
THE SPACE OF HOMEOMORPHISMS ON A TORUS

BY

1VIARY-ELIZABETH HAMSTROM

There have been several recent results concerning homotopy properties
of the space of homeomorphisms on a manifold. Most of these properties
halve been local. In [41, Eldon Dyer and I proved that the space of
rnorphisms on a 2-manifold s locally contractible and n I51 and [61 t is proved
that the space of homeomorphsrns on a 3-manfold is locally homotopy
connected in all dimensions. Olobal properties appear to be more dicult.
A well known result of Alexander’s Ill states that the space of homeomorphisms
on an n-ce|l leaving its boundary pontwise fixed is contractible and locally
contractible. In a recent paper I71 it s proved that the entity compoent
of the space of homeomorphisms on a disc with holes leaving its boundary
pointwise fixed is homotopically trivial. In the present paper, the identity
component of the space of homeomorphisms on a torus is considered and it is
proved that its homotopy groups are the same as those for the torus. For
related results, see [2], [11], [12], and [13].

TEOREM 1. If k is an integer greater than 1, then the identity component
of the space H of homeomorphisms of a torus T onto itself has the property that
r(H) O.

Proof. Let C denote a meridian simple closed curve on T and P a point
of C. A covering space of T is C X E1, where E is the real line and the
covering map is such that (x, 0) x for each x in C and, in general,
(x, t) (y, ) if and only ifx yand is an integer. Ifnisa
non-negative integer, S denotes an n-sphere and will be considered as the
boundary of the (n - 1)-cell, R"+.

Let F denote a mapping of S into H and g the mapping of S into T defined
by g(x) F(x)(P). There exists a mapping G of S into C X E such that
G(x) g (x) and for each x in S, there is a unique mapping f(x) of C into
C X E such that f(x)(P) G(x) and for y in C, rf(x)(y) F(x)(y).
The existence of G is a consequence of the various lifting properties of fiber
spaces. (See [10, p. 63, Th 3.1.].) To see that F(x) C can be lifted, note
that F(x) IC is homotopic to the identity in T, since F is in the identity
component of H. In particular, there is a mapping of C X I into T such
that IC X 0 is a homeomorphism onto a meridian of T, IC X 1 F(x)
and q(P, t) g(x). (See Lemma A.) Since C X 0 is a strong deformation
retract of C X I and there is clearly a mapping of C X 0 into C X E such
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that v C X 0 andS(P, 0) G(x), anotherform of thelifting property
mentioned in [10] implies the existence of an extension of to a map of
C X I into C X E such that <I(x) (x). Since (P, t) g(x) for each
t, (P, t) G(x). Then f(x) is the mapping C X 1 and it is obviously
a homeomorphism.
The mapping f can be obtained in another instructive way. Coordinatize

C by the reals mod 1, letting P have coordinate 0 and let/(x) be the mapping
of I( [0, 1]) into T such that lc(x)(y) F(x)(y). Then the mapping
k*(x) of I into C E such that k*(x)(y) f(x)(y) is the unique "lifting"
of /(x) that takes 0 onto G(x). Note that /*(x)(0) /*(x)(1). Now
consider Sk I. Let be the mapping of this into T such that (x, y)
F(x) (y). For each x, (x, 0) (x, 1). But S 0 is a strong deforma-
tion retract of S X I. Thus there is a mapping * of S X I into C X E
such that v* and *(x, O) G(x). Since /*(x) above is unique,
*(x, y) k*(x)(y) f(x)(y) and *(x, 1) *(x, 0). This demon-
strates the continuity of the mapping f of S into C X E.
Since/ > 1, the mapping g is homotopic to 0 in T. It thus follows from

the theorems of [8] that F is homotopic in H to a mapping F’ such
that F’(x)(P) P for each x in S. In what follows it will be assumed that
F(x) (P) does not vary with x.

Let N+(F) denote the largest integer n such that there exist an x in S
and a y in C such that the E coordinate of f(x)(y) is in the half-open number
interval In, n - 1) and let N-(F) denote the least integer m for which there
exist such x and y such that the E coordinate of f(x)(y) is in (m 1, m].
Denote by A. the annulus C X [j, j 1]. Suppose that there exist an x
and an x’ such that f(x)(C) meets As and f(x’)(C) meets Am_l but that for
no x does f(x)(C) meet Am_ or A+. An upper semicontinuous decomposi-
tion of As will be constructed that will be used to deform F in H to a mapping
F’ for which N+(F’) N-(F’) < N+(F) N-(F) unless this last number
is already -1, the least it can be.

