THE SPACE OF HOMEOMORPHISMS ON A TORUS¹

BY
Mary-Elizabeth Hamstrom

There have been several recent results concerning homotopy properties of the space of homeomorphisms on a manifold. Most of these properties have been local. In [4], Eldon Dyer and I proved that the space of homeomorphisms on a 2-manifold is locally contractible and in [5] and [6] it is proved that the space of homeomorphisms on a 3-manifold is locally homotopy connected in all dimensions. Global properties appear to be more difficult. A well known result of Alexander's [1] states that the space of homeomorphisms on an n-cell leaving its boundary pointwise fixed is contractible and locally contractible. In a recent paper [7] it is proved that the identity component of the space of homeomorphisms on a dise with holes leaving its boundary pointwise fixed is homotopically trivial. In the present paper, the identity component of the space of homeomorphisms on a torus is considered and it is proved that its homotopy groups are the same as those for the torus. For related results, see [2], [11], [12], and [13].

Theorem 1. If k is an integer greater than 1, then the identity component of the space H of homeomorphisms of a torus T onto itself has the property that $\pi_{k}(H)=0$.

Proof. Let C denote a meridian simple closed curve on T and P a point of C. A covering space of T is $C \times E^{1}$, where E^{1} is the real line and the covering map π is such that $\pi(x, 0)=x$ for each x in C and, in general, $\pi(x, t)=\pi\left(y, t^{\prime}\right)$ if and only if $x=y$ and $t-t^{\prime}$ is an integer. If n is a non-negative integer, S^{n} denotes an n-sphere and will be considered as the boundary of the $(n+1)$-cell, R^{n+1}.

Let F denote a mapping of S^{k} into H and g the mapping of S^{k} into T defined by $g(x)=F(x)(P)$. There exists a mapping G of S^{k} into $C \times E^{1}$ such that $\pi G(x)=g(x)$ and for each x in S^{k}, there is a unique mapping $f(x)$ of C into $C \times E^{1}$ such that $f(x)(P)=G(x)$ and for y in $C, \pi f(x)(y)=F(x)(y)$. The existence of G is a consequence of the various lifting properties of fiber spaces. (See [10, p. 63, Th 3.1.].) To see that $F(x) \mid C$ can be lifted, note that $F(x) \mid C$ is homotopic to the identity in T, since F is in the identity component of H. In particular, there is a mapping φ of $C \times I$ into T such that $\varphi \mid C \times 0$ is a homeomorphism onto a meridian of $T, \varphi \mid C \times 1=F(x)$ and $\varphi(P, t)=g(x)$. (See Lemma A.) Since $C \times 0$ is a strong deformation retract of $C \times I$ and there is clearly a mapping $\tilde{\varphi}$ of $C \times 0$ into $C \times E^{1}$ such

[^0]that $\pi \tilde{\varphi}=\varphi \mid C \times 0$ and $\tilde{\varphi}(P, 0)=G(x)$, another form of the lifting property mentioned in [10] implies the existence of an extension of $\tilde{\varphi}$ to a map Φ of $C \times I$ into $C \times E^{1}$ such that $\pi \Phi(x)=\varphi(x)$. Since $\varphi(P, t)=g(x)$ for each $t, \Phi(P, t)=G(x)$. Then $f(x)$ is the mapping $\Phi \mid C \times 1$ and it is obviously a homeomorphism.

The mapping f can be obtained in another instructive way. Coordinatize C by the reals mod 1 , letting P have coordinate 0 and let $k(x)$ be the mapping of $I(=[0,1])$ into T such that $k(x)(y)=F(x)(y)$. Then the mapping $k^{*}(x)$ of I into $C \times E^{1}$ such that $k^{*}(x)(y)=f(x)(y)$ is the unique "lifting" of $k(x)$ that takes 0 onto $G(x)$. Note that $k^{*}(x)(0)=k^{*}(x)(1)$. Now consider $S^{k} \times I$. Let ψ be the mapping of this into T such that $\psi(x, y)=$ $F(x)(y)$. For each $x, \psi(x, 0)=\psi(x, 1)$. But $S^{k} \times 0$ is a strong deformation retract of $S^{k} \times I$. Thus there is a mapping ψ^{*} of $S^{k} \times I$ into $C \times E^{1}$ such that $\pi \psi^{*}=\psi$ and $\psi^{*}(x, 0)=G(x)$. Since $k^{*}(x)$ above is unique, $\psi^{*}(x, y)=k^{*}(x)(y)=f(x)(y)$ and $\psi^{*}(x, 1)=\psi^{*}(x, 0)$. This demonstrates the continuity of the mapping f of S^{k} into $C \times E^{1}$.

