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1. Introduction

In [2] R. Brauer and the author obtained rather detailed information about
the irreducible characters of finite groups G of order g which satisfy the follow-
ing condition"

(.) There exists a prime p dividing g such that if y 1 is an element of a
p-Sylow subgroup P of G then the centralizer of y in G coincides with the cen-
tralizer of P in G.

W. Feit [4] has studied the characters of groups satisfying a more general
condition, stated in the present paper as Hypothesis II in 3. In [5] he
abstracted from this a generalization of Brauer and Suzuki’s results on ex-
ceptional characters of finite groups.
Here we extend Feit’s results on the characters of groups satisfying Hy-

pothesis II. It is pointed out (2) that Feit’s proof [5] yields a more general
theorem on exceptional characters than he stated, and two corollaries are
derived. These facts are applied (3) to the characters of groups G satisfying
Hypothesis II. Finally we obtain lower bounds for the degrees of the irre-
ducible characters and of the faithful characters of G (4), in a sense made
explicit there. These results include many of the results obtained in [2] for
groups satisfying condition (.).
For any subset T of a group G, we shall denote the centralizer, normalizer,

and number of elements of T by C(T), N(T), and T I, respectively. By a
character we shall mean a (possibly reducible) character over the complex
number field. By the kernel of a character is meant the kernel of the corre-
sponding representation. A generalized character is a linear combination of
characters with integer coefficients. The inner product of two generalized
characters a and f of a group G is

(a,) (1/IGI)
A subscript G will be attached to the inner product when it is desirable to
emphasize which group is involved.

2. Exceptional characters
Let G be a finite group, let L be a subgroup, and let L be a subset of L.

Consider the following conditions:
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(Ia) For every conjugacy class K of G which contains elements of L, K n L
is a class of L.

(Ib) For every element y of , the centralizer C (y) of y in G lies in L.

It is easily seen that these two conditions are equivalent to the single condi-
tion:

ItYeOTrIESIS I. For every element x of G,
LnxLx- L if x eL,

=0 if xtL,
where 9 denotes the empty set.

If a is a generalized character of L, denote by a* the generalized character
of G induced by a. The proof of the lemma in [5] yields the following stronger
statement.

LEM 2.1. Assume G L, and L satisfy Hypothesis I. If a is a generalized
character of L which vanishes at all elements of L L which are conjugate
relative to G to elements of L, then for every y e L
(2.1a) a*(y) a(y).

Furthermore, for every generalized character fl of L which vanishes on L L,
(2.2a) (a*, *)a (a,

The Frobenius Reciprocity Theorem makes possible another formulation
of this lemma. Denote the column of numbers (xlL, a), as x ranges over
the irreducible characters of G, by A,. If x is a fixed member of G, write
X(x) for the column (x(x)). Then

Let inner products of columns of complex numbers have the usual meaning.
Then a*(x) (X(x), A,) and (a*,/*) (A,, A). If a and satisfy
the conditions in the lemma, then (2.1a) and (2.2a) become, respectively,

(2.1b) (X(y), A,) a(y) (y e L),
(2.2b) (A,, A) (a, t).

Direct proofs of (2.1b) and (2.2b) without the use of induced characters can
be given quite easily, as was done in [2] in a special case. The equations
(2.1a), (2.2a), (2.1b), and (2.2b) are also useful when the hypotheses of the
next theorem are not fulfilled.

Professor Curtis has informed me that in the corresponding Lemma (38.15) in [3],
an additional assumption was intended" in their notation that vanishes outside S.
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Feit’s proof of his theorem on exceptional characters [5] yields the following
stronger result.

THEOREM 2.1. Let G, L, and satisfy Hypothesis I. Consider a family

2 { i 1, 2, ; s 1, 2, n}

of distinct irreducible characters of L. Assume there exist positive integers
l i 1,2,...,

(2.3) l t(y) l h,(y) 0

for l i k, 1 j ,1 s n, 1 n,and that

(2.4) {2 n l > 21 (j 2, ).

