A PROPERTY OF A CLASS OF DISTRIBUTIONS ASSOCIATED WITH THE MINKOWSKI METRIC

BY
R. M. Dudley

It is a well-known fact that if a sufficiently differentiable function f on $R^{n}=\left\{\left\langle t_{1}, \cdots, t_{n}\right\rangle: t_{1}, \cdots, t_{n}\right.$ real $\}, n \geqq 2$, satisfies the wave equation

$$
\square f=\partial^{2} f / \partial t_{1}^{2}-\partial^{2} f / \partial t_{2}^{2}-\cdots-\partial^{2} f / \partial t_{n}^{2}=0
$$

and $f=\partial f / \partial t_{1}=0$ on the disk $t_{1}=a_{1},\left(t_{2}-a_{2}\right)^{2}+\cdots+\left(t_{n}-a_{n}\right)^{2} \leqq \beta^{2}$, when a_{1}, \cdots, a_{n} are real and $\beta>0$, then $f=0$ throughout the double conical region

$$
\left|t_{1}-a_{1}\right|+\left[\left(t_{2}-a_{2}\right)^{2}+\cdots+\left(t_{n}-a_{n}\right)^{2}\right]^{1 / 2} \leqq \beta
$$

The same conclusion holds if $P(\square) f=0$ where P is a polynomial of degree k with real roots and $f=\partial f / \partial t_{1}=\cdots=\partial^{2 k-1} f / \partial t_{1}^{2 k-1}=0$ on the disk.
The solutions of $P(\square) f=0$ which are tempered distributions can be characterized as the Fourier transforms of tempered distributions concentrated in the finitely many hyperboloids $x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}=($ root of $P) / 4 \pi^{2}$, which may involve derivatives perpendicular to a hyperboloid only to a degree up to one less than the multiplicity of the corresponding root of P.
The object of this paper is to prove that if a tempered distribution $T=T\left(x_{1}, \cdots, x_{n}\right)$ is, in a suitable sense, of faster than exponential decrease as $\left|x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}\right|^{1 / 2} \rightarrow \infty$, its Fourier transform is determined throughout each double conical region as described above by its values arbitrarily near the corresponding disk. A somewhat misformulated version of this result appeared in my doctoral dissertation at Princeton University, written while on a National Science Foundation Cooperative Fellowship (1961-62). Thanks are due to Professors G. A. Hunt and Edward Nelson for reading several earlier drafts and making helpful comments.

For any n-tuple $z=\left\langle z_{1}, \cdots, z_{n}\right\rangle$ of complex numbers, $n \geqq 2$, we will let

$$
{ }_{2}|z|_{n}^{2}=z_{2}^{2}+\cdots+z_{n}^{2}, \quad \text { and }\|z\|^{2}=z_{1}^{2}-{ }_{2}|z|_{n}^{2} .
$$

Let $Q\left(R^{n}\right), n \geqq 2$, be the space of C^{∞} complex-valued functions f on R^{n} such that for some $\beta>0$, there is for every $m>0 \mathrm{a} K>0$ such that

$$
|f(x)|=\left|f\left(x_{1}, \cdots, x_{n}\right)\right| \leqq K \exp \left(\beta\left|\|x\|^{2}\right|^{1 / 2}\right) /\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{m}
$$

for all x_{1}, \cdots, x_{n}, with every partial derivative of f, of any order, satisfying the same conditions, possibly with different values of K. We define a pseudotopology in Q as follows: $f_{k} \rightarrow 0$ in Q if and only if β and K can be chosen independently of k (the latter for each partial derivative and $m>0$), and

[^0]for each $q \geqq 0, M>0$, and nonnegative integers p_{1}, \cdots, p_{n},
$$
\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{q} \partial^{|p|} f_{k} / \partial x_{1}^{p_{1}} \cdots \partial x_{n}^{p_{n}} \rightarrow 0
$$
ask $k \rightarrow \infty$, uniformly for $\left|\|x\|^{2}\right| \leqq M$, where $|p|=p_{1}+\cdots+p_{n}$. Let Q^{\prime} be the space of linear functionals on Q continuous for the given pseudotopology.