Since $k>1$, the mapping g is homotopic to 0 in T. It thus follows from the theorems of [8] that F is homotopic in H to a mapping F^{\prime} such that $F^{\prime}(x)(P)=P$ for each x in S^{k}. In what follows it will be assumed that $F(x)(P)$ does not vary with x.

Let $N^{+}(F)$ denote the largest integer n such that there exist an x in S^{k} and a y in C such that the E^{1} coordinate of $f(x)(y)$ is in the half-open number interval $[n, n+1)$ and let $N^{-}(F)$ denote the least integer m for which there exist such x and y such that the E^{1} coordinate of $f(x)(y)$ is in $(m-1, m]$. Denote by A_{j} the annulus $C \times[j, j+1]$. Suppose that there exist an x and an x^{\prime} such that $f(x)(C)$ meets A_{n} and $f\left(x^{\prime}\right)(C)$ meets A_{m-1} but that for no x does $f(x)(C)$ meet A_{m-2} or A_{n+1}. An upper semicontinuous decomposition of A_{n} will be constructed that will be used to deform F in H to a mapping F^{\prime} for which $N^{+}\left(F^{\prime}\right)-N^{-}\left(F^{\prime}\right)<N^{+}(F)-N^{-}(F)$ unless this last number is already -1 , the least it can be.

For each x in S^{k}, denote by $C_{x}, C_{x}^{\prime}, J^{+}$and J^{-}the sets $A_{n} \cap f(x)(C)$, $A_{m-1} \cap f(x)(C)$ and the right and left boundary curves of A_{n}. Note that C_{x} does not intersect J^{+}. Translate C_{x}^{\prime} to the right through $n+1-m$ units, i.e., take the point (a, b) of C_{x}^{\prime} onto $(a, b+n+1-m)$, to obtain C_{x}^{*}. Then C_{x}^{*} does not intersect $C_{x} \cup J^{-}$. Let G_{x} denote the collection whose elements are (1) the union of J^{-}, C_{x} and the components of $A_{n}-C_{x}$ whose closures do not intersect $J^{+},(2)$ the union of J^{+}, C_{x}^{*} and the components of $A_{n}-C_{x}^{*}$ whose closures do not intersect J^{-}and (3) the remaining points of A_{n}. It is seen that G_{x} is an upper semicontinuous decomposition of A_{n} whose decomposition space is homeomorphic to S^{2}.

In $S^{k} \times A_{n}$, let G be the decomposition consisting of those sets (x, g), where g is an element of G_{x}. Since the convergence of the sequence $\left\{x_{i}\right\}$ of points of S^{k} to a point x implies the convergence of $\left\{f\left(x_{i}\right)(C)\right\}$ to $f(x)(C)$, the collection G is upper semicontinuous. From [9] it follows that the de-
composition space X associated with G is homeomorphic to $S^{k} \times S^{2}$. If T represents the associated mapping of $S^{k} \times A_{n}$ onto X, or the homeomorphism of X onto $S^{k} \times S^{2}$ and α the projection map of $S^{k} \times S^{2}$ onto S^{k}, then if $(x, y) \in S^{k} \times A_{n}, \alpha r T(x, y)=x$. Note that there exist points p, q of S^{2} such that for each x in $S^{k},(r T)^{-1}(x, p)$ and $(r T)^{-1}(x, q)$ are nondegenerate and that if $a \neq p, q$, then $(r T)^{-1}(x, a)$ is degenerate.

