating the integer
D(rx as defined above, where rx is Bo-reduced.

3. Quasi-essential groups
Following the construction of the previous section, we define class of

groups as follows"

DEFINITION 3.1 (1) Let A be a group. We shall call A an essential
group if A has for a set of generators

(p)_k{p y, p e r; O <_ s(p) < h(p) 4- 1;
k O, 1, ...,N;i 1,2, ...,n},

[hi] ti

h_< h. if ti_ t.,

h.nh.= h if tint t; 0

_
i, j, l <_ N;

(b) n Rank(A), k 0, 1, N;

(c) Bo {yO, y, yO0 is a basis of A* such that

yA, 1

_
/

_
N, 1

_
i

_
no;

(d) for each k 1, 2, N, {y, y, y} is a basis ofA’ such that
ky is B0-reduced and yeA if A A.

(2) B is a quasi-essential (q.e.) group if B is quasi-isomorphic to some
essential group A.

Remark If A is the essential group constructed above, then it is clear from
Corollary 2.18 that

T(A {t, to, t, ...,
and

P*(A) L* {0, A’, A*, ..., A*}.

where

(a) h0, h, h are heights satisfying
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NOTATION 3.2 Let y be in R and let h be corresponding heights, where, e F, F some indexing set; by A (y, h) ’ e F} we shall mean that A
is the group generated by

{p-8(p)y. P e r; 0 <_ s.(p) < h.(p) + 1; , e F].

Thus in 3.1, A {(y, hk)}.

4. Quasi-isomorphism invariants for q.e. groups
DEFINITION 4.1 Let A and B be groups; define

(1) A B if there is some 0 <neZsuchthatnA B;
(2) A B (Aisquasi-equaltoB) ifA B,B A;
(3) A . B (A is quasi-isomorphic to B) if there are subgroups A’ of A and

B’ of B such that A’ B’, A A’, B B’, [1, p. 62].

LEMMA 4.2 Let A and B be groups; then the following are equivalent"
(i) A . B.
(ii) There is a subgroup B of B and a monomorphism from B’ to A such

that A

_
(B’) and B B’.

(iii) There is a monomorphism from B to A such that A (B) A.
""A’ "-A(iv) There is a subgroup A of A such that B

v) There are non-singular linear transformations L and L of R such
that L(A B and L(B

_
A.

The proofs are routine.

COnOLLAnY 4.3 Let A and B be quasi-isomorphic subgroups of R’. Then
(i) Rank(A) Rank(B)
(ii) T(A)= T(B);
(iii) A ." B for all types t;
(iv) there is a non-singular linear transformation L of R" such that

L(B*) =A*forallt;
v if A B then A B A B for all t.

Proof ThatRank(A) Rank(B) isobvious. Forthe rest, let B -, A
be a monomorphism such that NA

_
(B)

_
A for some integer N > 0.

Then for every x e B,

H(x) H(Nx) U(m(N(x)) <_ H(N(x)), SV(N(x))
<_ H(m (N(x) ).

Thus t’(x) tx((x) and so

T(B)

_
T(A) and At _(Bt)

_
At.

The argument reverses to get T(A)

_
T(B). extends naturally to a

non-singular linear transformation L of R, yielding

A** (NAt)* c L(B* *,)__A.
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Remart The converse to this corollary is not true in general, as may be
seen from the theory of rank 2 groups [2]. However, in the case of q.e. groups,
we get

THEOREM 4.4 Let A and B be q.e. groups. Then A .’ B if and only if
(i) T(A) T(B) (ii) there exists a non-singular linear transformation L of
R such that e T(B) L(B*) A*.

Proof If A . B, then (i) and (ii) follow from 4.3.
Conversely, assume that A and B are essential groups. Then

A {(y, hk)! ]c 0, 1, ..., N;j 1, 2, ..., nk}.
Similarly,

B {(x,h’k) lk 0,1, ...,N;j 1,2, ...,
where all the conditions of Definition 3.1 are satisfied.