Since L. Schwartz's space \mathcal{S} is contained in Q and has a finer (pseudo) topology, and s is dense in Q for the latter's pseudotopology, each member of Q^{\prime} defines a tempered distribution which in turn determines it uniquely, so that the two may be identified. Roughly speaking, a tempered distribution will belong to Q^{\prime} if and only if it decays as $\left|\|x\|^{2}\right| \rightarrow \infty$ faster than $\exp \left(-\beta\left|\|x\|^{2}\right|^{1 / 2}\right)$ for any $\beta>0$.

Theorem. For any $T \in Q^{\prime}, a_{1}, \cdots, a_{n}$ real numbers and $\beta>0$, if $T g=0$ for all $g \in Q$ which are Fourier transforms of distributions with support in $t_{1}=a_{1},\left(t_{2}-a_{2}\right)^{2}+\cdots+\left(t_{n}-a_{n}\right)^{2} \leqq \beta^{2}$, then $T f=0$ whenever $f \in Q$ is the Fourier transform of a distribution with support in

$$
\left|t_{1}-a_{1}\right|+\left[\left(t_{2}-a_{2}\right)^{2}+\cdots+\left(t_{n}-a_{n}\right)^{2}\right]^{1 / 2} \leqq \beta
$$

Proof. Since multiplication by $\exp \left(2 \pi i\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right)\right)$ takes Q^{\prime} onto itself, it suffices to treat the case $a_{1}=a_{2}=\cdots=a_{n}=0$. Let D_{β} be the set where $t_{1}=0$ and $t_{2}^{2}+\cdots+t_{n}^{2} \leqq \beta^{2}$, and C_{β} the set where $\left|t_{1}\right|+\left(t_{2}^{2}+\cdots+t_{n}^{2}\right)^{1 / 2} \leqq \beta$. Let F_{β} be the class of distributions with support in D_{β}, G_{β} the C^{∞} functions with support in C_{β}, and \widetilde{F}_{β} and \widetilde{G}_{β} respectively their Fourier transforms.

We shall show that in the pseudotopology of Q, the closure of $\widetilde{F}_{\beta} \cap Q$ contains \widetilde{G}_{β}, and then that the closure of \widetilde{G}_{β} contains all members of Q which are Fourier transforms of distributions with support in C_{β}, by regularization.

Lemma. $\quad \widetilde{F}_{\beta}$ is the set of functions $g\left(x_{1}, \cdots, x_{n}\right)$ of the form

$$
\sum_{r=0}^{N} g_{r}\left(x_{2}, \cdots, x_{n}\right) x_{1}^{r}
$$

for some $N<\infty$ (depending on g), where each g_{r} belongs to S^{\prime} and can be extended to an entire function of $n-1$ complex variables $z_{j}=x_{j}+i y_{j}$, $j=2, \cdots, n$, such that

$$
g_{r}\left(z_{2}, \cdots, z_{n}\right) \exp \left(-2 \pi \beta\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}\right)
$$

is uniformly bounded.
Proof. If $g_{r}\left(z_{2}, \cdots, z_{n}\right)$ is entire, belongs to s^{\prime}, and is bounded as indicated, then by the generalized Paley-Wiener theorem [1, tome II, Ch. VII, Section 8, p. 127] its inverse Fourier transform T_{r} has support in the cube $\left|t_{j}\right| \leqq \beta, j=2, \cdots, n$. Taking orthogonal transformations of the x_{j} and t_{j} we obtain an intersection of cubes which is exactly D_{β}. Hence the finite
sum of tensor products

$$
\sum_{r=0}^{N} T_{r}\left(t_{2}, \cdots, t_{n}\right) \otimes(2 \pi i)^{-r} d^{r} \delta\left(t_{1}\right) / d t_{1}^{r}
$$

has support in D_{β}; its Fourier transform is g.
The converse is an easy consequence of the characterization of distributions with support in a subspace [1, tome I, Ch. III, Section 10, Théorème XXXVI] and the generalized Paley-Wiener theorem. (It will not actually be used later.) This completes the proof of the lemma.