Then there exist irreducible characters x, of G and a sign 1 such that

(2.5) (/X- l,)* e(l x- l x,),

forl i g ,1 gj ,1 s g n,l n.
Notice that if L G, then (Ib) implies 1 e L L, and (2.3) implies

X(l.) /X(1) for all
equivalent to the statement that

whenever the a, are integers such that ., a, i,(1) O.
From this theorem we obtain

CononY 2.1. Under the conditions of the theorem, there exist integers
d and characters of L which are orthogonal to all the X, sh that

(2.6)

Furthermore, for x e G

(2.7) xt(z) l xu(z) + 0,
where the first case occurs if x is conjugate to an element y of L, and the second
case otherwise. If a is a generalized character of L which vanishes at all elements
of L- L which are conjugate relative to G to elements of L, and which is or-
thogonal to l hl then

If X and hence all h, vanish on all elements of L L which are conjugate
relative to G to elements of L, then for all x d ld

Professor Feit has informed me that in his corollary in [5] the equation for
was intended to apply only to elements of
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For every other irreducible character x of G, there is an integer dr and a charac-
ter # of L orthogonal to all the hi8 such that

(2.9) x] L d.i.8 l h -f- #.

Proof. By the Frobenius Reciprocity Theorem, (2.5) is equivalent to the
assertion that, for every irreducible character x of G, if (j, t) (1, 1),

if x x’t,

(2.10) --1 if x x11,

0 otherwise,

and this yields (2.6) and (2.9). Equation (2.7) is obtained by applying (2.1a)
to (2.5).

If hn, and hence all X8, vanish on all elements of L L which are con-
jugate relative to G to elements of L, then, for (j, t) (1, 1), we apply the
Frobenius Reciprocity Theorem and (2.5) and (2.2a) to

finding that

Treating (x.t l. xl) L, a) L in the same way, we obtain (2.8). This
proves the corollary.
The character x8 is called the exceptional character of G corresponding to, and all other characters of G are called non-exceptional for the family ,

except that when 2 has only one member we shall regard all characters of G
as non-exceptional for . It is clear that if has more than two members,
then for every Xi e 2, the character x, of G which is exceptional for , is
unique. If has only two members then ] I and, although the two charac-
ters of G that are exceptional for are uniquely determined, it is not uniquely
determined which of the two is exceptional for h and which for h2 until is
specified.

COROLLARY 2.2. If G satisfies Hypothesis I and 2 and E are disjoint
families of characters of L, both of which satisfy the conditions of Theorem 2.1,
then a character x of G cannot be the exceptional character both for a member of
2 and for a member of E.

Proof. If either or i) has only one member, this is a matter of definition.
Let lh8} and {gt}, and let {/}, i, {m}, and e be the integers asso-
ciated with these families. Suppose the corollary is false, and that x is the
exceptional character corresponding both to h, and to /.tit. Let ), e 2 and
g e , and let them be distinct from h, and/zt Let x be the exceptional

I wish to thnk the referee for pointing out that the proof of this corollary becomes
simpler if it is based on Corollary 2.1.
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character corresponding to ),. By (2.8)

/(x L, m get m g,) /(x L, m,, gt- m ,,).

According to (2.6) the left-hand side is l m . Hence according to (2.10)
the right-hand side is l m. and x x. But this contradicts the fact that
x is also exceptional for ,.

3. Groups which contain a Frobenius factor group
We now study groups which satisfy the following:

HYPOTHESIS II. G is a finite group with a subgroup of the form M X H
such that M {1} and

(i) If yeM X H- H thenC(y) cM X H.
(ii) For every x e N(M X H), (M X H) nx(M X H)x-I C H.
(iii) H and M are normal subgroups of N(M X H).