Let K be a simple closed curve in S^{2} separating p from q. Then for each $x,(r T)^{-1}(x, K)$ is a simple closed curve in $\left(x, A_{n}\right)$ separating $\left(x, C_{x} \cup J^{-}\right)$ from $\left(x, C_{x}^{*} \cup J^{+}\right)$in $\left(x, A_{n}\right)$ and there is a homeomorphism β of $\cup\left(x,(r T)^{-1}(x, K)\right)$ onto $S^{k} \times K$ such that the diagram,

where α^{\prime} is the projection map of $S^{k} \times A_{n}$ onto S^{k}, is commutative.
If K is coordinatized, as is C, by the reals mod 1 , the mapping $z(x), x \in S^{k}$, that takes each point y of C onto the second coordinate of $\beta^{-1}(x, y)$ is a homeomorphism and $z \operatorname{maps} S^{k}$ continuously into G_{C}, the space of homeomorphisms of C into int A_{n}. Each $z(x)(C)$ separates $C_{x} \cup J^{-}$from $C_{x}^{*} \cup J^{+}$. The homeomorphism β may be chosen so that πz maps S^{k} into H_{C}, the space of orientation-preserving homeomorphisms of C into curves of T isotopic to meridian curves. Let Z denote the mapping of $C \times S^{k}$ into $T \times S^{k}$ such that $Z(y, x)=(\pi z(x)(y), x)$ and let A_{x} denote the annulus in (T, x) bounded by (C, x) and $Z(C, x)$ (specifically, that annulus which, in T, would be the image under π of the annulus in A_{n} bounded by J^{-1} and $\beta^{-1}(x, K)$). By Theorem 2.9 of [9], there is a homeomorphism η of $C \times[0,1] \times S^{k}$ into $T \times S^{k}$ such that

$$
\eta(C \times[0,1] \times x) \subset T \times x, \quad \eta(y, 0, x)=(y, x), \quad \eta(y, 1, x) \in Z(C, x)
$$

by [8, Th. 1.2], there is a homeomorphism γ of $T \times[0,1] \times S^{k}$ onto itself such that if $y \in C, \gamma(y, t, x)=[\eta(y, t, x), t, x]$ and, for each $y, \gamma(y, 0, x)=$ $(y, 0, x)$. Hence, by a projection of $T \times[0,1] \times S^{k}$ onto T, there is obtained a mapping γ^{*} of $I \times S^{k}$ into H such that $\gamma^{*}(1, x)(C)=\pi z(x)(C)$ and $\gamma^{*}(0, x)=i$.

For each x in S^{k}, denote by $Q(t, x)$ the mapping $\gamma^{*}(t, x)\left[\gamma^{*}(1, x)\right]^{-1}$. Then Q is a mapping of $I \times S^{k}$ into $H, Q(1, x)=i$ and $Q(0, x)=\left[\gamma^{*}(1, x)\right]^{-1}$. Then if $F^{*}(t, x)=Q(t, x) F(x)$,

$$
F^{*}(1, x)=F(x) \quad \text { and } \quad F^{*}(0, x)=\left[\gamma^{*}(1, x)\right]^{-1} F(x)
$$

Note that since $\gamma^{*}(1, x)(C)=\pi z(x)(C)$,

$$
N^{+}\left[F^{*}(0, x)\right]-N^{-}\left[F^{*}(0, x)\right]<N^{+}(F)-N^{-}(F)
$$

unless the latter number is -1 . Precautions could have been made,
by using the theorems of [8], to keep $F^{*}(0, x)(P)$ independent of x or these theorems could be used now to achieve this result without changing $N^{+}\left[F^{*}(0, x)\right]-N^{-}\left[F^{*}(0, x)\right]$.

This process can be repeated until F is homotopic in H to a mapping F_{1} such that for each x in $S^{k}, F_{1}(x)(C)$ does not intersect C. The same reasoning yields a homotopy in H of F_{1} to a mapping F_{2} such that $F_{2}(x)$ leaves C pointwise fixed. Since H is the identity component, the angle change, as defined in [4], along $F_{2}(x)\left(C^{\prime}\right)$, where C^{\prime} is a longitudinal simple closed curve, is 0 . Therefore, the techniques of [4] (see page 526) demonstrate that F_{2} is homotopic to F_{3} in H, where for each $x, F_{3}(x)$ is the identity homeomorphism on T. This proves that $\pi_{k}(H)=0$ if $k>1$.

Lemma A. Suppose that f is a member of H that leaves P fixed. Then f is isotopic to the identity in such a way that each homeomorphism in the isotopy leaves P fixed.