Let L be a non-singular linear transformation of R such that L(B*) A*
for every e T(B). This implies that mk Dlm(B Dim(A nk
for every te T() T(A). For each j and ], L(x) ir y, where
the r e R. Let M be the product of the denominators of all the ri-. Find
integersJ such thatJ h(p)

_
h’(p) for all p; this can be done since h h’.

Let J Jo J1 JN. (JM)L is also non-singular. A simple computation
shows that (JM)L(p x e A for every generator/ x. of B. Hence
(JM)L(B) A. Similarly, there are non-zero integers J’ and M’ such that
(J’M’)L-(A) B. Hence A . B by 4.2.

Finally, if A and B are q.e., then there are essential groups A’ and B’
such thatA A’, B B’. By 4.3, T(A’) T(A) T(B) T(B’)
andA* ’*, * ’* ’*A B B for all typest. HenceL(B for every

e T(B). By the aboe argument, A’ B’; hence A . B.

COROLLARY 4.5 If A and B are q.e. groups, then A B if and only if (i
T(A) T(B); (ii) P*(A) P*(B).
DEFINITION 4.6 Let A’ be an essential subgroup of A. We shall call A’ a

maximal essential subgroup if, whenever A’

_
B A, where B is an essential

subgroup of A, then A’ B. Similarly define a maximal q.e. subgroup.

THEOREM 4.7 Let A be a group with finite type set.
(1) A has a maximal essential subgroup A such that T A T A and

P* A P* A A is unique up to quasi-equality.
(2) If x e A, there is a maximal essential subgroup A’ ofA containing x.
(3) A is q.e. if and only if A/A is a finite group for eery maximal essential

subgroup A’ of A.
(4) If A’ is a maximal essential subgroup of A, then A/A’ is a torsion group.

Proof (1) and (2). Assume Rank(A) n, T(A) {t. to, tl tN};
assume also that x 0. There is un independent set {x, y0, y0,} where
the y are of type to, the minimal type in T(A). These elements can always
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be found since T(A) is finite (Corollary 1.9). If t(x) to, let y0 x. If
t(x) > to, then consider the pure subgroup P in A generated by {x, yI.
P has finite type set, since re(y) t(y) for all y e P. In particular,
$’,(y) t0. For some meZ,

e(x + my) to " (x + my)

[2, p. 27]. Let yO x + my ;B0 {y, y, ..., y0}. x is B0-reduced, since
x y my.
For each t e T(A), t to, we can find n Rank(A) independent

B0-reduced elements of typetmA, y,y, ...,y. Leth
/ 0, 1, N. Fred heights h0, h, h such that, for 0

_
i, j,/c _< N,

(i) h _< h,; (n),h h (iii) if t _< t., then h’ _< h. (iv) if t t t,
then h’ h h (Lemma 2.2).

Let A’ {(y, h’) I/ 0, 1,-.., N;j 1, 2,..., n};A’is an essential
group. Since h

_
h

_
H(y), all the generators of A’ are in A and

is a subgroup of A. T(A’) T(A and P*(A’) P*(A (Corollary 2.18).
If B is any other essential subgroup of A with A’ B A, then it is clear
that T(B) T(A’), P*(B) P*(A’). Hence by 4.5, A’ -’- B. Thus A’
is maximal essential, contains x, and by 4.5 is unique up to quasi-equality.

(3) A is q.e. =, A A’ for any maximal essential subgroup A’of
A NA A’ A for some 0 < N Z =, A/A’ is a finite group (A being of
finite rank).

(4) This is obvious. Thus a maximal essential subgroup A’ furnishes a
"large" subgroup of A that is also "standard" since A’ is unique up to quasi-
equality. The problem of finding quasi-isomorphism invariants for torsion-
free groups A with finite rank and finite type set could possibly be solved by
examining the groups A/A’, where A’ is a maximal essential subgroup of A.

5. The structure of q.e. groups
THEOREM 5.1 Let A {(y, h)[ 1, 2, ..., N}, where the h are

Rn"arbitrary heights and y Then A is a q.e. group and T A and P A may
be found in a natural way.

