A PROPERTY OF A CLASS OF DISTRIBUTIONS ASSOCIATED WITH THE MINKOWSKI METRIC

BY

R. M. DUDLEY

It is a well-known fact that if a sufficiently differentiable function f on $\mathbb{R}^n = \{\langle t_1, \dots, t_n \rangle : t_1, \dots, t_n \text{ real}\}, n \geq 2$, satisfies the wave equation

$$\Box f = \frac{\partial^2 f}{\partial t_1^2} - \frac{\partial^2 f}{\partial t_2^2} - \cdots - \frac{\partial^2 f}{\partial t_n^2} = 0$$

and $f = \partial f/\partial t_1 = 0$ on the disk $t_1 = a_1$, $(t_2 - a_2)^2 + \cdots + (t_n - a_n)^2 \leq \beta^2$, when a_1, \cdots, a_n are real and $\beta > 0$, then f = 0 throughout the double conical region

$$|t_1 - a_1| + [(t_2 - a_2)^2 + \cdots + (t_n - a_n)^2]^{1/2} \leq \beta.$$

The same conclusion holds if $P(\Box)f = 0$ where P is a polynomial of degree k with real roots and $f = \partial f/\partial t_1 = \cdots = \partial^{2k-1} f/\partial t_1^{2k-1} = 0$ on the disk.

The solutions of $P(\Box)f = 0$ which are tempered distributions can be characterized as the Fourier transforms of tempered distributions concentrated in the finitely many hyperboloids $x_1^2 - x_2^2 - \cdots - x_n^2 = (\text{root of } P)/4\pi^2$, which may involve derivatives perpendicular to a hyperboloid only to a degree up to one less than the multiplicity of the corresponding root of P.

The object of this paper is to prove that if a tempered distribution $T = T(x_1, \dots, x_n)$ is, in a suitable sense, of faster than exponential decrease as $|x_1^2 - x_2^2 - \dots - x_n^2|^{1/2} \to \infty$, its Fourier transform is determined throughout each double conical region as described above by its values arbitrarily near the corresponding disk. A somewhat misformulated version of this result appeared in my doctoral dissertation at Princeton University, written while on a National Science Foundation Cooperative Fellowship (1961-62). Thanks are due to Professors G. A. Hunt and Edward Nelson for reading several earlier drafts and making helpful comments.

For any *n*-tuple $z = \langle z_1, \dots, z_n \rangle$ of complex numbers, $n \ge 2$, we will let

$$|z||_{n}^{2} = z_{2}^{2} + \cdots + z_{n}^{2}$$
, and $||z||^{2} = z_{1}^{2} - |z||_{n}^{2}$.

Let $Q(\mathbb{R}^n)$, $n \geq 2$, be the space of \mathbb{C}^{∞} complex-valued functions f on \mathbb{R}^n such that for some $\beta > 0$, there is for every m > 0 a K > 0 such that

$$|f(x)| = |f(x_1, \dots, x_n)| \le K \exp(\beta | ||x||^2 |^{1/2}) / (1 + x_1^2 + \dots + x_n^2)^m$$

for all x_1, \dots, x_n , with every partial derivative of f, of any order, satisfying the same conditions, possibly with different values of K. We define a pseudotopology in Q as follows: $f_k \to 0$ in Q if and only if β and K can be chosen independently of k (the latter for each partial derivative and m > 0), and

Received September 22, 1962.

for each $q \ge 0, M > 0$, and nonnegative integers p_1, \dots, p_n ,

(

$$1 + x_1^2 + \cdots + x_n^2)^q \partial^{|p|} f_k / \partial x_1^{p_1} \cdots \partial x_n^{p_n} \to 0$$

ask $k \to \infty$, uniformly for $| || x ||^2 | \leq M$, where $| p | = p_1 + \cdots + p_n$. Let Q' be the space of linear functionals on Q continuous for the given pseudo-topology.

Since L. Schwartz's space S is contained in Q and has a finer (pseudo) topology, and S is dense in Q for the latter's pseudotopology, each member of Q' defines a tempered distribution which in turn determines it uniquely, so that the two may be identified. Roughly speaking, a tempered distribution will belong to Q' if and only if it decays as $|||x||^2| \to \infty$ faster than $\exp(-\beta |||x||^2|^{1/2})$ for any $\beta > 0$.

