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1. Introduction

The set 2 of all functions (n) on Z {1, 2, 3, into a commutative
ring R with identity forms a commutative ring with identity under ordinary
addition and the multiplication .; (b x)(n) dl, b(d).x(n/d). It was
proved by Cashwell and Everett [2] that when R is the field of complex num-
bers 2 is a unique factorization domain. In this paper we extend and prove
the unique factorization theorem in 2 for a wider class of commutative rings
R. The method is indirect and it uses the isomorphism between 2 and the
ring of formal power series R in a countably infinite number of indeterminates
over R. The theorem is proved for R by introducing a topology.

2. The ring of number theoretic functions
The class 2 of all number theoretic functions , i.e., all functions (n) on

the set Z of natural numbers n into a commutative ring with identity forms a
commutative ring with identity under the addition -,

b+ x)(n) (n) + x(n),

and the multiplication which is called convolution,

(h * x)(n) 1, b(d).x(n/d).

The zero 0 and the additive inverse - of are of course the functions defined
by 0(n) 0 and (-)(n) -(n) for every n. The function E with
E(1) the identity of R, E(n) 0 for all n 1, is the identity:
E b E h for all in 2. We say that 2 is the ring of number theoretic
functions over R if each function of 2 takes values from R. A function
N() on 2 to Z is defined by taking N() to be the smallest number n for
which(n) 0ifh 0andN() if and only if 0. Clearly
N(b) >- 1 for all b. If R has no zero divisors, then N( x) N(). N(x)
for all , x of . Indeed, we find that, if 0, x 0 with N(h) i and
N(x) j, then

( * x)(i’j) -m..--.i b(m).x(n) (i).x(j) 0

since (m) 0, x(n) 0 for all m < i and n < j.

PROIOSITION 1. The ring of number theoretic functions over a domain of
integrity (i.e., a commutative domain with identity) has no zero divisors.
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Proof. If, xeand.x 0, thenN(.x) N(0) . Hence
either N() or N(x) is , i.e., or x is 0.
In our ring , an element is a unit if and only if ( 1 is a unit of R. (Cf.

[2; 3].)

3. The weight topology
Let R be commutative ring with identity, nd put

U- R[x, x,

We sy that non-zero monomial 1 1 x, c e R, is of weight r if
1.k 2.k2 k.k r. It is easy to see that the product of two
monomials, whose weights are t and t2 respectively and whose coefficients are
not zero divisors, is of weight t t. For each f e , we write

f=0++ +,
where each f is a sum of all monomials of weight i.
function v on R as follows"

Clearly

v(f) rain {n f,, 0}

Then we define an order

if f0
if and only if f= 0.

4. The ring of formal power series in a countably infinite
number of indeterminates

Let R be a commutative ring with an identity 1. By a formal power
series in a countably infinite number of indeterminates {xl, x2, x,
over R we mean an infinite sequence

f= (f0,f,f, ,f, ...)

of polynomials f e R[x, x., xi], each f being either 0 or a sum of
monomials of weight q. We define addition and multiplication of two power
series

f= (fo,fx, "’,f, "") and g (g0,gx, "",g, "’)

as follows"
f+ g (f0 + g0,f + g,...,f + g,...),

Denote by Br the ideal of/ consisting of all elements f whose order v(f) >= r,
where r- 0,1,2,3,.... Evidently/ B0B B2B ...,and
f’lr%0 Br {0} by the definitions of v and Br. Now we topologize/ by taking
the set of ideals {B,} %0 as a basis of neighborhoods of 0. Clearly / is a
Hausdorff space for the induced topology. We call this topology the weight
topology of [. Let R* be a completion of / for the weight topology. The
extended topology in R* is also called the weight topology of R*.

v(f + g) >= min {v(f), v(g)} and v(fg) >= v(f) + v(g).
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f’g (ho h h ...),

where h +.=f g. With these definitions of addition and multiplica-
tion the set of all formal power series in a countably infinite number of in-
determinates over R forms a commutative ring with the identity 1. We
denote it by R[[Xl, x,, ...]] or R. Every polynomialf f0 W fl W W f,
in/, where each f is either 0 or a form of weight i, can be identified with a
formal power series (f0, fl, f,, 0, 0, in R. By this identification
R becomes a subring of R. Every element f of R can also be expressed
in the form f (f0, fl, f, ), where each f is either 0 or a finite or
infinite sum of monomials of degree q in R. An order function similar to v
can be defined in R. This will also be denoted by v.

THEOREM 1. For every commutative ring R with identity, R, is the comple-
tion of [Ji R[x x2 xi] for the weight topology.