Given $f \in \widetilde{G}_{\beta}$, let $f_{j k}, k=0, \cdots, 2 j-1, \quad j=1,2, \cdots$, be such that

$$
f_{j}\left(z_{1}, \cdots, z_{n}\right)=\sum_{k=0}^{2 j-1} f_{j k}\left(z_{2}, \cdots, z_{n}\right) z_{1}^{k}
$$

is equal to $f\left(z_{1}, \cdots, z_{n}\right)$ together with its first $j-1$ partial derivatives with respect to z_{1} on the set $z_{1}^{2}={ }_{2}|z|_{n}^{2} \neq 0$, and with the first $2 j-1$ derivatives with respect to z_{1} on $z_{1}^{2}={ }_{2}|z|_{n}^{2}=0 . \quad f$ is an entire function of n complex variables, so that each $f_{j k}\left(z_{2}, \cdots, z_{n}\right)$ is uniquely defined for any complex z_{2}, \cdots, z_{n}. It follows from a known interpolation formula [2, Section 3.1, formula (5), p. 50] that
$f_{j}(z)=f_{j}\left(z_{1}, \cdots, z_{n}\right)$

$$
=\frac{1}{2 \pi i} \int_{\Gamma\left(z_{2}, \cdots, z_{n}\right)} \frac{\left[\left(\zeta^{2}-{ }_{2}|z|_{n}^{2}\right)^{j}-\left(\|z\|^{2}\right)^{j}\right] f\left(\zeta, z_{2}, \cdots, z_{n}\right) d \zeta}{\left(\zeta^{2}-{ }_{2}|z|_{n}^{2}\right)^{j}\left(\zeta-z_{1}\right)}
$$

where $\Gamma\left(z_{2}, \cdots, z_{n}\right)$ is any rectifiable simple closed curve in the complex plane with both points $\pm\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2}$ in its interior. For small changes of z_{2}, \cdots, z_{n}, the curve Γ need not change, so that each $f_{j k}$ is locally analytic and hence an entire function of $n-1$ complex variables.

To find the exponential type of the $f_{j k}$, let $R\left(z_{2}, \cdots, z_{n}\right)$ be a rectangle with sides 2 and $2+\left.\left.2\right|_{2}|z|_{n}^{2}\right|^{1 / 2}$ containing the points $\pm\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2}$ and at distance at least 1 from both points. $R\left(z_{2}, \cdots, z_{n}\right)$ will clearly serve as $\Gamma\left(z_{2}, \cdots, z_{n}\right)$.

Since $f \epsilon \widetilde{G}_{\beta}$, there is a $K>0$ such that

$$
\left|f\left(z_{1}, \cdots, z_{n}\right)\right| \leqq K \exp \left(2 \pi \beta \max \left(\left|z_{1}\right|,\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}\right)\right)
$$

for any z_{1}, \cdots, z_{n}. At each point ζ on any $R\left(z_{2}, \cdots, z_{n}\right)$,

$$
|\zeta| \leqq 2+\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}
$$

so for some $L>0$

$$
\left|f\left(\zeta, z_{2}, \cdots, z_{n}\right)\right| \leqq L \exp \left[2 \pi \beta\left(\left|z_{2}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}\right]
$$

for any z_{2}, \cdots, z_{n} and ζ on $R\left(z_{2}, \cdots, z_{n}\right)$.
Thus, since $\left(\zeta^{2}-{ }_{2}|z|_{n}^{2}\right)^{j}-\left(\|z\|^{2}\right)^{j}$ is divisible by $\zeta-z_{1}$ and

$$
\left|\zeta-\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2}\right|\left|\zeta+\left(2|z|_{n}^{2}\right)^{1 / 2}\right| \geqq 1
$$

for ζ on $R\left(z_{2}, \cdots, z_{n}\right)$, we find, after collecting terms in z_{1}^{k} and allowing for the length of $R\left(z_{2}, \cdots, z_{n}\right)$, that $f_{j k}$ belongs to $\widetilde{F}_{\beta+\delta}$ by the lemma for every $\delta>0$ and $k=0, \cdots, 2 j-1$, so $f_{j} \in \tilde{F}_{\beta}$.