For each x in Sk, denote by C, C’, J+ and J- the sets A, n f(x)(C),
A,_1 f(x)(C) and the right and left boundary curves of As. Note that
Cx does not intersect J+. Translate C’ to the right through n 1 m
units, i.e., take the point (a, b) of C onto (a, b - n 1 m), to obtain
C*. Then C* does not intersect C u J-. Let G denote the collection whose
elements are (1) the union of J-, C and the components of As C whose
closures do not intersect J+, (2) the union of J+, C* and the components of
As C* whose closures do not intersect J- and (3) the remaining points of
As. It is seen that Gx is an upper semicontinuous decomposition of A
whose decomposition space is homeomorphic to S.

In S X As, let G be the decomposition consisting of those sets (x, g),
where g is an element of Gx. Since the convergence of the sequence x} of
points of S to a point x implies the convergence of {f(x)(C)} to f(x)(C),
the collection G is upper semicontinuous. From [9] it follows that the de-
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composition space X associated with G is homeomorphic to Sk S. If T
represents the associated mapping of Sk X An onto X, or the homeomorphism
of X onto S X S and a the projection map of S X S onto S, then if
(x, y) eS X A,, arT(x, y) x. Note that there exist pointsp, qof S
such that for each x in S, (rT)-l(x, p) and (rT)-l(x, q) are nondegenerate
and that if a p, q, then (rT)- (x, a) is degenerate.

Let K be a simple closed curve in S separating p from q. Then for each
x, (rT)-(x, K) is a simple closed curve in (x, A) separating (x, C t J-)
from (x, C* t J+) in (x, A)and there is a homeomorphism of
[J (x,(rT)-(x, K)) onto S K such that the diagram,

[.J(x, (rT)-l(x, K)) )S X K

where c’ is the proieetion map of .S A, onto S, is commutative.
If K is eoordinatied, as is C, by the reals mod 1, the mapping (z), z S,

ghag gakes each point g of C onto the second coordinate of Vl(z, g) is a
homeomorphism and maps Sk continuously into Ge, he space of homeo-
morphisms of (2 into int A,. Each (x)() separates (;’ u J- from C* u J+.
The homeomorphism may be chosen so hat - maps S into He, the space
of orientation-preserving homeomorphisms of (2 into curves of 7’ isotopic
o meridian curves. Let Z denote the mapping of C S into T N S such
thag Z(, x) (-(x) (), x) and leg A_ denoge the annulus in (T, x) bounded
by (, z) and Z((2, z) (specifically, that annulus which, in T, would be ghe

image under r of the annulus in A, bounded by J- and - (z, K)). By
Theorem 2.9 of [9], there is a homeomorphism of C [0, 1] S into
T S such that

v(C [0, 1] X x) c T X x, v(Y, O, x) (y, x), v(Y, 1, x) Z(C, x);

by [8, Th. 1.2], there is a homeomorphism /of T X [0, 1] X S onto itself
such that if y e C, ,(y, t, x) Iv(y, t, x), t, x] and, for each y, (y, 0, x)
(y, 0, x). Hence, by a proiection of T X [0, 1] X S onto T, there is obtained
a mapping /* of I X S into H such that ,*(1, x)(C) vz(x)(C) and- (0, x) i.

For each x in S, denote by Q(t, x) the mapping ,*(t, x)[-/*(1, x)]-. Then
Q is a mapping of I X S into H, Q(1, x) i and Q(0, x) [,*(1, x)]-.
Then if F*(t, x) Q(t, x)F(x),

F*(1, x) F(x) and F*(0, x) b*(1, x)]-F(x).
Note that since ,*(1, x)(C) rz(x)(C),

N+[F*(0, x)] N-IF*(0, x)] < N+(F) N-(F)
unless the latter number is -1. Precautions could have been made.
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by using the theorems of [8], to keep F*(0, x) (P) independent of x or
these theorems could be used now to achieve this result without changing
N+[F*(0, x)] N-IF*(0, x)].