Proof In (1) we shall describe this "natural way". Then we shall show
that this method does yield T(A) and P(A). Finally, we shall show that A
is q.e.

(1) Assume that Rank(A) n. For each h, 1 _< i _< N, let A be the
subspace of R generated by all the y such that h _> h. Clearly every
x e A A’ will have type t(x) >_ [h]. Let F be the (finite) set of all subsets
of the indices ll, 2, ...,N}. For eachfeF,f ,defineA? ,A
and t] l/[h]. Define A 0, t t.

If x e A A, then x -/a x, wherea e R, x e A. Hence

t(x)

_
Nst(x) >_ Ns[h] ts.
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If x eA, define t U{tslxeA}. By the above remarks, t(x) >_ t,
t(0) t. to. We shall show eventually that t t(x). Let
T {t x e A} u {all finite intersections of members of {t x e A} }. T is
finite since F is finite, and forms a lattice {to, to, tl, tl.

(2) {x eA t >_ tk} is a pure subgroup Bk of A for each k 0, 1, K.

Proof The only difficult part is to show closure, since to t >_ tk, t_ t,
txifrxA.

First note that, if f, g e F, then

tf I’l ta I"l,,,[h] n I"l-[h,,,] Nifo[hi] tftjz.

Since the lattice of all types is distributive,

(U. t.) s (U t) O.,(t. t)

if a,/ are finite sets. If x e A, y e Ao*, then

* Au
thus

{fuglxed?,yed*} {hlx+yedZ}.
Now let x, y e Bk that is, x, y e A and t,, tu _> t. Combining the above

properties, we get

U {# t [xeA?, y eA*}
U{tso[xeA?,yeA} <_ U{t[x-l-yeA} t,+u.

(3) P {0, B0, B1, ..., B} forms a lattice dually isomorphic to the
lattice T. In P, the meet of B, Bj is B n B. and the join of B, B. is the
member of P that corresponds to t n t. in the dual isomorphism.

Proof Lettr,teT. Iftr >_ ts,then

Br {xeA t > t >_ ts} {xeA t, > t,} B,.

If B,

_
B,, then

t,= NitlxB,} > N{t, lxB.} t,,

where the equalities hold because T is finite lttiee closed under 91 nd be-
cause of the definition of B. Therefore P forms lttiee dually isomorphic
to T nd lttiee join in P is s sserted. That lttiee meet is group intersec-
tion is n esy computation (or see Theorem 1.7).

(4) Clearly P* {0, B, B*, B*} forms lttiee isomorphic to P.
Following 2.1 and 3.1, let B be n essential group with T(B) T nd
P*(B) P*.
IfxeA nB, thent(x) G. Fort tforsomek, 1 _< k <_ K, by



0 JOHN E. KOEHLER S.J.

definition of T. Hence xB and (x) >_ t t. If (x) t. t,
then x e B B, implying t, >_ t > t,, contradiction. Also if x e A B,
then t’(x) >_ t, t(x). Hence t’(x) t(x). Since A*= B*, some
integral multiple of every element in A or B is in A r B. Hence T(A r B)
T(B) T nd P*(A r B) P*. By Theorem 4.7, there is n essential sub-
group A’ of A B such that T(A’) T(A r B) nd P*(A’) P*(A B).
By Corollary 4.5, A’ B.

(5) A’ -’--- A.

Proof Let M be integers such that M, y e A’, where the y are as in the
statement of the theorem. Then

t’’(M y) t’(M y,) t,, t,, >_ [h].

Thus there are integers N such that

h’(M y -[- h(N,) >_ h(p)

for all p. Thus MN p-’y. e A’ for all p and k, where s < h(p) - 1. If
M IXMN, then MueA’ for every generator u of A. Therefore
MA A’ A rB

_
A andA’ A.

Thus A is a q.e. group, and t’(x) t’’(Mx) t,, t, for every x e A.
This completes the proof of the theorem.