Let us now show that the f_{j} converge to f in Q as $j \rightarrow \infty$. It will be convenient first of all to prove that for any $M \geqq 1, f_{j}\left(z_{1}, \cdots, z_{n}\right)$ converges uniformly to $f\left(z_{1}, \cdots, z_{n}\right)$ on the set V_{M} of all $z=\left\langle z_{1}, \cdots, z_{n}\right\rangle$ satisfying the following four conditions:

$$
\begin{gathered}
\left|\|z\|^{2}\right| \leqq M ; \quad\left|\operatorname{Im} z_{r}\right| \leqq \sqrt{ } M, \quad r=1, \cdots, n \\
\operatorname{Re}\left(_{2}|z|_{n}^{2}\right) \leqq-M ; \quad \text { and } \quad\left|\operatorname{Im}\left({ }_{2}|z|_{n}^{2}\right)\right| \leqq M
\end{gathered}
$$

Note that for $\left\langle z_{1}, \cdots, z_{n}\right\rangle \in V_{M}$,

$$
\left(f-f_{j}\right)\left(z_{1}, \cdots, z_{n}\right)=\frac{1}{2 \pi i} \int_{S\left(z_{2}, \cdots, z_{n}\right)} \frac{\left(\|z\|^{2}\right)^{j} f\left(\zeta, z_{2}, \cdots, z_{n}\right) d \zeta}{\left(\zeta^{2}-{ }_{2}|z|_{n}^{2}\right)^{j}\left(\zeta-z_{1}\right)}
$$

where $S\left(z_{2}, \cdots, z_{n}\right)$ is a rectangle with sides $4 \sqrt{ } M$ and $4 \sqrt{ } M+\left.\left.2\right|_{2}\right|_{\left.z\right|_{n} ^{2}} ^{\left.\right|^{1 / 2}}$, containing the two points $\pm\left(2|z|_{n}^{2}\right)^{1 / 2}$ and at distance at least $2 \sqrt{ } M$ from both points, since for ζ on or outside $S\left(z_{2}, \cdots, z_{n}\right)$,

$$
\begin{aligned}
&\left.\left|\zeta^{2}-{ }_{2}\right| z\right|_{n} ^{2}\left|=\left|\zeta-\left(2|z|_{n}^{2}\right)^{1 / 2}\right|\right| \zeta+\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2} \mid \\
& \geqq 2 \sqrt{ } M \max \left(2 \sqrt{ } M,\left.\left.\right|_{2}|z|_{n}^{2}\right|^{1 / 2}\right) \geqq 4 M
\end{aligned}
$$

so that, for one thing, z_{1} lies inside $S\left(z_{2}, \cdots, z_{n}\right)$ (which is necessary for the validity of the integral formula for $f-f_{j}$, although not for the previous formula for f_{j}). Also, for ζ on $S\left(z_{2}, \cdots, z_{n}\right)$ with $\left\langle z_{1}, \cdots, z_{n}\right\rangle \in V_{M}$ for some z_{1},

$$
\left|f\left(\zeta, z_{2}, \cdots, z_{n}\right)\right| \leqq H \exp (2 \pi \beta(n+4) \sqrt{ } M)
$$

where H is the L_{1} norm of the function whose Fourier transform is f, since for $\left\langle t_{1}, \cdots, t_{n}\right\rangle \in C_{\beta}$ we have

$$
\left|\exp \left(2 \pi i\left(\zeta t_{1}+\sum_{r=2}^{n} t_{j} z_{j}\right)\right)\right| \leqq \exp (2 \pi \beta(|\operatorname{Im} \zeta|+(n-1) \sqrt{ } M)
$$

and $|\operatorname{Im} \zeta| \leqq 5 \sqrt{ } M$ since $\operatorname{Re}\left(_{2}|z|_{n}^{2}\right) \geqq-M$ and $\left|\operatorname{Im}\left({ }_{2}|z|_{n}^{2}\right)\right| \leqq M$ imply $\left|\operatorname{Im}\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2}\right|<3 \sqrt{ } M$.