Proof. Let $f_{t}, 0 \leq t \leq 1$ be an isotopy such that $f_{1}=f$ and $f_{0}=i$. Denote by g the mapping of $I \times I$ into T taking (t, s) onto $f_{t+s(1-t)}(P)$. There is a mapping G of $C \times I$ into T such that

$$
G(x, 0)=x, \quad G(x, 1)=x, \quad G(P, t)=f_{t}(P)
$$

and $G \mid C \times t$ is a homeomorphism. For each $t, G \mid C \times t$ can be constructed by rigidly moving P to $f_{t}(P)$ and taking C along with it. It is then easy to extend G $\mid C \times t$ to $T \times t$ so that there is a mapping G^{*} of I into H such that $G^{*}(t)|C=G| C \times t$ and $G^{*}(0)=G^{*}(1)=i$.

In $T \times I \times I$, let Z be a homeomorphism of

$$
(T \times I \times 0) \cup(T \times I \times 1) \cup(T \times 0 \times I)
$$

onto itself such that $Z(x, t, 1)=\left(f_{1}(x), t, 1\right), Z(x, t, 0)=\left(G^{*}(t)(x), t, 0\right)$ and $Z(x, 0, s)=\left(f_{s}(x), 0, s\right)$. Also, there is a homeomorphism z of $P \times I \times I$ into $T \times I \times I$ such that $z(P, t, s)=(g(t, s), t, s)$. Note that

$$
z(P, 1, s)=(g(1, s), 1, s)=\left(f_{1}(P), 1, s\right)=(P, 1, s)
$$

and that where Z is defined, Z extends z. It thus follows from Theorem 1.3 of [8] that there is a homeomorphism Z^{*} of $T \times I \times I$ onto itself that extends z and Z and carries each (T, t, s) onto itself. If $Z^{*}(x, 1, s)=$ $(y, 1, s)$, let $f_{s}^{*}(x)=y$. It is seen that $f_{s}^{*}(P)=P, f_{1}^{*}(x)=f_{1}(x)=f(x)$ and $f_{0}^{*}(x)=G^{*}(1)(x)=x$. Then f_{s}^{*} is the required homotopy.

Lemma B. If f is an orientation preserving map of $C \times I$ onto itself such that $f \mid C \times(0 \cup 1)=i$ and for each $t \neq 0,1, f \mid C \times t$ is a homeomorphism into int $(C \times I)$ that leaves (P, t) fixed, then there is a homotopy f_{s} such that (1) $f_{0}=f$, (2) $f_{1}=i$, and (3) for each s, f_{s} maps $C \times I$ onto itself,

$$
f_{s} \mid C \times(0 \cup 1)=i
$$

$f_{s} \mid C \times t$ is a homeomorphism into int $(C \times I)$ for each $t \neq 0,1$ and $f_{s}(P, t)=$ (P, t).

Proof. For each $t \geq \frac{1}{2}$, let g_{t} be the mapping of $C \times I$ into itself that takes (x, s) onto $(x, s / 2 t)$. If $t \leq \frac{1}{2}$, let g_{t} take (x, s) onto

$$
(x, 1-(1-s) / 2(1-t))
$$

For each $t, g_{t}(P, t)=\left(P, \frac{1}{2}\right)$ and $g_{t} f(C, t) \subset \operatorname{int}(C \times I)$. Also, $g_{1}(x, 1)=\left(x, \frac{1}{2}\right)=g_{0}(x, 0)$ and $g_{1 / 2}(x, s)=(x, s)$.

Let ϕ be the mapping of S^{1} into the space H^{\prime} of orientation-preserving homeomorphisms of C into int $(C \times I)$ that takes t into the homeomorphism mapping the point x of C into $g_{t} f(x, t)$. It follows from Theorem 3.1 of [8] that there is a mapping Φ of $S^{1} \times I$ into H^{\prime} such that $\Phi(t, 0)=$ $\phi(t), \Phi(t, 1)(x)=\left(x, \frac{1}{2}\right), \Phi(t, s)(P)=\left(P, \frac{1}{2}\right)$ for each t, s and x, and $\Phi(1, s)(x)=\left(x, \frac{1}{2}\right)=\Phi(0, s)(x)$. Then if f_{s} maps $C \times I$ into itself in such a way that $f_{s}(x, t)=g_{t}^{-1} \Phi(t, s)(x), f_{s}$ is the required homotopy. The computations that demonstrate this are easily made.