Denote M X H, N(M X H), and (M X H) H by C, L, and L, respec-
tively. Denote MI, H I, and L/C[ by m, h, and q, respectively. Let the
irreducible characters of M be 1 o, , ,- and let those of H be
1 0, , 2, Denote the character of C by a, and by the char-
acter of L induced by a. Let z (1),for0 <_ i <_ n-- 1.

LEMMA 3.1. Let G be a group which satisfies Hypothesis II. Then
N(M) L. Either q 1 or L/H is a Frobenius group whose regular sub-
group is C/H, and in the latter case M is nilpotent. The integer q divides m 1.
No element of L L is conjugate relative to G to any element of L.

Proof. This is a generalization of parts of Lemma 2.4 in [4], and the first
two statements of the present lemma are proved in the same way. Since the
regular subgroup of a Frobenius group is nilpotent [8], M must be nilpotent
if q 1. Since L/C is a group of automorphisms of M under which each
element of M {1} has q images, q must divide m 1.
Now we prove the last statement of the 1emma. First, no element of H

is conjugate to an element of L [4, Lemma 2.4]. Suppose x e L L and is
conjugate relative to G to an element y of L. Since y H, the order of y is
not relatively prime to m, and hence the same is true of the order of x. If
is the order of x, then t t2, where h is a product of primes which divide m,
and t2 a product of primes not dividing m. We can write x Xx x2 x Xl,
where x has order tl and x has order t. Here x and x2 are uniquely deter-
mined by these conditions. Also Xl 1 since tl 1. Since L/C has order q
and(q,m) 1, xC C, andthusxeC. IfxeC-Hthenx2eCby(i),
and then x e C. But x e L L, so we would have x H, which would con-
tradict the second sentence of this paragraph. Thus x e H.
Now y y y y y, where y and y2 have orders t and t2, respectively.

Thenx x zy z-Xzy z- zy z-zy z- for some z e G. The uniqueness of x
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implies that x zy z-. Clearly y e H and hence y e C H L. Again
we have a contradiction. This proves the lemma.
By the definition of induced characters,

(3.1)
(y) 0 if y C,

c,
where x ranges over a complete residue system R of L (mod C) and i’(y)
(xyx-). If i 0 then the inertia group of is C (that is, i’ for
x e L C), and a is irreducible [4, Lemma 2.2]. From (3.1) we see that
a ’ if and only ii ’. i’ and for some x e L. In particular, to
obtain all the characters ia it is sufficient to let range over a full system $

of irreducible characters of H no two of which are associated in L.
Let F() denote the inertia group of . Then C F(a). We have

ia a if and only if ’. for some x F(). If $, let

.i 01.
The sets 2() re disioint nd together contain every irreducible character
of L whose kernel does not contain M. According to the notation bove,
the number of classes of coniugte elements of M is n. Let

(3.2) f (F()’C).

Then each character with i 0 is obtained from f different characters. of M. Hence () contains (n 1)/f distinct characters.
We summarize some of these results.

LEMMA 3.2. Let G be a group which satisfies Hypothesis II. Let be a full
system of irreducible characters of H no two of which are associated in L. The
irreducible characters of L whose kernel does not include M are distributed
in the disjoint families 2(), e $. Here 2() consists of the characters
of L induced by characters of C where is a non-principal irreducible
character of M. The number of members of 2(a) is (n 1)/f where n is the
class number of M, f (F(ga)’C), and F(a) i8 the inertia group of in L.

Every other irreducible character of L is a constituent of the character Oa
induced by o for some e $, where o 1.

Next we show

LEMMA 3.3. For every a,

iaJ3(,a) Zi a(Y) 0 if y C,

_O(y) if y eC H,

(m 1) H,
Alternatively, this can be verified by applying the "permutation lemma" [1] to

the character table of M.
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where y yl y. with yl e M, y2 e H, for y C, and where w ranges over a full
system Ra of representatives of the right cosets F(Ka)w of F() in L.