Proof. Let/r {f e R v(f) >= r}. We show that/ is dense in R for
/r-topology, i.e., the topology induced by taking {}0 as a basis of neighbor-
hoods of 0. Let f (fo, f, fq, R, where each fq is either 0 or a
form of weight q. Put F(’) (f0, f, "", f., 0, 0, ...); then clearly
F(’)

e and (F(n)) is a Cauchy sequence with f as a limit. Next we assert
that R is complete for -topology. Let (f()) be a Cauchy sequence of
elements of R. Then for every integer j 0, there exists an integer T(j)

() f) for all k < j. Putsuch that f() f() e if n, m > T(j); hence
r(0) r() r() ..) Since eachf()f 0 , , e R and is of weight q, feR.

We can easily see that for every j, f f) for all k < j n T(j) therefore
f() f as n for -topology. Finally we show that is a subspace of
R. This follows from the fact that a B, for every r, by the defini-
tions of, B and v. Hence R is a completion of , nd -topology is the
weight topology of R.
Now let {p, p, p, be the set of all prime integers (positive) arranged

in the natural order. Then every integer n of Z may be written uniquely in
kk2the form n 1 2 pk for some k, where each kk is zero or a non-zero

positive integer. Hence every number theoretic function may be associated
with a definite formal power series in R by means of the correspondence"

(*) x,,
where the summation extends over all n p of Z; obviously the
sumf can be identified with some formal power series in R. We can easily
verify that the correspondence is an isomorphism. As a consequence of
this we have the following propositions.

PROPOSITION 2. The ring R offormal power series over a domain of integrity
R is also a domain of integrity.

PROPOSITION 3. An element f (fo f fq of R, is a unit if and
only if fo is a unit of R.
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Now we define Z to be the set consisting of all integers of the form

2 p,
,i >- 0 for eachi 1, 2, 3, ..., /c. Then clearly

ZZZa Z
and [Jl Zk Z. Let 2k be the subset of ft consisting of those number
theoretic functions /such that (n) 0 for all n e Zk. Then, the set ft
is the collection of all functions on Z into R. It can be easily verified that
fti

_
R[[xl, ..., xt]] under the correspondence (.).

DEFINITION 1. Set f f(xl, x., xi, e R then for any integer
j >= 0 the formal power series

f(xi,x2,...,xi,0,0,0, ...) in R.= R[[xi,x2, ...,x.]],

which is denoted by (f)., is called the projection of f on Ry (we set R0 R).

Clearly the mapping f -- (f). is a ring homomorphism of R on R., i.e.,

(f + g). (f). - (g). and (fg) (f)s" (g).

DEFINITION 2. A chain if,0), f(1), fi), f(m)] of f(i) e R is said to be
telescopic if f(i) (f(+l)) for each i 0, 1, m 1.

5. The unique factorization in R
We know that domain of integrity F is unique fctoriztion domain if

it satisfies the following conditions"

[UF1] Every non-zero non-unit element of F is a finite product of irreducible
factors.

[UF2] The foregoing factorization is unique to within order and unit factors.

UNIQUE FACTORIZATION THEOREM. Let R be a unique factorization domain
of integrity such that Ri R[[x x. x.]] is a unique factorization domain
for every finite integer j ->_- 1; then so is R,

In order to prove the theorem, we need the following Proposition 4 and
lemmas.

BROOSITION 4. If a domain R of integrity satisfies the ascending chain con-
dition for principal ideals, then so does R,

Proof. We show that the ring of number theoretic functions over R,
which is isomorphic to R, satisfies the ascending chain condition for principal
ideals for such R. Let (fro)

___
(f())

_
(f())

_
be an ascending chain

of principal ideals of ft. Without loss of generality we may assume that
fm 0; then clearly f() 0 for all i >= 1. Since (f()) (f(+)), f(+)l f();
hence there exists a non-zero function g in ft such that f() f(+) g. Then
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N(f()) N(f(+) .gi) N(f(i+l)).N(gi) O.

So N(f()) >= N(f(+)) and consequently we have a descending chain of
non-zero integers N(f(1) >__ N(f(2)) N(f()) >- .... Evidently there must
exist non-zero integers r and/ such that

for every p >- 0. Set f() f+l) g ;then

0 f()(k) ft+i)(k)’gr(1) +
f(+)(k)’g(1) + O,

since N(f+1)) k and f(r+l)(m) 0 for all m < k. It follows that

Similarly
(f(r) (/c)) (f(r+l) (]) ).

(f("+" ()) (f(+) ())
for every n -> r. Thus we have the following ascending chain of non-zero
principal ideals of R"

(f() (/c)) (f(+) (/c))

_
(f(+2) (/c)) ....

Then there must exist an integer M such that (f(M)()) (f(M+p)(/C)) for
every p >-- 0. Hence f(M)(tO) v.f(M+p)(lC) for some unit v of R. On the
other hand, since f(+)[ f(M), there exists a g e ft such that f() f(M+) * g"
Accordingly

f(M) (k) g( 1 .f(M+p) (k) .f(M+p) (k),
hence g(1); this means that g is a unit of ft. Therefore.