Theorem 2. The group $\pi_{1}(H)$ is isomorphic to $\pi_{1}(T)$.
Proof. Coordinatize C and S^{1} by the reals mod 1 , consider T as $C \times C$, identify $0 \times C$ with C and suppose $\pi(x, t)=(x, t)$. Let F be a mapping of S^{1} into H. Since H is the identity component, there is a mapping Z of I into H such that $Z(0)=F(0)$ and $Z(1)=i$. Then $F(x)[Z(1-t)]^{-1}$ is a homotopy of F to a mapping taking 0 onto the identity. Hereafter, it will be assumed of F that $F(0)=F(1)=i$. Consider the mapping g of S^{1} into T such that $g(x)=F(x)(0,0)$. There is a unique mapping G of I into $C \times E^{1}$ such that $\pi G(x)=g(x)$ and $G(0)=(0,0)$. Note that $G(1)=(0, r)$, where r is some integer. There is, for x in I, a unique mapping $f(x)$ of C into $C \times E^{1}$ such that $f(x)(0)=G(x)$ and $\pi f(x)(y)=F(x)(0, y)$. Note that $f(1)(C)$ is merely a translation of $f(0)(C)$ and that, as in the proof of Theorem $1, f$ is a continuous mapping of I into the space of homeomorphisms of C into $C \times E^{1}$.

Consider the homeomorphisms α and β of S^{1} into T such that $\alpha(x)=(0, x)$ and $\beta(x)=(x, 0)$. Then g is homotopic in T relative to 0 to $r \beta+s \alpha$, where r and s are integers, and this mapping may be assumed to "lift" under π to an arc in $C \times E^{1}$ that, if $r>0$, goes along $0 \times[0, \mathrm{r}-1]$ and then wraps around $C \times[r-1, r] s$ times, meeting each $C \times x$ exactly once. If $r<0$, a similar remark holds. If $r=0$, then $s \alpha$ takes each x of S^{1} onto the point ($0, s x$).

Case 1. $\quad r>0$. By the theorems of [8], F may be assumed to be such that g actually is $r \beta+s \alpha$ and lifts into $C \times E^{1}$ as described above. Let $0=t_{0}<t_{1}<\cdots<t_{r}=1$ be such that $G\left(t_{j}\right)$ has coordinates $(0, j)$. Note that $F\left(t_{j}\right)(0,0)=(0,0)$. In fact, it may be assumed that the second coordinate of $g(t)$ is $\left(t-t_{j-1}\right) /\left(t_{j}-t_{j-1}\right)$ if $t_{j-1} \leq t \leq t_{j}$. It then follows from

Lemma A that in H there is an arc connecting $F\left(t_{j}\right)$ to a map $F_{1}\left(t_{j}\right)=i$ and that each homeomorphism in this arc leaves $(0,0)$ fixed. These arcs carry a partial homotopy of F in H which may be extended to a homotopy of F to a mapping F_{1} of S^{1} into H such that $F_{1}\left(t_{j}\right)=i$. Define g_{1}, G_{1}, f_{1} as g, G, f were defined.

The proof of Theorem 1 may now be followed almost word for word to get a sequence of homotopies leaving $F_{1}(t)$ fixed if $t_{1} \leq t \leq 1$. The first takes F_{1} to a mapping F_{1}^{\prime} such that $F_{1}^{\prime}(t)(C)$ doesn't intersect C if $0<t<t_{1}$. Since g_{1}^{\prime} is homotopic to g under a homotopy leaving $g_{1}^{\prime}(0)=g_{1}^{\prime}(t)$ fixed, the second homotopy of the sequence takes F_{1}^{\prime} to $F_{1}^{\prime \prime}$, where $F_{1}^{\prime \prime}(t)(0,0)=$ $\left(0, t / t_{1}\right)$. The third homotopy takes $F_{1}^{\prime \prime}$ to $F_{1}^{\prime \prime \prime}$, where $F_{1}^{\prime \prime \prime}(t)(x)=\left(x, t / t_{1}\right)$ for each x in C (see Lemma B). The fourth takes $F_{1}^{\prime \prime \prime}$ to F_{2} where $F_{2}(t)(x, a)=\left(x, a+t / t_{1}\right)$ (see the final remarks on the proof of Theorem 1.)