COnOLAnVb.2 Let T and L* be as in 2.1. For each k O, 1, N,
$ k k klet n Dm(A and let y y y,, be arbitrary independent members of

AZ, h, h, ..., h, be arbitrary heights in the equivalence class t. Then

A {(y,h)[k 0,1, ...,g;i 1,2, ...,n}

is a q.e. group, with T(A T, P*(A L*.
Cononnv 5.3 Let A be a group with T A {too, to, t t}. For

each k, let n Rank(A) and let y y y, be independent elements in
A Then

H’(y) k O, 1 N; i 1 2, n},..., ...,
is a maximal q.e. subgroup of A such that T(B) T(A) and P*(B) P*(A).
B is unique up to quasi-equality.

THEOREM 5.4 If A is a q.e. group, then there are elements y y y of
R and heights h, h, h such that

A {(y,h)l/ 1,2, ,N}.

Proof Let A’ be a maximal essential subgroup of A,

A’ {(y, h)]/c 1, 2, ..., M}.

By Theorem 4.7, A/A’ is a finite group, generated by YM+ + A’, y + A’.
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Then
A {(yk, hk) l/ 1, 2, ..., N},

where h(p) 0 for all p if M -t- 1 _< /c _< N.

COROLLARY 5.5 If A and B are q.e. groups, then so is A -q- B.

LEMMA 5.6

Proof (1)
If A and B are q.e., then so is A n B.

Let
A {(y,hj) lj 1,2, ...,N},

B {(us,/j) IJ 1, 2, ..., M}.

We proceed by induction on N W M. The lemma is certainly true if
N + M _< 3, since then A n B is 0 or of Rank 1. If we let

Ai {(y’, h) [j 1, 2, ..., N;j i}

and define B similarly, then for all i, A n B, B A are q.e. by the induction
hypothesis.

Let D A n B. Since T(A) and T(B) are both finite, so is T(D) because
each x D has type (x) B(x). For each T(D), there is a maximal
independent set Bt {z} in D such that

zi =1 ri yj i--1 s u
for each i, where 0 rj, s e Z and where all the z have the same height in
D. Let A0 {(z, H (z))l. We shall show that

C Ao+ IAinB+ ’.IBnA "-D.

Since C is q.e. by Corollary 5.5, this will prove the lemma.
(2) Since C

_
D, He(y) _< H)(y) for all y e C. As a corollary of the

induction hypothesis, there is 0 < K e Z such that HC(Ky) >_ H)(y) if
yeA a B, B a A. Thus we need only show that HC(Kx) >_ H)(x) if
x =lajy M’=1 b u e C, where a., b 0.

Let us now fix p and assume that min{h(z)} _< h(z) for all i. If
B Amm{h(z.)} <_ h(z) for all i, a similar process to that described below,

with the roles of A and B interchanged, will give us the same results. If
t" (x) t, we may assume that x is B-reduced. We may further assume that
--kp a. y A for every j and every/ < h(x) + 1; for if this condition does

not hold, then x is in some A by another representation x .,a y. and
h(x) h(x), implying that hc(gx) >_ h(x).

Let

where each ci Z, mini{h(ci)} 0 for all p, a. 0for allj.
tions on x,

By our assump-
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h(x)

_
h(x) min.{h(a.) + h(yi)}

Dmini{min{h(r.)} -t- h(y)}

_
min{h(z)}

_
h(z)

for all i, and therefore h(x)

_
hC(x), unless h(a) > min{h(r.)} for

some j.
(3) Suppose r maxi{h(a.) mj} > 0 for some j, where

m. mini{h(r.) }.
For simplicity’s sake, suppose j 1 and h(rl) ml h. Then find m e Z
such that

-m(ri/ph) 1 (mod pr).
Since

then

Thus

cr a 0 (mod pr+h),

r/p (mod p)>1 c ri/p -c

ri/p (mod p)m> ci r/p -mc c

Hence we may rewrite x as x x x., where

(ci ri/p)z)
and

pr(E
Since h(aj)

_
r + h for each j, then

hC(x) >_ min{r + h(d z)}
_> min{h(ai) + h(y)} h(x) >_ h(x).

x .>1 a. y. since the coefficient of yl is 0 in the expression for x..
x eA and h(Kx) >_ h(x.). Now

h(x) >_ min {h(x), h(xl)} _> min [h(x), hC(x)] _> h(x).
h(x) >_ h(x) Thus hSimilarly, B h (x.) _> (x) Therefore

hC(gx) _> min {hc(gxl), h(gx)} _> h(x).
Continuing this process for all p, we get HC(Kx) >_ H)(x).