Proof. This follows immediately from (3.1)
according to the remarks preceding Lemma 3.2,

if yC. If yeC then,

(3.3)
faE ia. (ga) Zi  ia(Y) Zi  ia(Y)

But -01 zi’ is the character of the regular representation of M.
the sum (3.3) has the value

Hence

Io( m i)

where i 1 or 0 according as y is 1 or not. This proves the lemma.
Now we prepare to apply Theorem 2.1 and its corollaries, assuming G

satisfies Hypothesis II. The theorem and the first corollary obtained are
generalizations of similar results of Felt [4]. It is clear that if G satisfies
Hypothesis II then it satisfies Hypothesis I. Equation (3.1) implies that

(3.4) z. (x) z (x) (x e L L).
Thus (,) satisfies condition (2.3).
Make the further assumptions that q 1 and M is not a non-abelian p-

group with (M:M’) 4q2. Then by Lemma 3.1, M is nilpotent, so M’ M.
Hence M has non-principal characters of degree 1, and, in the notation of
Theorem 2.1, 11 1. If i" is an irreducible character of M of degree z > 1,
then z > 2qz, where z ranges over the degrees of all irreducible characters

of M for which i 0 and z < z [4, Lemma 2.3]. Therefore

(3.5) (1/f z > 2qz/f >_ 2z.

But for each a, each character ia with i 0 is obtained from the fa different
characters i’ for which x e F(). Hence (3.5) shows that () satisfies
(2.4), and thus all the hypotheses of Theorem 2.1. Consequently we have

THEOREM 3.1. Suppose G is a group satisfying Hypothesis II, that q 1,
and that M is not a non-abelian p-group with (M" M’) < 4q. Then for every a,
there exist irreducible characters Xa of G with 1

_
i

_
n 1, and a sign +/-1

such that

(3.6) (z ja Zj ia) : a(Zi Xja Zj Xia),

We shall refer to the character Xia as the exceptional character for ia except
when () has only one member, and in this case we shall regard all the
characters of G as non-exceptional for 2(a). An irreducible character of G
which is non-exceptional for all the families 2(Ka) will be called non-excep-
tional.

If (Ka) has only one member, then the remarks preceding Lemma 3.2 imply
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that all the non-principal irreducible characters of M are associated in F(Ka)
and that L F(Ka). In particular, M has no proper subgroup which is
normal in L. Since q 1, M is nilpotent and hence must be an elementary
abelian p-group, and q m 1.

COROLLARY 3.1. Suppose G satisfies the hypotheses of Theorem 3.1.
(a) If Xa and Xa are the exceptional characters corresponding to and

a respectively, then z Xia Zi Xja vanishes on all elements of G which are not
conjugate to members of C H. In particular, z Xa(1) Z Xa(1).

(b) If Ka and b are distinct members of 6, then no character of G can be the
exceptional character both for a member of 2(a) and for a member of 2(

(c) There exist integers dab such that if xb is exceptional for b then

Xb L b jb - Zj{ Zgae$ dabZiae(a) Zi ia - #b}.

Here dab depends only on a and b, and b is a (reducible) character of L whose
kernel contains M and which depends only on b.

(d) For every non-exceptional character x of G, there are integers ea and
a (reducible) character , of L whose kernel contains M such that

Proof. Part (a) is obtained by applying (2.7), and part (b) by applying
Corollary 2.2. According to Lemma 3.1, no element of L L is conjugate
to any element of L. Therefore, in the notation of Corollary 2.1, d- l-d.
According to part (b), a character of G can be exceptional for at most one
character of L. If x’b is exceptional for ’b then (2.8) can be applied to all
irreducible characters a of L not in (Kb). Then part (c) is obtained from
(2.6) and (2.9). Part (d) follows directly from (2.9).
Equation (3.1) and Lemma 3.3 can be applied to express (c) and (d) in

another way. They also lead to expressions for the degrees of the charac-
ters. We state the latter results.