(f(u) (f(M+)
for every p >-- 0.
As an immediate consequence of Proposition 4, we have the following"

LEMMA 1. For any domain of integrity R which satisfies the ascending chain
condition for principal ideals, every non-zero non-unit element of R, is a product
of a finite number of irreducible factors.
LEMMA 2. Every infinite telescopic chain [f(0), f(), ", f(), is a Cauchy

sequence for the weight topology, hence has a limit in R,o.

Proof. Since the chain is telescopic, for every integer i >= 0 and q > 0,
each monomial of f(i+q) f(i) is either 0 or contains at least one x with/ > i
as a factor. Hence f(+q) f(i) e [, where {/}0 is a basis of neighborhoods
of 0 which induces the weight topology of R. Thus the chain is a Cauchy
sequence.
Note that every f e R is a limit of a finite or infinite telescopic chain

[(f)o, (f), ..., (f), ...].
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The following lemma is well known.

LEMMA 3. Let F be a domain of integrity which satisfies [UF1], then the
following assertions are equivalent"

(1) F is a UFD.
(2) Any two elements of F have a g.c.d.

LEMMA 4. Let R be a UFD such that R is a UFD for eery finite integer
j >- 1, f, g any elements of R, and D a g.c.d, of (f) and (g) in R. Then
(D(+)) D( for all j L(f, g), where L(f, g) is a certain non-negative
integer.

Proof. When either f or g is zero the assertion is trivial, hence we assume
that f and g are non-zero. Let n be the smallest integer such that (f) 0,
(g) 0 and i any integer n. Since R is a UFD by hypothesis, we can
represent D) as a finite product of prime elements of R denote by h(D)

the number of all prime factors (not necessarily distinct) of D). Since
(D(+)) is a factor of D), h(D)) h(D(+)). Note that the projection of
each prime factor of D(+) on R may not be prime in R. Thus we have the
following descending chain of non-negative integers"

X(D()) X(D(+)) X(D+)) ....
It follows that there exist integers and such that k (D++)) for all
p 0. This means that for every j n l, the projection of each prime
factor of D+) on R is also prime and moreover (D(+)) D(). We
denote n by L(f, g).

Proof of Theorem. We have seen in Lemma 1 that every non-zero non-unit
of R is a finite product of irreducible factors. Hence applying Lemma 3
we prove the theorem by showing that any two elements f and g of R have a
g.c.d. Since the assertion is trivial for the case where f 0 or g 0, we
assume that f and g are non-zero. Let D) be a g.c.d, of (f) and (g) for
each j 0, then we can construct an infinite telescopic chain

[D, D+, D+, ...]
with the initial term in R, L L(f, g), as follows. Assume that DCs, j L,
has been defined and let+ be any g.c.d, of (f)+ and (g)s, then

(b+ D

by Lemma 4; hence there must exist a unit eCs in Rs such that
D) e) (<+))s (e)s+))

we take DCs+) ecs)+). By Lemma 2 the telescopic chain has a limit D,
D(s) (D()say, in R note that (D) or ) according as j L or j < L for

each j 0. Let ]() and () be two elements of R such that (f) (D)
and (g) (D) for each j L(L g); then clearly (](s+)) and
(g(]+)) (). Hence we have two telescopic chains
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[]<L), ](L+I), /(z+2), ...l and [(J(z), (+1), 0(+2), ""l
with the initial terms in RL. Let ] and be their limits in R respectively,
then (). (J) or ((z))., and (0)" 0

(’> or (0(z)) according as >- L or
not respectively; hence (f). ).(D). D).and (17) (0)(D) (0D)"
for every j >- 0. It follows that

f lim._,(f)i lim._,( D). D,

for the weight topology, namely D is a common divisor of f and 17. Now let
E be any other common divisor of f and 17 in R then (E). is also a common
divisor of (f)- and (17). in R. for each j >- L(f, !7). Since (D). is a g.c.d, of
(I)J and (g). for such j, (E). [(D);. Hence there exists an element a

Cj) in
R such that (D) a(i)(E), j >- L(f, 17). It is easy to see that

[(g(L) O/(Lnal)O "’’]

is an infinite telescopic chain. Let be its lmt in R, then we can conclude
that D aE. Thus D is a g.c.d, of and 17.

COOr,LY I. I/R dd o pcpl dldo o, ore grll,
a regular unique factorization domain, then R, is a UFD. (A regular ring is a
Noetherian ring whose ring of quotient R is a regular local ring for every maxi-
real ideal M of R, cf. [3]).

ConoLnY 2. Let R be a UFD such that the subring of the ring of
number theoretic functions over R is a UFD for every finite integer tc >= 1; then
so is . In particular, if R is a regular UFD, then is also a UFD.

After the completion of the manuscript the author found that E. D. Cash-
well and C. J. Everett also generalized and proved the unique factorization
theorem in the ring of number theoretic functions by a different method in
their recent paper, Formal power series, Pacific Journal of Mathematics, vol.
13 (1963), pp. 45-64.
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