K(AaB) KD

_
C_AB;AaB Cisq.e.

Hence

Hence

Remart; (1) Thus, although even pure subgroups of A or B are not corn-

COROLLARY 5.8 If A and B are direct sums of a finite number of ranl 1
groups, then A B is q.e.

COROLLARY 5.7 Every pure subgroup of a q.e. group is q.e.

Proof Let P be a pure subgroup of the q.e. group A. P*, being a rational
vector space, is q.e. P A P* is therefore q.e.
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pletely decomposable in general [4, p. 166], they are at least q.e. groups. To
see what A n B looks like, we give the following construction"
LetA AIA. @A.,B- BI@B.@ Bm,whereeach

A. {(u, h)} and each B {(, k)}. Let F and G be, respectively, the
set of all subsets of the indices {1, 2, n} and {1, 2, m}. For each
f e F and g e G, there is a maximal independent set B] {z} in A a B,
where for each i,

0 r s eZ.z Esr u Eos v
Let (, (;,) S F, , all . By a proof much the same as
that of Lemma 5.G, it can be shown that n R.

(2) If M, R, , D are groups, R, D, then ff R nD,
+ R + D. Thus i 8 is the set of equivalence classes of quasi-equal

subgroups of R, then 8 forms a lattice with meet n and join v defined as
follows: let , F 8, define n F [ R and v F [ + R, where
AE,BF.

COROLLARY 5.9 The set of equivalence classes of quasi-equal q.e. subgroups of
R form a sublattice of 5, the set of all equivalence classes of quasi-equal subgroups
ofR.

6. Quotient divisible groups
DEFINITION 6.1 Let A be a torsion-flee group. Then A is called quotient

divisible (q.d.) if A contains a free subgroup F such that A/F is a torsion
group D @ B, where D is divisible and B is of bounded order. (If A is of
finite rank, then B is necessarily a finite group.)

Q.d. groups are of importance in the study of rings over torsion-free groups
[1]. We shall prove a few facts concerning the types of the elements in such
groups.

LEMMA 6.2 (i) If A is q.d. and A ." A’, then A’ is q.d. (ii) If A is q.d.,
then there is a free subroup F of A such that A/F is divisible. (iii) Any torsion-
free homomorphic image of a q.d. group offinite rank is also q.d.

The proofs are given in [1].

DEFINITION 6.3 A height H is said to be non-nil if H(p) 0 or oo for all
but a finite number of primes p.
A type is said to be non-nil if [H], where H is a non-nil height. If

is non-nil, then there is a unique H e such that H(p) 0 or o for all p.

THEOREM 6.4 Let A be a q.d. group of finite ranlc and let

C(A) T(A) u all finite intersections of members of T(A)
(see 1.2). Then to, the minimal type in C A is non-nil.

Proof Let A be of rank n, F a free rank n subgroup such that A/F D,
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where D is divisible. Let xl, x., ..., xn be independent generators of F.
Then for each prime p, either h(xi) for all i, or h(xi) 0 for some x.
For let p be a prime such that > h(xj) h > 0 for some generator x.

of F. Since p-xj F, it follows that p-x F 0 in A/F = D. Hence
there is a y e A such that y F p-x F and p-ly A. Write

where each a. e Z. Since p-y A and p-p-x A, we must have

Hence p-x A for some i, that is, h(x) 0 as we asserted.
Thus mm{h(xi)} 0 or . Hence

to t(x)= [H(x)] [min{h(x,)}]
is non-nih

LEMMA 6.5 Let

A {(y, hk) [/c 0, 1, ..., N; i 1, 2, ..., nk},

be an essential group, where h(p) 0 or for all p and all t. Let F be the
free group generated by {yO yO yn0}. Then A/F is divisible.