THEOREM. For any $T \in Q'$, a_1, \dots, a_n real numbers and $\beta > 0$, if Tg = 0for all $g \in Q$ which are Fourier transforms of distributions with support in $t_1 = a_1$, $(t_2 - a_2)^2 + \dots + (t_n - a_n)^2 \leq \beta^2$, then Tf = 0 whenever $f \in Q$ is the Fourier transform of a distribution with support in

$$|t_1 - a_1| + [(t_2 - a_2)^2 + \cdots + (t_n - a_n)^2]^{1/2} \leq \beta.$$

Proof. Since multiplication by $\exp(2\pi i (a_1 x_1 + \cdots + a_n x_n))$ takes Q' onto itself, it suffices to treat the case $a_1 = a_2 = \cdots = a_n = 0$. Let D_β be the set where $t_1 = 0$ and $t_2^2 + \cdots + t_n^2 \leq \beta^2$, and C_β the set where $|t_1| + (t_2^2 + \cdots + t_n^2)^{1/2} \leq \beta$. Let F_β be the class of distributions with support in D_β , G_β the C^∞ functions with support in C_β , and \tilde{F}_β and \tilde{G}_β respectively their Fourier transforms.

We shall show that in the pseudotopology of Q, the closure of $\tilde{F}_{\beta} \cap Q$ contains \tilde{G}_{β} , and then that the closure of \tilde{G}_{β} contains all members of Q which are Fourier transforms of distributions with support in C_{β} , by regularization.

LEMMA. \tilde{F}_{β} is the set of functions $g(x_1, \dots, x_n)$ of the form

 $\sum_{r=0}^{N} g_r(x_2, \cdots, x_n) x_1^r$

for some $N < \infty$ (depending on g), where each g_r belongs to S' and can be extended to an entire function of n - 1 complex variables $z_j = x_j + iy_j$, $j = 2, \dots, n$, such that

$$g_r(z_2, \dots, z_n) \exp(-2\pi\beta(|z_2|^2 + \dots + |z_n|^2)^{1/2})$$

is uniformly bounded.

Proof. If $g_r(z_2, \dots, z_n)$ is entire, belongs to S', and is bounded as indicated, then by the generalized Paley-Wiener theorem [1, tome II, Ch. VII, Section 8, p. 127] its inverse Fourier transform T_r has support in the cube $|t_j| \leq \beta, j = 2, \dots, n$. Taking orthogonal transformations of the x_j and t_j we obtain an intersection of cubes which is exactly D_{β} . Hence the finite

sum of tensor products

$$\sum_{r=0}^{N} T_{r}(t_{2}, \cdots, t_{n}) \otimes (2\pi i)^{-r} d^{r} \delta(t_{1}) / dt_{1}^{r}$$

has support in D_{β} ; its Fourier transform is g.

The converse is an easy consequence of the characterization of distributions with support in a subspace [1, tome I, Ch. III, Section 10, Théorème XXXVI] and the generalized Paley-Wiener theorem. (It will not actually be used later.) This completes the proof of the lemma.

Given
$$f \in G_{\beta}$$
, let f_{jk} , $k = 0, \dots, 2j - 1$, $j = 1, 2, \dots$, be such that
 $f_j(z_1, \dots, z_n) = \sum_{k=0}^{2j-1} f_{jk}(z_2, \dots, z_n) z_1^k$

is equal to $f(z_1, \dots, z_n)$ together with its first j - 1 partial derivatives with respect to z_1 on the set $z_1^2 = 2|z|_n^2 \neq 0$, and with the first 2j - 1 derivatives with respect to z_1 on $z_1^2 = \frac{1}{2} |z|_n^2 = 0$. f is an entire function of n complex variables, so that each $f_{jk}(z_2, \dots, z_n)$ is uniquely defined for any complex z_2, \dots, z_n . It follows from a known interpolation formula [2, Section 3.1, formula (5), p. 50] that