This process can be repeated until F is homotopic in H to a mapping F1
such that for each x in Sk, Fl(x)(C) does not intersect C. The same reason-
ing yields a homotopy in H of F1 to a mapping F. such that F(x) leaves C
pointwise fixed. Since H is the identity component, the angle change, as
defined in [4], along F(x)(C’), where C’ is a longitudinal simple closed curve,
is 0. Therefore, the techniques of [4] (see page 526) demonstrate that F
is homotopic to F3 in H, where for each x, F3(x) is the identity homeomor-
phism on T. This proves that k(H) 0 if/ > 1.

LEMMA A. Suppose that f is a member of H that leaves P fixed. Then f is
isotopic to the identity in such a way that each homeomorphism in the isotopy
leaves P fixed.

Proof. Let f, 0

_ _
1 be an isotopy such that fl f and f0 i.

note by g the mapping of I X I into T taking (t, s) onto f,+8(-)(P).
is a mapping G of C X I into T such that

De-
There

G(x, O) x, G(x, 1) x, G(P, t) f(P),

and G C X is a homeomorphism. For each t, G C X can be constructed
by rigidly moving P to ft(P) and taking C along with it. It is then easy to
extend G IC X to T X so that there is a mapping G* of I into H such
that G*(t) IC G IC rand G*(0) G*(1) i.

In T X I X I, let Z be a homeomorphism of

(T XI XO) u (T XI X l) u (T XO XI)

onto itself such that Z(x, t, 1) (f(x), t, 1), Z(x, t, O) (G*(t)(x), t, O)
and Z(x, 0, s) (f8 (x), 0, s). Also, there is a homeomorphism z of P X I X I
into T I I such that z(P, t, s) (g(t, s), t, s). Note that

z(P, 1, s) (g(1, s), 1, s) (f(P), 1, s) (P, 1, s)

and that where Z is defined, Z extends z. It thus follows from Theorem
1.3 of [8] that there is a homeomorphism Z* of T X I X I onto itself
that extends z and Z and carries each (T, t, s) onto itself. If Z*(x, 1, s)
(y, 1, s), letf*(x) y. It is seen that f*(P) P, f(x) f(x) f(x)
and f0* (x) G* 1 (x) x. Then f* is the required homotopy.

LEMMA B. If f is an orientation preserving map of C X I onto itself such
that f C X (0 u 1) i and for each O, 1, f C X is a homeomorphism
into int (C X [) that leaves (P, t) fixed, then there is a homotopy f such that
(1) f0 f, (2) f i, and (3) for each s, f maps C X I onto itself,

f. lC x (0u i,
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f8 C X is a homeomorphism into int (C X I) for each 0, 1 and fs(P, t)
(P,t).

Proof. For each >_ 1/2, let g be the mapping of C I into itself that
takes (x, s) onto (x, s/2t). If _< 1/2, let gt take (x, s) onto

(x, 1- (1 s)/2(1 --t)).

For each t, g,(P, t) (P, 1/2) and g, f(C, t) c int (C X I). Also,
gl(x, 1) (x, 1/2) go(x, 0) and gin(x, s) (x, s).

Let be the mapping of S into the space H’ of orientation-preserving
homeomorphisms of C into int (C X I) that takes into the homeomorphism
mapping the point x of C into gtf(x, t). It follows from Theorem 3.1 of [8]
that there is a mapping
(t), (t, 1)(x) (x, 1/2), (t, s)(P) (P, 1/2) for each t, s and x,
and(1, s)(x) (x, 1/2) (0, s)(x). Then iff, mapsC X Iintoitself
in such a way that fs(x, t) g (t, s) (x), f, is the required homotopy.
The computations that demonstrate this are easily made.

THEOREM 2. The group rl(H) is isomorphic to rl(T).

Proof. Coordinatize C and S by the reals rood 1, consider T as C X C,
identify 0 X C with C and suppose v(x, t) (x, t). Let F be a mapping of
S into H. Since H is the identity component, there is a mapping Z of I
into H such that Z(0) F(0) and Z(1) i. Then F(x)[Z(1 t)]-1 is a
homotopy of F to a mapping taking 0 onto the identity. Hereafter, it will
be assumed of F that F(0) F(1) i. Consider the mapping g of S into
T such that g(x) F(x)(O, 0). There is a unique mapping G of I into
C X EisuchthatrG(x)=g(x)andG(O)= (0,0). NotethatG(1) (0, r),
where r is some integer. There is, for x in I, a. unique mappingf(x) of C into
C X E such that f(x) (0) G(x) and rf(x) (y) F(x) (0, y). Note that
f(1) (C).is merely a translation of f(O)(C) and that, as in the proof of Theo-
rem 1, f is a continuous mapping of I into the space of homeomorphisms of
C into C X E1.