Proof By the definition of an essential group, the y and h satisfy the con-
ditions of Definition 3.1. The added condition above on the h in no way
conflicts with these conditions. To show that A/F is divisible, it is sufficient
to show that, if x A F and px F, then x -t- F, as an element of A/F,
is divisible. If ho(p) , then h(x) and so x -t- F is divisible. If
ho(p) 0, then h(px) _> 1 implies that px y -pzwhere z eF
and y e A n F for some ] such that h(p) _> 1, (Lemmas 2.6, 2.9). But then
hk(p) ; therefore h(y) h(p-y). Hence x p-y + z and
x - F p-y - F is divisible.

LEMMA 6.6 Let

A {(y,h)l 0,1, ...,N;i- 1,2, ...,n}

be an essential group, where some h is not non-nil. Then A is not a q.d. group.

Proof Let h be a minimal not non-nil height among all the h.. If hk h0,
then A is not q.d. by Theorem 6.4. If h h0, let

w’ {pl0 ho(p) < h(p) h(y) h(y,) < }.

’ is infinite since h0 is non-nil, h, is not non-nil, and

U(y) U(y) h.

Since hk is a minimal non-nil height, then h. h is non-nil unless h _> h.
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Hence for all but a finite number of primes in ’, h(p) 0. Thus for an infi-
nite set of primes "

_
r’, h(p) > 0 only if h. _> ,hA that is, y" e Ak for all i.

Let A’ be the projection of A upon A’. A’ is then a torsion-free homomor-
phic image of A and hence H’’(y) >_ H’(y) [4, p. 146]. Extend y[, ..., y
to a basis B of A* by proper choice of members y, of B0. Let

x ayq- ay,
p! Abe a B0-reduced member of A, where a. y, e Ak. If p e r and h,(x)

r > 0 ho(p), thenx(p)eA(p) by Lemma 2.9. ay(pr) eA(p) and
therefore a y, e A(p) by Lemma 2.8.
Thus there is a y a y, q- pc y e A where c.e Z and h(y) >_ r.

(This statement is almost equivalent to the definition of Ak(p’).) Hence
r _< h( [: a- y,) and

h(x) r <_ h(x- ay,) h(ay).

If a-lxe A, then h(a-lx) _< h(y).
h’(y) sup {h(x)[x yi - b y, A, b e R} S

When x is in the above form, h(x) 0, since (x) _< t, for all p e

Hence we have just showed that S <_ h(y) if p e = For such p, an in-
finite set, 0 < h’(y) h(y) < . Since the minimal type in A’ is
given by [H’ (y) n n H’ (y)], it cannot be non-nih Therefore by 6.4,
A’ is not q.d., and by 6.2, neither is A.

THEOREM 6.7 Let A be a q.e. group. Then A is q.d. if and only if every
type in T A is non-nil.

Proof Necessity was proved in Lemma 6.6. For sufficiency, we may
assume that A is essential, since quotient divisibility is a quasi-isomorphism
lnvarlant (Lemma 6.2). Thus A yi, h) },,where every hk is non-nih For
each k, let h be the umque height such that hA h and h(p) 0 or o for
all p. It is easy to check that the h satisfy all the conditions of 3.1. Hence
A’ {(y, h’)} is essential, and A’ A by Corollary 4.5. A’ is q.d. by
Lemma 6.5, and so A is q.d.

COROLLARY 6.8 (1) If A is a q.d. group and T(A) possesses some type
that is not non-nil, then A requires among its generators an infinite number of
pairwise independent elements of A.

(2) If A is a q.d. group that has a set of generators containing only a finite
number of pairwise independent elements of A, then T(A) is finite and every
type in T A is non-nil.

Proof Apply Theorem 6.7 and Theorem 5.4.
Remark There are many q.d. groups whose type sets possess some type

that is not non-nil [5].
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