$$f_{j}(z) = f_{j}(z_{1}, \dots, z_{n})$$

$$= \frac{1}{2\pi i} \int_{\Gamma(z_{2}, \dots, z_{n})} \frac{\left[(\zeta^{2} - 2 |z|_{n}^{2})^{j} - (||z||^{2})^{j} \right] f(\zeta, z_{2}, \dots, z_{n}) d\zeta}{(\zeta^{2} - 2 |z|_{n}^{2})^{j} (\zeta - z_{1})}$$

where $\Gamma(z_2, \dots, z_n)$ is any rectifiable simple closed curve in the complex plane with both points $\pm (2|z|_n^2)^{1/2}$ in its interior. For small changes of z_2, \dots, z_n , the curve Γ need not change, so that each f_{jk} is locally analytic and hence an entire function of n - 1 complex variables.

To find the exponential type of the f_{jk} , let $R(z_2, \cdots, z_n)$ be a rectangle with sides 2 and 2 + 2 $|_2|_z|_n^2|_{1/2}^2$ containing the points $\pm (2|_z|_n^2)^{1/2}$ and at distance at least 1 from both points. $R(z_2, \dots, z_n)$ will clearly serve as $\Gamma(z_2, \cdots, z_n).$

Since $f \in \widetilde{G}_{\beta}$, there is a K > 0 such that

$$|f(z_1, \dots, z_n)| \leq K \exp(2\pi\beta \max(|z_1|, (|z_2|^2 + \dots + |z_n|^2)^{1/2})))$$

for any z_1, \dots, z_n . At each point ζ on any $R(z_2, \dots, z_n)$,

$$|\zeta| \leq 2 + (|z_2|^2 + \cdots + |z_n|^2)^{1/2},$$

so for some L > 0

$$|f(\zeta, z_2, \cdots, z_n)| \leq L \exp [2\pi\beta (|z_2|^2 + \cdots + |z_n|^2)^{1/2}]$$

for any z_2 , \cdots , z_n and ζ on $R(z_2, \cdots, z_n)$. Thus, since $(\zeta^2 - {}_2|z|_n^2)^j - (||z||^2)^j$ is divisible by $\zeta - z_1$ and

$$|\zeta - (2|z|_n^2)^{1/2} ||\zeta + (2|z|_n^2)^{1/2}| \ge 1$$

for ζ on $R(z_2, \dots, z_n)$, we find, after collecting terms in z_1^k and allowing for the length of $R(z_2, \dots, z_n)$, that f_{jk} belongs to $\tilde{F}_{\beta+\delta}$ by the lemma for every $\delta > 0$ and $k = 0, \dots, 2j - 1$, so $f_j \in \tilde{F}_{\beta}$.

Let us now show that the f_j converge to f in Q as $j \to \infty$. It will be convenient first of all to prove that for any $M \ge 1, f_j(z_1, \dots, z_n)$ converges uniformly to $f(z_1, \dots, z_n)$ on the set V_M of all $z = \langle z_1, \dots, z_n \rangle$ satisfying the following four conditions:

$$| || z ||^2 | \le M;$$
 $| \operatorname{Im} z_r | \le \sqrt{M}, r = 1, \cdots, n;$
 $\operatorname{Re} ({}_2| z |{}_n^2) \ge -M;$ and $| \operatorname{Im} ({}_2| z |{}_n^2) | \le M.$

Note that for $\langle z_1, \cdots, z_n \rangle \in V_M$,

$$(f - f_j)(z_1, \cdots, z_n) = \frac{1}{2\pi i} \int_{S(z_2, \cdots, z_n)} \frac{(||z||^2)^j f(\zeta, z_2, \cdots, z_n) d\zeta}{(\zeta^2 - 2|z|_n^2)^j (\zeta - z_1)}$$

where $S(z_2, \dots, z_n)$ is a rectangle with sides $4\sqrt{M}$ and $4\sqrt{M} + 2|_2|z|_n^2|_n^{1/2}$, containing the two points $\pm (2|z|_n^2)^{1/2}$ and at distance at least $2\sqrt{M}$ from both points, since for ζ on or outside $S(z_2, \dots, z_n)$,

$$\begin{aligned} |\zeta^{2} - {}_{2}|z|_{n}^{2} | &= |\zeta - ({}_{2}|z|_{n}^{2})^{1/2} | |\zeta + ({}_{2}|z|_{n}^{2})^{1/2} | \\ &\geq 2\sqrt{M} \max(2\sqrt{M}, |{}_{2}|z|_{n}^{2} |^{1/2}) \geq 4M, \end{aligned}$$

so that, for one thing, z_1 lies inside $S(z_2, \dots, z_n)$ (which is necessary for the validity of the integral formula for $f - f_j$, although not for the previous formula for f_j). Also, for ζ on $S(z_2, \dots, z_n)$ with $\langle z_1, \dots, z_n \rangle \in V_M$ for some z_1 ,