Furthermore, we have

$$
\left|\zeta-z_{1}\right| \geqq\left|\zeta \mp\left(2_{2}|z|_{n}^{2}\right)^{1 / 2}\right|-\left| \pm\left({ }_{2}|z|_{n}^{2}\right)^{1 / 2}-z_{1}\right| \geqq 2 \sqrt{ } M-\sqrt{ } M=\sqrt{ } M
$$

Hence

$$
\begin{aligned}
\mid\left(f-f_{j}\right) & \left(z_{1}, \cdots, z_{n}\right) \mid \\
& \leqq \frac{M^{j}\left(16 \sqrt{ } M+\left.\left.4\right|_{2}|z|_{n}^{2}\right|^{1 / 2}\right) H \exp (2 \pi \beta(n+4) \sqrt{ } M}{2 \pi\left[2 \sqrt{ } M \max \left(2 \sqrt{ } M,\left.\left.\right|_{2}|z|_{n}^{2}\right|^{1 / 2}\right)\right]^{j} \sqrt{ } M} \\
& \leqq 16 \sqrt{ } M H \exp (2 \pi \beta(n+4) \sqrt{ } M) / 4^{j}
\end{aligned}
$$

for any $\left\langle z_{1}, \cdots, z_{n}\right\rangle \in V_{M}$.

Thus for any $f \in \widetilde{G}_{\beta}$ we have defined a specific sequence $\left\{f_{j}\right\}$ of members of \widetilde{F}_{β} converging to f uniformly on each set V_{M}. If P is a polynomial in $n-1$ variables, $P\left(z_{2}, \cdots, z_{n}\right) f \in \widetilde{G}_{\beta}$, and $\left[P\left(z_{2}, \cdots, z_{n}\right) f\right]_{j}=P\left(z_{2}, \cdots, z_{n}\right) f_{j}$. Hence these functions converge likewise on V_{M} as $j \rightarrow \infty$ to $P\left(z_{2}, \cdots, z_{n}\right) f$.

For any real $X=\left\langle x_{1}, \cdots, x_{n}\right\rangle \in V_{M}$ and $\alpha=1, \cdots, n$ there is a circle $C_{\alpha}(x)$ in the complex plane of radius $\min \left(\sqrt{ } M / 2 n, M / 4 n\left|x_{\alpha}\right|\right)$ centered at x_{α} such that if $z_{r} \in C_{r}\left(x_{1}, \cdots, x_{n}\right), r=1, \cdots, n$, then $\left\langle z_{1}, \cdots, z_{n}\right\rangle \in V_{2 M}$. For z_{α} on $C_{\alpha}\left(x_{1}, \cdots, x_{n}\right)$ we have $\left|z_{\alpha}-x_{\alpha}\right| \leqq \sqrt{ } M / 2 n$, and hence

$$
0 \leqq x_{\alpha}^{2} \leqq 4 \operatorname{Re}\left(z_{\alpha}^{2}\right)+4 M \text { and }\left|x_{\alpha}\right| \leqq 1+2 M+2 \operatorname{Re}\left(z_{\alpha}^{2}\right)
$$

Since $\operatorname{Re} z_{1}^{2} \leqq 2 M+\operatorname{Re}\left({ }_{2}|z|_{n}^{2}\right)$ everywhere in $V_{2 M}$, it follows that for any $\alpha=1, \cdots, n$,

$$
\left|x_{\alpha}\right| \leqq 1+2 \operatorname{Re}\left(2|z|_{n}^{2}\right)+2 n M \leqq\left|1+2 n M+2\left(2|z|_{n}^{2}\right)\right|
$$

so that

$$
n \max \left(2 / \sqrt{ } M, 4\left|x_{\alpha}\right| / M\right) \leqq n\left|4+8 n M+8\left(2|z|_{n}^{2}\right)\right|
$$