Consider the homeomorphisms a and of S into T such that a(x) (0, x)
and (x) (x, 0). Then g is homotopic in T relative to 0 to r - sa, where
r and s are integers, and this mapping may be assumed to "lift" under r to an
arc in C X E that, if r > 0, goes along 0 X [0, r 1] and then wraps around
C X [r 1, r] s times, meeting each C X x exactly once. If r < 0, a similar
remark holds. If r 0, then sa takes each x of S onto the point (0, sx).

Case 1. r > O. By the theorems of [8], F may be assumed to be such
that g actually is r sa and lifts into C E as described above. Let
0 to < tl < < t= l be such that G(t) has coordinates (0, j). Note
that F(t) (0, 0) (0, 0). In fact, it may be assumed that the second coordi-
nate of g (t) is (t t_) / (t. t_) if t_

_ _
t. It then follows from
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Lemma A that in H there is an arc connecting F(t) to a map Fl(t) i and
that each homeomorphism in this arc leaves (0, 0) fixed. These arcs carry
a partial homotopy of F in H which may be extended to a homotopy of F to a
mapping F1 of S into H such that Fl(t) i. Define gl, G, fl as g, G, f
were defined.
The proof of Theorem 1 may now be followed almost word for word to get

a sequence of homotopies leaving F(t) fixed if t

_
<_ 1. The first takes

F to a mapping F such that F(t)(C) doesn’t intersect C if 0 < < h.
Since g is homotopic to g under a homotopy leaving g(O) g(t) fixed, the
second homotopy of the sequence takes F to F’, where F’ (t) (0, 0)
(0, t/h). The third homotopy takes F to , where F"(t) (x) (x, t/t1)
for each x in C (see Lemma B). The fourth takes ,, to F2 where
F2(t) (x, a) (x, a - t/t1) (see the final remarks on the proof of Theorem 1.)

Similarly, F is homotopic to F8 under a homotopy leaving F2(t) unchanged
unless t < < t, in which case, Fs(t)(x, a) (x, a + (t t)/(t tl)).
Repeat this process until Fr is obtained by means of a homotopy leaving
Fr_l(t) unchanged unless t_. < < t_l, in which case,

F(t)(x, a) (x, a + (t t_2)/(tr_- t,_2).

Finally, F is homotopic to F+ under a homotopy leaving F,(t) unchanged
unless tr_ < < t, in which case,

F+(t)(x, a) (x -- y, a -t- (t t_)/(t, tr_),

where g(t) (y,(.t t_l)/(t- t_).
If F is homotopic to F’ in H, g and g’ represent the same element of the

fundamental group of T so that g’ may also be taken as r -- sa. Hence
F+I F,+. Clearly F,+ F:+ implies that F is homotopic to F in H.
Hence it follows that the function that maps the homotopy class of F onto
that of g is well defined and one to one.

Case 2. r < 0 or r 0 but s 0. The same argument applies.

Case 3. r 0 s. In this case, g is homotopic to 0 in T and the argu-
ment for Theorem 1 may be applied to obtain the fact that F is homotopic
to 0 in H, since in this case G(0) G(1).
The three cases combine to show that the function mapping the homotopy

class of F onto that of g is an isomorphism of vl(H) onto I(T).

THEOREM 3. If M is a torus from which the interiors of a finite (positive)
number of disjoint discs have been removed, then the identity component of the
space H of homeomorphisms of M onto itself that leave the boundary of M point-
wise fixed is homotopically trivial.

Proof. The proof is essentially that of the Theorem of [8], which states a
similar fact for discs with holes. Suppose that M is obtained by removing a
disc D from a torus T and that f maps S into H. Let f(x) be extended to
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f*(x), a homeomorphism of T onto itself leaving D pointwise fixed. The
mapping g* of S into T associated with f* as in the preceding arguments is,
if P is considered to be in D, homotopic to 0 in an obvious way. Hence f*
is homotopic to 0 in the identity component of the space of homeomorphisms
of T onto itself and the argument for the theorem of [8] now applies to prove
that f is homotopic to 0 in H. As in the proof of the theorem of [8] an induc-
tion argument may now be applied.

These arguments may also be applied to obtain the

COROLLARY. If the mappings of H above are also required to leave fixed
the points of some finite set, then H is homotopically trivial.
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