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It is a well-known fact that if a sufficiently differentiable function f on
R /(tl, t.) h, t real}, n => 2, satisfies the wave equation

o f/ot o
andf Of/Ot 0 on the dist t a, (t a) + + (t, a,,) <= ,
when a, a, are real and t > 0, then f 0 throughout the double
conical region

t a A- (t2 a2)2 _1_ _1_ (in.-- a,)21112 o
The same conclusion holds if P (E3)f 0 where P is a polynomial of degree

0 f/Ot 0 on the disk.k with real roots and f Of/Ot 2- 2-

The solutions of P (El)f 0 which are. tempered distributions can be char-
acterized as the Fourier transforms of tempered distributions concentrated in
the finitely many hyperboloids x x2 x2 (root of P)/47r,
which may involve derivatives perpendicular to a hyperboloid only to a degree
up to one less than the multiplicity of the corresponding root of P.
The object of this paper is to prove that if a tempered distribution

T T (x, x) is, in a suitable sense, of faster than exponential decrease-- :o, its Fourier transform is determined through-
out each double conical region as described above by its values arbitrarily
near the corresponding disk. A somewhat misformulated version of this
result appeared in my doctoral dissertation at Princeton University,
written while on a National Science Foundation Cooperative Fellowship
(1961-62). Thanks are due to Professors G. A. Hunt and Edward Nelson
for reading several earlier drafts and making helpful comments.

For any n-tuple z (Zl, z,) of complex numbers, n >- 2, we will let

.lzJ z 4-...-t-z,,, nd llzll z- lzl.
Let Q (R), n

_
2, be the spce of C complex-vlued functions f on R"

such that for some/ > 0, there is for every m > 0 K > 0 such that

If(x) If(x1, Xn) <---- K exp( x Ix/)/(1 - x -t- + x2)
for all Xl, x, with every partial derivative of f, of any order, satisfying
the same conditions, possibly with different values of K. We define a pseudo-
topology in Q as follows" f -- 0 in Q if and only if f and K can be chosen
independently of k (the latter for each partial derivative and m > 0), and
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for each q >- 0, M > 0, and nonnegative integers pl, p,

ask k , uniformly for []] x 1 M, where ]p[ p + + p. Let
Q’ be the space of linear functionals on Q continuous for the given pseudo-
topology.

Since L. Schwartz’s space $ is contained in Q and has a finer (pseudo)
topology, and $ is dense ia Q for the latter’s pseudotopology, each member
of Q’ defines a tempered distribution which in turn determines it uniquely,
so that the two may be identified. Roughly speaking, a tempered distribution
will belong to Q’ ff and only ff it decays as ]] x [ faster than
exp(-] x /) for any fl > 0.

THEOREM. For any T e Q’, a a real numbers and fl > O, if Tg 0
for all g e Q which are Fourier transforms of distributions with support in
t a, (t a) +... + (t a) fl,then Tf O wheneverf eQ is
the Fourier transform of a distribution with support in

t a + [(t a) + + (t a)]/ .
Proo]. Since multiplication by exp(2ri(a x +... + a x)) tkes Q’

onto itself, it suffices to tret the cse a a a O. Let D be
the set where t 0 nd t +... + t , aad C the set where
]t] + (t + + t)/ . Let F be the class of distributions with
support in D, G the C functions with support in C, nd nd G respec-
tively their Fourier transforms.
We shll show that in the pseudotopology of Q, the closure of a Q con-

tins G, nd then that the closure of G contains ll members of Q which
re Fourier transforms of distributions with support in C, by regulriztion.

LMM. is the set offunctions g (x x) of the form
..., x

for some N < (depending on g), where each g belongs to $’ and can be ex-
tended to an entire function of n 1 complex variables z x + iy,
j 2, n, such that

,..., exp + +
is uniformly bounded.

Proof. If g,(z, z) is entire, belongs to $’, nd is bounded as indi-
cted, then by the generalized Pley-Wieaer theorem [1, tome II, Ch. VII,
Section 8, p. 127] its inverse Fourier transform T hs support in the cube
[t] , j 2, n. Tking orthogonl transformations of the x
t we obtain n intersection of cubes which is exactly D. Hence the finite
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sum of tensor products

t) (R) (2i) dr(tl)/dt

has support in De its Fourier transform is g.
The converse is an easy consequence of the characterization of distributions

with support in a subspace [1, tome I, Ch. III, Section 10, Thgorme

XXXVI] and the generalized Paley-Wiener theorem. (It will not actually
be used later.) This completes the proof of the lemma.

GivenfeG,letfjk,/ 0,...,2j- 1, j= 1, 2,...,besuchthat

f" (zl, z) ’-1 f’k (z2, z)z
is equal to f(z, z.) together with its first j 1 partial derivatives
with respect to z on the set z .1 z I 0, and with the first 2j 1 deriva-
tives with respect to z on z 2[ z I 0. f is an entire function of n complex
variables, so that each f. (z2, ..., z.) is uniquely defined for any complex
z2, z. It follows from a known interpolation formula [2, Section 3.1,
formula (5), p. 50] that

f(z) fi(Zl, ,Zn)

2’i (..