COROLLARY 3.2. Suppose G satisfies the hypotheses of Theorem 3.1.
(c’) If x is the exceptional character for then

Xjb(i) Zj[bqgb(l) 2F (m- 1) Z,a,$dab(q/fa)ga(X) 2F #b(X)].
(d’) /f x is non-exceptional then

x’(1) (m- 1) ,,$ ela(q/fa)a(1) "
4. Bounds on the degrees of the characters

We pply the bove results to obtain lower bounds for the degrees of the
irreducible churacters of groups which satisfy Hypothesis II.

THEOREM 4.1. Suppose G satisfies the hypotheses of Theorem 3.1. If
Apparently it is intended in Corollary 2.2 in [4] to assume that an’d , are not

associated in N(M H), that is, that - .
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x is a non-exceptional character of G then either x(1) >_ m 1 or M is con-
tained in the kernel of x.

Suppose xjb is exceptional for . If 1 then xa(1) >_ (m 1)/2.
If l and x (1) < m then

(4.1) Xb L b + Z b,

where b is a (reducible) character of L whose kernel contains M.

Proof. The statement about x follows immediately from Corollaries
3.1(d) and 3.2(d’).
Suppose Xb is exceptional for b. Then, by the definition following Theo-

rem 3.1, 2(rb) has more than one member; that is, (n 1)/fb 2. There-
forefb (n 1)/2 g (m 1)/2. Equation (3.2) implies thatfb q.

If eb --1 then Corollary 3.1(c) implies that dbb 1 since

i, 0.

It follows from Corollary 3.2(c’) and the inequalities above that

Xb(1) --qrb(1) + (m- 1)dob(q/fb)b(1) m- 1 --fb (m- 1)/2.

Now suppose that eb 1 and that Xb(1) < m. Then Corollaries 3.1(c)
and 3.2(c’) immediately yield the conclusion stated. This proves the theo-
rem.

This theorem can be applied to obtain lower bounds for the degrees of the
faithful (reducible) representations of G. First we derive a lemma.

LEMM 4.1. Suppose G satisfies Hypothesis II, and let K be a normal sub-
group {1} of G. Then M G or K has non-identity elements which are not
conjwate to any elements of (M X H) H.

Proof. The product KL is a group, and (KL:L) (K’K L). Sup-
pose every non-identity element of K is conjugate to some element of C H.
Since K G, K consists of the members of all the conjugates of (C H) n K
and the identity. Since these conjugates are disjoint,

IK (G’L) (C- H)flK + 1.

The left-hand side is divisible by (K"K n L) and the first term of the right-
hand side by (KL’L). Then (KL:L) 1. Hence K c L. It follows
from Lemma 3.1 that K c L v {1}. Since K G and distinct conjugates
of L are disjoint, it follows that L G or K 1 }. This proves the Lemma.

THEOREM 4.2. Suppose G satisfies Hypothesis II and has a faithful repre-
sentation X of degree < (m 1)/2. Then one of the following must be true.

(a) N(M X H) M X H. That is, q 1.
(b) M is a non-abelian p-group with (M’M’) < 4q.
c M G. That is, L G.
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(d) M is an elementary abelian p-group, and no proper subgroup of M is
normal in N M X H

Proof. Assume that G does not satisfy (a), (b), or (c). Then G satisfies
the hypotheses of Theorems 3.1 and 4.1. Furthermore, according to Lemma
3.1, M is nilpotent. Therefore to prove (d) it will be sufficient to prove that
M has no proper subgroup M0 which is normal in N(M H), because other-
wise the elements in the center of M whose orders divide a fixed prime divisor
p of m would form such a subgroup.
Assume that M has a proper subgroup M0 which is normal in L. According

to Theorem 4.1, not all the constituents of X can be non-exceptional. We
shall prove that X is not faithful, contradicting our hypotheses.