Similarly, F_{2} is homotopic to F_{3} under a homotopy leaving $F_{2}(t)$ unchanged unless $t_{1}<t<t_{2}$, in which case, $F_{3}(t)(x, a)=\left(x, a+\left(t-t_{1}\right) /\left(t_{2}-t_{1}\right)\right)$. Repeat this process until F_{r} is obtained by means of a homotopy leaving $F_{r-1}(t)$ unchanged unless $t_{r-2}<t<t_{r-1}$, in which case,

$$
F_{r}(t)(x, a)=\left(x, a+\left(t-t_{r-2}\right) /\left(t_{r-1}-t_{r-2}\right)\right.
$$

Finally, F_{r} is homotopic to F_{r+1} under a homotopy leaving $F_{r}(t)$ unchanged unless $t_{r-1}<t<t_{r}$, in which case,

$$
F_{r+1}(t)(x, a)=\left(x+y, a+\left(t-t_{r-1}\right) /\left(t_{r}-t_{r-1}\right)\right.
$$

where $g(t)=\left(y,\left(t-t_{r-1}\right) /\left(t_{r}-t_{r-1}\right)\right.$.
If F is homotopic to F^{\prime} in H, g and g^{\prime} represent the same element of the fundamental group of T so that g^{\prime} may also be taken as $r \beta+s \alpha$. Hence $F_{r+1}=F_{r+1}^{\prime}$. Clearly $F_{r+1}=F_{r+1}^{\prime}$ implies that F is homotopic to F^{\prime} in H. Hence it follows that the function that maps the homotopy class of F onto that of g is well defined and one to one.

Case 2. $\quad r<0$ or $r=0$ but $s \neq 0$. The same argument applies.
Case 3. $\quad r=0=s$. In this case, g is homotopic to 0 in T and the argument for Theorem 1 may be applied to obtain the fact that F is homotopic to 0 in H, since in this case $G(0)=G(1)$.

The three cases combine to show that the function mapping the homotopy class of F onto that of g is an isomorphism of $\pi_{1}(H)$ onto $\pi_{1}(T)$.

Theorem 3. If M is a torus from which the interiors of a finite (positive) number of disjoint discs have been removed, then the identity component of the space H of homeomorphisms of M onto itself that leave the boundary of M pointwise fixed is homotopically trivial.

Proof. The proof is essentially that of the Theorem of [8], which states a similar fact for discs with holes. Suppose that M is obtained by removing a disc D from a torus T and that f maps S^{k} into H. Let $f(x)$ be extended to
$f^{*}(x)$, a homeomorphism of T onto itself leaving D pointwise fixed. The mapping g^{*} of S^{k} into T associated with f^{*} as in the preceding arguments is, if P is considered to be in D, homotopic to 0 in an obvious way. Hence f^{*} is homotopic to 0 in the identity component of the space of homeomorphisms of T onto itself and the argument for the theorem of [8] now applies to prove that f is homotopic to 0 in H. As in the proof of the theorem of [8] an induction argument may now be applied.

These arguments may also be applied to obtain the
Corollary. If the mappings of H above are also reguired to leave fixed the points of some finite set, then H is homotopically trivial.

References

1. J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A., vol. 9 (1923), pp. 406-407.
2. G. M. Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 193-212.
3. Eldon Dyer and Mary-Elizabeth Hamstrom, Completely regular mappings, Fund. Math., vol. 45 (1958), pp. 103-118.
4. Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J., vol. 25 (1958), pp. 521-532.
5. Mary-Elizabeth Hamstrom, Regular mappings whose inverses are 3-cells, Amer. J. Math., vol. 82 (1960), pp. 393-429.
6. ——, Regular mappings and the space of homeomorphisms on a 3-manifold, Mem. Amer. Math. Soc., no. 40 (1961).
7. -_, Some global properties of the space of homeomorphisms on a disc with holes, Duke Math. J., vol. 29 (1962), pp. 657-662.
8. -, Regular mappings and homotopy in homeomorphism spaces, Notices of the American Mathematical Society, vol. 10 (1963), p. 366.
9. ——, Regular mappings and decompositions of product spaces, Notices of the American Mathematical Society, vol. 10 (1963), p. 492.
10. S. T. Hu, Homotopy theory, New York, 1959.
11. J. M. Kister, Isotopies on 3-manifold with boundaries, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 213-224.
12. G. S. McCarty, Jr., Local connectivity in homeomorphism groups, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 420-421.
13. -_, Homeotopy groups, Trans. Amer. Math. Soc., vol. 106 (1963), pp. 293-304.

University of Illinois Urbana, Illinois

[^0]: Received September 19, 1963.
 ${ }^{1}$ Presented to the American Mathematical Society April 29, 1963. This work was supported in part by the National Science Foundation.