[(F= ] z ]2). ([[ z II)]f(F, z=, ..., z) dF

where F (z2,..., z,) is any rectifiable simple closed curve in the complex
plane with both points :t: (21 z I)/2 in its interior. For small changes of
z2, z, the curve F need not change, so that each f. is locally analytic
and hence an entire function of n 1 complex variables.
To find the exponential type of the f, let R (z, ..., z) be a rectangle

with sides 2 and 2 + 2[2[ Z ] [/2 containing the points (2 z [)/ and at
distance at least 1 from both points. R(z2, z) will clearly serve as
r(z ,

Since f e G, there is a K > 0 such that

f(z, z) g exp(2 max([ z , ([ z [ + + z ])/))
for anyzl,...,z. AteachpointonanyR(z:,...,z),

2I l 2+(Iz +...+lz, I)
so for some L > 0

[f(,z, z) Lexp[2([z2 + + [z)

for any z2, z and on R(z2, z).
Thus, since ( 2] z ) ([[ z [) is divisible by z and

+
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for on (, ), we find, after collectin terms in and allowin for
the length of (, ), that belongs to . by the lemma for every
Oand 0,...,2- 1, so.
Let us now show that the f converge to f in Q as j . It will be con-

venient first of all to prove that for any M 1, f(z,..., z) converges
unormly to f(z, z) on the set VM of all z (z, z) satisfying
the following four conditions"

Ilzll"l a M; Ilmzl M, r 1, ,n;

Re(lzl) -M; and Im(lzi) M.

Note that for (a, z) e V,

(5 f)(z z)
-,’", ( l z 1)(

1/2where S (z, z) is a rectangle with sides4M and 4M + 2 ] z ],
/2containing the two points ( z ) and at distance at least 2M from

both points, since for on or outside S (z, z),

l ( z )’ r + ( z l)
2M max(2M, 1 z ] ) 4M,

so that, for one thing, z lies iide S (z, z) (which necessary for the
validity of the integral formula for f f, although not for the previous
formula for f). Also, for on S(z, z) with (z, z)e V for
some z,

f (, z, ..., z) H exp (2 (n + 4)M)
where H is the L norm of the function whose Fourier transform is fi since for
{t,..., t) e C we have

exp(2i( t + t z)) exp(2r( Im 1 + (n 1) M),
and Im 5M since Re( z ]) -M and Im( z l) M imply
Im( z I) < 3M.
Furthermore, we have

Hence

(/- f)(z, ,..., z)]
M(16M + 4 z ])H exp(2v(n + 4)M

2[2M max(2M, Z )]M
16M H exp(2r(n + 4)M)/4,

for any {z, z) e V.
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Thus for any f e ( we have defined a specific sequence {fj} of members of a
converging to f uniformly on each set VM. If P is a polynomial in n 1
variables, P (z2, z.)f e On, and [P (z., z.)f] P (z:, z,)fj.
Hence these functions converge likewise on V as j --. to P (zg., z,)f.
For any real X (xl, x,,) . VM and a 1, n there is a circle

C, (x) in the complex plane of radius rain (%/’M/2n, M/4nlx, I) centered at
x, such that if z e C(xl, x), r 1, n, then (z, z.) e V.
For z, on C, (xl, x,) we have z, x,, <- %/M/2n, and hence

0 =< x, -< 4Re(z,) +4M and Ix,! =< l+2M+2Re(z,).
Since Re z _-< 2M + Re (9.[ z I) everywhere in V, it follows that for any
cz 1

[x,I <= 1 +2Re(9.]zi) + 2nM <- 11 + 2nM + 2 (.l z l ) I,
so that

n max (2/x/’M, 4Ix. I/M) <- n 14 + 8nM + 8 (! z [)
(recall that M >- 1).
such that

Since for any nonnegative integer s there is an H > 0

(4 + 8nM + 8(] z i))n [’l (f- f)(z,..., z,)

-<_ 16%/(2M) H, exp (2v/ (n + 4)%/(2M))/4
for any (zl, z,,) e Vg.M, it follows using multiple Cauchy integrals over
the circles C, that for any nonnegative integer q and differential
D Oll/Ox ,, . qDOx,, (1 + x+ + x, (f f) converges to 0
uniformly for ]][ x [l M, taking s q + P I.

It also follows that for any f e Oa Q, m > 0, and p (p, p.), there
are constants A and B such that for x ] 1,

D (f L) (x, ..., x,) <- A exp (B x ]15 [/)/(1 + xz + + x,)

and a C > 0 such that for I[I x I11 < 1,

[D’(f- f)(xx,..., x,,)l <- C/(1 + x + + x,)

Hence for some D > 0 (depending on f, p, and m)

D (f f) (x ,..., x,) <- D exp (BI x I)/( / x / / x

for all x,, x, so that the required conditions of uniform boundedness
are satisfied, and fj --. f in the pseudotopology of Q.
Now let S (t, t) S (t) be any distribution with support in C whose

Fourier transform (x) S (xl, x.) is a function belonging to Q. Let
S(t) S((1 + 1/k)t),/c 1, 2,...,sothat &(x) (lcx/(lc + 1)).
It is easily seen that lim in the pseudotopology of Q. Now let
{h}= be a sequence of C functions with supports shrinking to {0}, con-
verging to ti in the topology of D. Then for any fixed k, h S e Ga for m
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large enough, so that T (]m ) 0. But -- , in Q as/c - since for
any p (pl, p}, D ( ) Dk uniformly on compact sets, and
D] is bounded uniformly in m for any q {ql, q}, so that D (] k),
after being expanded as a finite sum by Leibniz’s rule, is seen to approach 0 at

faster than (1+xl+ -x.) for anyr>0oneachsetlllxl121-<M,
uniformly in m. Thus T () 0 for all/, so T () 0, Q.E.D.
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