(recall that $M \geqq 1$). Since for any nonnegative integer s there is an $H_{s}>0$ such that

$$
\begin{aligned}
\left|\left(4+8 n M+8\left({ }_{2}|z|_{n}^{2}\right)\right) n\right|^{s} \mid & \left(f-f_{j}\right)\left(z_{1}, \cdots, z_{n}\right) \mid \\
& \leqq 16 \sqrt{ }(2 M) H_{s} \exp (2 \pi \beta(n+4) \sqrt{ }(2 M)) / 4^{j}
\end{aligned}
$$

for any $\left\langle z_{1}, \cdots, z_{n}\right\rangle \in V_{2 M}$, it follows using multiple Cauchy integrals over the circles C_{α} that for any nonnegative integer q and differential $D^{p}=\partial^{|p|} / \partial x_{1}^{p_{1}} \cdots \partial x_{n}^{p_{n}},\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{q} D^{p}\left(f-f_{j}\right)$ converges to 0 uniformly for $\left|\|x\|^{2}\right| \leqq M$, taking $s=q+|p|$.

It also follows that for any $f \in \widetilde{G}_{\beta} \subset Q, m>0$, and $p=\left\langle p_{1}, \cdots, p_{n}\right\rangle$, there are constants A and B such that for $\left|\|x\|^{2}\right| \geqq 1$,
$\left|D^{p}\left(f-f_{j}\right)\left(x_{1}, \cdots, x_{n}\right)\right| \leqq A \exp \left(B\left|\|x\|^{2}\right|^{1 / 2}\right) /\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{m}$, and a $C>0$ such that for $\left|\|x\|^{2}\right|<1$,

$$
\left|D^{p}\left(f-f_{j}\right)\left(x_{1}, \cdots, x_{n}\right)\right| \leqq C /\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{m}
$$

Hence for some $D>0$ (depending on f, p, and m)
$\left|D^{p}\left(f-f_{j}\right)\left(x_{1}, \cdots, x_{n}\right)\right| \leqq D \exp \left(B\left|\|x\|^{2}\right|^{1 / 2}\right) /\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{m}$
for all x_{1}, \cdots, x_{n}, so that the required conditions of uniform boundedness are satisfied, and $f_{j} \rightarrow f$ in the pseudotopology of Q.

Now let $S\left(t_{1}, \cdots, t_{n}\right)=S(t)$ be any distribution with support in C_{β} whose Fourier transform $\widetilde{S}(x)=\widetilde{S}\left(x_{1}, \cdots, x_{n}\right)$ is a function belonging to Q. Let $S_{k}(t)=S((1+1 / k) t), k=1,2, \cdots$, so that $\widetilde{S}_{k}(x)=\widetilde{S}(k x /(k+1))$. It is easily seen that $\lim _{k \rightarrow \infty} \widetilde{S}_{k}=\widetilde{S}$ in the pseudotopology of Q. Now let $\left\{h_{m}\right\}_{m=1}^{\infty}$ be a sequence of C^{∞} functions with supports shrinking to $\{0\}$, converging to δ in the topology of \mathscr{D}^{\prime}. Then for any fixed $k, h_{m} * S_{k} \in G_{\beta}$ for m
large enough, so that $T\left(\tilde{h}_{m} \widetilde{S}_{k}\right)=0$. But $\tilde{h}_{m} \widetilde{S}_{k} \rightarrow \widetilde{S}_{k}$ in Q as $k \rightarrow \infty$ since for any $p=\left\langle p_{1}, \cdots, p_{n}\right\rangle, D^{p}\left(\tilde{h}_{m} \widetilde{S}_{k}\right) \rightarrow D^{p} \widetilde{S}_{k}$ uniformly on compact sets, and $D^{q} \tilde{h}_{m}$ is bounded uniformly in m for any $q=\left\langle q_{1}, \cdots, q_{n}\right\rangle$, so that $D^{p}\left(\tilde{h}_{m} \widetilde{S}_{k}\right)$, after being expanded as a finite sum by Leibniz's rule, is seen to approach 0 at ∞ faster than $\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{-r}$ for any $r>0$ on each set $\left|\|x\|^{2}\right| \leqq M$, uniformly in m. Thus $T\left(\widetilde{S}_{k}\right)=0$ for all k, so $T(\widetilde{S})=0$, Q.E.D.

References

1. Laurent Schwartz, Théorie des distributions, 2nd ed., Paris, Hermann, 1957 (tome I), 1959 (tome II).
2. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, rev. ed., 1956.

University of California
Berkeley, California

[^0]: Received September 22, 1962.