 $|f(\zeta, z_2, \cdots, z_n)| \leq H \exp(2\pi\beta(n+4)\sqrt{M})$

where H is the L_1 norm of the function whose Fourier transform is f, since for $\langle t_1, \dots, t_n \rangle \in C_\beta$ we have

 $|\exp(2\pi i(\zeta t_1 + \sum_{r=2}^n t_j z_j))| \le \exp(2\pi\beta(|\operatorname{Im} \zeta| + (n-1)\sqrt{M})),$

and $|\operatorname{Im} \zeta| \leq 5\sqrt{M}$ since $\operatorname{Re}(2|z|_n^2) \geq -M$ and $|\operatorname{Im}(2|z|_n^2)| \leq M$ imply $|\operatorname{Im}(2|z|_n^2)^{1/2}| < 3\sqrt{M}$.

Furthermore, we have

$$|\zeta - z_1| \ge |\zeta \mp (2|z|_n^2)^{1/2}| - |\pm (2|z|_n^2)^{1/2} - z_1| \ge 2\sqrt{M} - \sqrt{M} = \sqrt{M}.$$

Hence

$$|(f - f_{j})(z_{1}, \dots, z_{n})| \leq \frac{M^{j}(16\sqrt{M} + 4|z||z|^{2}|^{1/2})H\exp(2\pi\beta(n+4)\sqrt{M})}{2\pi[2\sqrt{M}\max(2\sqrt{M}, |z||z|^{2}|^{1/2})]^{j}\sqrt{M}} \leq 16\sqrt{M} H\exp(2\pi\beta(n+4)\sqrt{M})/4^{j},$$

for any $\langle z_1, \cdots, z_n \rangle \in V_M$.

Thus for any $f \in \widetilde{G}_{\beta}$ we have defined a specific sequence $\{f_j\}$ of members of \widetilde{F}_{β} converging to f uniformly on each set V_M . If P is a polynomial in n-1 variables, $P(z_2, \dots, z_n)f \in \widetilde{G}_{\beta}$, and $[P(z_2, \dots, z_n)f]_j = P(z_2, \dots, z_n)f_j$. Hence these functions converge likewise on V_M as $j \to \infty$ to $P(z_2, \dots, z_n)f$.

For any real $X = \langle x_1, \dots, x_n \rangle \epsilon V_M$ and $\alpha = 1, \dots, n$ there is a circle $C_{\alpha}(x)$ in the complex plane of radius $\min(\sqrt{M/2n}, M/4n | x_{\alpha}|)$ centered at x_{α} such that if $z_r \epsilon C_r(x_1, \dots, x_n)$, $r = 1, \dots, n$, then $\langle z_1, \dots, z_n \rangle \epsilon V_{2M}$. For z_{α} on $C_{\alpha}(x_1, \dots, x_n)$ we have $|z_{\alpha} - x_{\alpha}| \leq \sqrt{M/2n}$, and hence

$$0 \leq x_{\alpha}^{2} \leq 4 \operatorname{Re}(z_{\alpha}^{2}) + 4M \text{ and } |x_{\alpha}| \leq 1 + 2M + 2 \operatorname{Re}(z_{\alpha}^{2}).$$