Clearly M has non-principal irreducible characters ’ whose kernels contain
M0. Therefore it follows from Corollary 3.1(c) and (4.1) that if xjb is
exceptional for jb and has degree < (m 1)/2, then G has a character
xi which is exceptional for a member of the same family (K) and whose
kernel contains M0. For each exceptional constituent x’ of X, such a
character xi may be obtained. Let K be the intersection of the kernels of
the characters xb obtained and of the non-exceptional constituents of X.
Then K is a normal subgroup of G and contains M0. According to Lemma
4..1, K contains non-identity elements which are not conjugate to any ele-
ments of C H. According to Corollary 3.1(a), these elements belong to
the kernel of X. This is a contradiction, and the theorem is proved.

Finally, we can prove a result which supplements cases (a) and (d) of
Theorem 4.2.

THEOREM 4.3. Suppose G satisfies Hypothesis II and that G has a faithful
representation X of degree

_
m11 1. Then either M is a non-abelian p-

group with M" M’) < 4q or M <3 G.

Proof. Suppose the theorem is false, and that G is a counter example of
minimal order. If K is a proper subgroup of G containing M, then M <:l K,
because (L n K:C n K)

_
(L’C) q. Now we show that

(4.2) (M X H) x(M X H)x-1= Z,
the center of G, if x N(M X H). If y belongs to the intersection but not
to Z, then, by Hypothesis II(ii), y H xHx-. Then M and xMx- are
contained in C(y). Since C(y) G, we have M <3 C(y), and hence
C(y) c L. According to Lemma 3.1, (q, m) 1, and therefore

xMx- c M X H.
Hence by Hypothesis II(ii), xMx- xHx-. Then M H, which is
impossible. Thus (M H) x(M X H)x- c Z. On the other hand,
Hypothesis II(i) implies that Z H, and hence that Z is contained in the
intersection (4.2). This proves (4.2).
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Suppose G has a proper normal subgroup K with M c K. The minimality
of G implies that K c N(M), and hence all the coniugates of M are in N(M).
According to Lemma 3.1, (q, m) 1. Hence all the coniugates of M are
contained in M X H. Since M is not normal in G, (4.2) implies that M c Z,
which is impossible. This shows that G has no proper normal subgroup
which contains M.
Theorem 4.2 shows that either q 1 or M is abelian. In the latter case

we can apply a lemma due to Feit [6, Lemma 4,2]. Our Hypothesis II,
(4.2), the fact that M is not normal in G, and the fact proved in the pre-
ceding paragraph are special cases of Feit’s hypotheses. The conclusion is
that every non-linear irreducible character of G has degree > m1/ 1. There-
fore the constituents of X are linear, and G is abelian, an impossibility.
Hence q 1.
Each element x of G produces a permutation of the coniugates of M H

by coniugation, and by (4.2) if x leaves two different conjugates fixed, then
x e Z. Hence G/Z may be regarded as a transitive group of permutations
such that no non-identity element leaves two symbols fixed. By a well-
known theorem of Frobenius, it follows that the elements of G which leave
no coniugate of M X H fixed together with the elements of Z form a normal
subgroup K of G of order (G:M H) Z [. That is, G/Z is a Frobenius
group with regular subgroup K/Z.
We have K Z since G M X H. Therefore X has an irreducible

constituent with character, say, x, which does not represent all the elements
of K by multiples of the identity matrix. Then x: contains Z in its kernel
but not K. The degree of every irreducible representation of a Frobenius
group whose kernel does not contain the regular subgroup is a multiple of
the index of the regular subgroup. (Cf. (3.1) and the remarks following it.)
Hence x:(1) >_ m, and x(1) >_ ml/. Again we have a contradiction, and
the theorem is proved.

Remark. The new simple groups recently discovered by Suzuki satisfy
the hypotheses of our Theorem 4.2 and fall under case (b) (see [7], especially
13-17). Thus case (b) cannot be dropped from this theorem. However,
it is not known to the author whether the corresponding case in the conclusion
of Theorem 4.3 can be dropped.
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