Since $\operatorname{Re} z_1^2 \leq 2M + \operatorname{Re} (2 |z|_n^2)$ everywhere in V_{2M} , it follows that for any $\alpha = 1, \dots, n$,

$$|x_{\alpha}| \leq 1 + 2 \operatorname{Re}(2|z|^{2}) + 2nM \leq |1 + 2nM + 2(2|z|^{2})|$$

so that

$$n \max(2/\sqrt{M}, 4 | x_{\alpha}|/M) \leq n | 4 + 8nM + 8(2 | z |_{n}^{2})$$

(recall that $M \ge 1$). Since for any nonnegative integer s there is an $H_s > 0$ such that

$$| (4 + 8nM + 8(_2|z|_n^2))n|^s | (f - f_j)(z_1, \dots, z_n) |$$

$$\leq 16\sqrt{(2M)} H_s \exp(2\pi\beta(n+4)\sqrt{(2M)})/4^j$$

for any $\langle z_1, \dots, z_n \rangle \epsilon V_{2M}$, it follows using multiple Cauchy integrals over the circles C_{α} that for any nonnegative integer q and differential $D^p = \frac{\partial^{|p|}}{\partial x_1^{p_1}} \cdots \frac{\partial x_n^{p_n}}{\partial x_n^{p_n}}$, $(1 + x_1^2 + \cdots + x_n^2)^q D^p (f - f_j)$ converges to 0 uniformly for $|||x||^2 | \leq M$, taking s = q + |p|.

It also follows that for any $f \in \tilde{G}_{\beta} \subset Q$, m > 0, and $p = \langle p_1, \dots, p_n \rangle$, there are constants A and B such that for $| || x ||^2 | \ge 1$,

$$|D^{p}(f - f_{j})(x_{1}, \dots, x_{n})| \leq A \exp(B|||x||^{2}|^{1/2})/(1 + x_{1}^{2} + \dots + x_{n}^{2})^{m},$$

and a $C > 0$ such that for $|||x||^{2}| < 1$,

$$|D^{p}(f - f_{j})(x_{1}, \dots, x_{n})| \leq C/(1 + x_{1}^{2} + \dots + x_{n}^{2})^{m}$$

Hence for some D > 0 (depending on f, p, and m)

$$|D^{p}(f - f_{j})(x_{1}, \dots, x_{n})| \leq D \exp(B|||x||^{2}|^{1/2})/(1 + x_{1}^{2} + \dots + x_{n}^{2})^{m}$$

for all x_1, \dots, x_n , so that the required conditions of uniform boundedness are satisfied, and $f_j \to f$ in the pseudotopology of Q.

Now let $S(t_1, \dots, t_n) = S(t)$ be any distribution with support in C_{β} whose Fourier transform $\tilde{S}(x) = \tilde{S}(x_1, \dots, x_n)$ is a function belonging to Q. Let $S_k(t) = S((1 + 1/k)t), k = 1, 2, \dots$, so that $\tilde{S}_k(x) = \tilde{S}(kx/(k + 1))$. It is easily seen that $\lim_{k\to\infty} \tilde{S}_k = \tilde{S}$ in the pseudotopology of Q. Now let $\{h_m\}_{m=1}^{\infty}$ be a sequence of C^{∞} functions with supports shrinking to $\{0\}$, converging to δ in the topology of \mathfrak{D}' . Then for any fixed $k, h_m * S_k \in G_{\beta}$ for m large enough, so that $T(\tilde{h}_m \ \tilde{S}_k) = 0$. But $\tilde{h}_m \ \tilde{S}_k \to \tilde{S}_k$ in Q as $k \to \infty$ since for any $p = \langle p_1, \dots, p_n \rangle$, $D^p(\tilde{h}_m \ \tilde{S}_k) \to D^p \ \tilde{S}_k$ uniformly on compact sets, and $D^q \tilde{h}_m$ is bounded uniformly in m for any $q = \langle q_1, \dots, q_n \rangle$, so that $D^p(\tilde{h}_m \ \tilde{S}_k)$, after being expanded as a finite sum by Leibniz's rule, is seen to approach 0 at ∞ faster than $(1 + x_1^2 + \dots + x_n^2)^{-r}$ for any r > 0 on each set $| \parallel x \parallel^2 | \leq M$, uniformly in m. Thus $T(\tilde{S}_k) = 0$ for all k, so $T(\tilde{S}) = 0$, Q.E.D.

References

- 1. LAURENT SCHWARTZ, Théorie des distributions, 2nd ed., Paris, Hermann, 1957 (tome I), 1959 (tome II).
- 2. J. L. WALSH, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, rev. ed., 1956.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA