
DEFORMATIONS OF HOLOMORPHIC MAPPINGS

PHILLIP _A_. GRIFFITHS

The questions this paper seeks to answer are roughly the following"

(i) Given an arbitrary holomorphic mapping/:/%/-. M’ between fixed
complex manifolds _M, M’ where is compact, upon how many, if any,
parameters can/depend?

(ii) If such parameters exist, what specifically are the deformations of
the holomorphic mapping/?

We shall, under a cohomological restriction, answer (i) (Theorem 2); and,
under the same cohomological restriction plus a restriction on/, give a solu-
tion to (ii) (Theorem 4). As examples show, the cohomological restriction
is necessary; however, the restriction on/under (ii) is unsatisfactory and is
probably unnecessary.

I.I. Let and ’ be two nonsingular complex manifolds of complex
dimensions m and m’ respectively, and assume that M is compact. Suppose
that we are given a holomorphic mapping

f M-->M’

and a complex space V with a distinguished point v0 V.

DEFINITION 1. A deformation, with parameter space V, of the holomorphic
mapping f" M --+ M is given by a holomorphic mapping

g:M X V---M’
such that g (m, v0) f (m) for all m M.

For each v e V we consider the holomorphic mapping

f,, M-->M’

defined by f (m) g (m, v). Then f0 f. Let U,I, Ujl be open coordi-
nate coverings of M, M respectively, and let

..., ..., wT’)
be holomorphie coordinates in U., U. The open sets U., U. X U
giveaeoordinateeoveringofM X M’. Ifg(U. X V) n Uj 0, then g
is given as a mapping of U. X V to U by

(1.1) Ws g,,s(Z,, v) (f),,j(Z,),

and in particular
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(1ol)’ W ,(Z, o) f,(Z).

Here, and from now on where applicable, the vector notation will be used.

1.2. Let Y be a complex manifold of dimension n + n’, and X a compact
nonsingular complex submanifold of Y of dimension n. As above, let V be
a nonsingular analytic space with a distinguished point v0 e V.

DEFINITION 2. By a deformation, with parameter space V, of X in Y, we
mean an analytic submanifold W of Y X Y of codimension n’ satisfying the
following:

(i) For each v V, the intersection W n (Y X Iv} is a connected com-
pact nonsingular submanifold of Y X Iv} of dimension n,

(ii) W (Y X Iv0}) X Iv0/as a submanifold,
(iii) for each point p W, there exists a neighborhood

Nv Uv X Vc YX V

W
n+nwith analytic coordinates w (w1, in U, v in V,

and there exist n’ holomorphic functions

f fl(W, v), "", A’ A,(w, v)
such that

rank 0 (fl, f,)/O (w, w+’) n’,

and finally

Nv n W (w, v) f (w, v) 0 f,, (w, v) }.

Let X c Y be as above.
that

()
(ii)
(iii)

We may choose a covering {U,} of X in Y such

U, U, U is a neighborhood of X in Y,
U. n U. f :. U. n U,,nX= O,
there exist holomorphic coordinates

(Z., W.) (Z ..., Z. W.
in U. such that U. n X (Z., 0)}.

The transition functions from U, to U. may be written

(1.2) Z. g.. (Z., W.),

(1.2)’ W. h., (Z,, W,) where h., (Z,, 0) 0.

Then a family W as described in Definition 2 is given as follows: In each
U. we have a C=’-valued holomorphic function . q,. (Z., v) such that

(i) .(Z., 0) 0,
(ii) if X is defined by Wn Y X {v} X X {v}, then X n U, is

given by the set (Z,, W,) e U, W. , (Z,, v)}.
The equations of consistency in passing from U, to U, may be written as
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(1.3) q, (Z,, v) h. (Z, (Z, v) ),

( .4 z g. (z., (z., ) ),

or combined into

(1.5) . (g., (Z, (Z, v) ), v) h. (Z, (Z, v) ).

Let, for fixed v e V,., .,(z., W., v) W. .(z., v);

then the functions (Z., .,) give a new coordinate system in U. such that
X U. (Z., 0)}. This is true since

o(z., w) -o/oz.
1.3. Let X, Y be as in 1.2, and follow the notation established there.

The matrices

Y.. (Z) OW. (Z, W)/OW]=o Oh./OW.]=o

satisfy N, N, N, and define the normal bundle r of X in Y. Der-
entiating (1.3), we have, on setting

(.6) . o./o]o
where is any direction in V at v0, that , N, o , and thus the collec-
tion {,} defines an element of H (X, r) where r is the analytic sheaf
associated with r. (In general, the analytic sheaf associated with a holo-
morphic vector bundle B will be denoted by .) The process (1.6) gives a
linear mapping

(.7) a: To (V) H (Z), )
of the holomorphic tangent space to V at v0 into H (X, r). The converse
question of "integrating" elements of H (X, r) so as to give a variation of
X in Y has been taken up in [2], and we may state the result as follows:

THEOREM (Kodaira). Let the assumptions and notaries be as in 1.2 and
1.3. If H (X, r) O, then there exists a locally complete analytic family
X (v e V) of compact submanifolds of Y such that X X and the mapping
(1.7) is an isomorphism.

Remark. The method of proof of this theorem is to construct, using the
fact that H(X, ) 0 implies no obstructions, a formal variation of X
in Y through any vector in H (X, r), and then to show that this formal
solution converges.

By this we mean the following: If v v are coordinates in a neighborhood of
v0 in V1, then a direction at v0 is given by (1, r), and

o/o]0 3
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1.4. Return now to the situation of 1.1 where we have M, M’
andf:M-oM’. The setG/ {(m,f(m)) eM )<M’lmeM}isthegraph
of f, and it is a nonsingular subvariety of dimension m of M X M’. The
open set

U=UU. XU (union over a, j such that f (U,) n U 0,)

is an open neighborhood of G/in M X M’. On U.,. U. X U. we have
coordinates (Z., W.), and G/ n U.,. {(Z., Wi) [W f.,(Z.)}.
Setting .,. .,(Z., W) W f.,(Z.), we have new coordinates
(Z., .,.) in U., such that G] n U.,. {(Z., 0)}. The object of this
section is to prove the following"

THEOREM 1. There is a local (1-1) correspondene between variations of the
analytic function f M --> M’ (Definition 1) and deformations of the graph G
as a submanifold of M X M’.

Proof. Assume that g M X V -- M’ gives a deformation of f. Then
we may take in Definition 2, Y M X M’, X G, and W Gg upon
identifying M X M’ )< V with M X V X M’.

Before proving the converse, we make some remarks. If the transition
functions from Ua to U, on M are r,a, and if the transition functions from
U. to Ui on M are zi’, then the transition functions from Ua, to U,,i on
M >( M’ are (r-a, zi). This is all in terms of the (Z, W) coordinate sys-
tems. If we let (1, qa,) Ua, -- Ua, be defined by

(1, q,) (Z, W) (Z, W f,(Z) ),

then (1, q,) introduces new coordinates in U, and the transformation
from (Z, ’,.) to (Z., ’.,) may be written as

z. .(z,),

Then the following diagram is commutative:

(1.8)

Now G/ U., is defined by i*., 0, and, as in 1.2, a deformation of G/
is given by functions ., .,(z., ) ( V),

and then (G/) n (U. X U) is given by i’., .,(Z., v).
(1.3)-(1.5), that

We have, by
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(1.9) .,i(Z., v) .,.(Z, ,(Z, v)),

(1.10) ., (r.(Z), v) .,.(Z, ,(Z, v)).

We may define local functions

(f), U, U
by (f),(Z) ,(Z, v) + f,(Z). If we can sew these local func-
tions together on both M and M’, then we will have defined global functions
f M M’ (v V), and from these a holomorphic function g M X V M
such that g M X v0 f, which will prove the theorem. In order to sew these
functions together, we must show

(.) (h)., ((h).,),

(.2) (f), (f).,

For (1.11), we have

((h).,(z.) - (z., q,q.,a.., ((f.) (Z.))) (by (1.8))- (z. .,(z..))- (z., v) (by (.9))

For (1.12), we go iu reverse order: Since (f)., .,( v) + f.,, and
since f, f., o r.a, it will suffice to show that , ., o r.. By
(1.10), we have

.,,(r.(Z), v) e.,.(z,, ,(z,
--1q.,a.q,(,(Z, v))

q,,, (,, (z, v) + ,(z))

,,(z,, v) + ,,(.,(z))
,(Z, v), Q.E.D.

1.S. We shall see in 2 below that, under the natural biregular corre-
spondence between M and G], the normal bundle to G] in M X M’ corre-
sponds to the bundle f- (T’) over M where T’ is the holomorphic tangent
bun41e to M’. Combining 1.3 and 1.4, we have

TEOnEM 2. Assume that H (M, ff (5’)) 0. Then there exists an ana-
lytic fanily of maps

f’MM’ (veV)

such that flo f, and such that the mapping A of 1.3 carries T (V) iso-
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morphically onto H (M, f-1 (5’) ). The mapping A may be described as fol-
lows" /f e T (V), then

H (M, f-
_
H ,5’A () e (5’)) (f (M) if(M))

is given by the holomorphic vector field Of/OO],

2.1. We shall now examine what relation the normal bundle to the graph
has to invariants of the mapping, and then in 3 we shall use this information
to strengthen and interpret Theorem 2.

Let M, M’ be topological spaces and f:M -+ M’ a continuous proper
mapping. Let V, V’ be vector bundles over M, M’ such that we have

V f V’

M M’,
and let d dim V, d’ dim V’ (fibre dimensions in each case).

For any vector bundle B onM X M’, we letB B G] where Gr c M X M’
is the graph of f. Both V and V’ may be considered as vector bundles on
M X M’, and define a subset D/c (V V’) as follows"

DEFINITION 3. Over (m,/(m)) e G/, we set

It is immediate that (D]),y()) (V @ V(,]()) is subspace of di-
mension d, nd in fact Dy is d-dimensional subbundle of (V @ V’); we hve

0 D (V @ V’)

id

There is a projection ru’M X M’ - M, and =M Gs is a bi-map with
inverse ju defined by

jM (m) (m, f (m)) G for me M.

Denoting by v (V) the induced bundle over Gy, we have

PROPOSITION 1.

v

G ) M.

There is a natural bundle isomorphism
--1 (v)
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Proof. By definition, vl(V) c Gs X V consists of the obiects
{ (m, f (m)), v) such that v e Vm. Define

" vl(V)--. Ds by {(m, f(m)), v) (v, f(v))e (D])(,]())

then is n isomorphism.

2.2. We now consider ff (V’) M V’ consisting of the set

{(, v’) i’ v}.
There is a bundle mapping r V ff (V’) defined by

r(v) (re, f (v)) e (V’) if v eV.
DEFINITION 4. We define subset D (f- (V’) V’) as follows"

(D)(,()) re objects of the form

<(, ’), -v’> ( (v’) v’,).
Clearly D is a d’-dimensional vector bundle over G].

PROPOSITION 2. There is a natural isomorphism-( (v’)) D.M

Proo]. We hve commutative disgram

G r’ M’

and i will suee o show ha () (g’) D. Now

If we define

n" ()(V’) by {(m,f(m)),v’) {(m,v’),

hen n is an isomorphism.

2.. We keep he hypotheses of 2.1 ogeher wih he additional assump-
tion ghag f g V’ is fibrewise sureegive.

PROPOSITION 3. There is a bundle mapping (V g’) D sh ha
we have

0D (V V’) >D0.
Proof. By ssumption, ny pair (v, v’) e (V V’(,]())) msy be non-

uniquely written as (v, v’) (v, f () ( e V). Then we have



146 PHILLIP A. GRIFFITHS

(,/()) 1/2( + ,/( + )) + 1/2( ,/(- + )),

and we define

It is easily seen that is suriective and well defined, and, if (v, v’) 0,
then f(v) f() v’, and thus (v, v’) (v, f(v)) (D/)(m./()), which
proves exactness.

2.4. We now assume that M, M’ are ringed spaces with sheaves of rings
(9, co’ and that f is a morphism. We also suppose that the vector bundles
V, V’ are over co, 9’. For any 0-bundle W on M, we denote by the cor-
responding c0-sheaf, the same for M’.
tively, we have

M M’,
and f(0) is an co’-coherent subsheaf of 0’.
’O’/f(O) by ; is co’-coherent and we have

Then 0, 0’ are co-, co’-coherent respec-

We denote the quotient sheaf

0 -+ f(X)) --+ X)’ -+ 9 ---> O.

We observe that we could have carried through 2.1-2.3 on the coherent
sheaf level, and Proposition 3 still holds with V’ replaced by f(X)). Thus
we have

PROPOSITION 4. The following is a commutative diagram"

2.S. Let now M, M’ be as in 1.1; co, co’ are sheaves of germs of holomorphic
functions on M, M’ respectively. We take V T T (M) and V’ T’
T (M’) where T holomorphic tangent bundle of ); we have

f ’
M f M’.
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Since f is a proper holomorphic mapping, f(M) is a (perhaps singular) sub-
variety of M’; f(3’) (notation) 5: tangents to f(M), and is the nor-
mal sheaf of f(M) in M’. Both f(5’) and 9 are O’-coherent, but are not
necessarily 0’-free. The concept of tangents and normals to singular analytic
spaces is taken up in [1], and it is in this sense that we speak of these obiects.
We observe furthermore that D: T (G]), and thus )] 5 (G); @ is a

free sheaf and is in fact the normal sheaf of G: in M X M’. This is because,
if X c Y is any nonsingular subvariety, the normal bundle llr is defined by
0 -- W (X) -- W (Y) IX -- llr O, and

(T(X) @ T(Y)) T(X X

THEOREM 3. Let f M -- M’ be as in 1.1, and let 5: be the sheaf of holo-
morphic tangents to f(M), the normal sheaf of G: in M X M’, and 1 the
normal sheaf of f (M) in M’. Then .-1,M (Q (St), and we have

o--- -- 7:,( o

o f-() -(’) --, f-() --, o.
Finally,

H (G:, )
_
H (M, f- (5’)).

Proof. Since f , o jM, the theorem will follow from Propositions 2
and 4 when we prove that .-1 f-3M (.) (5’). Letting ll be the normal bundle
of G: in M X M’, we shall show that .-1 f-3 (ll) (T’). Let U.}, U.},
{Z.}, {W:}, and ,, W f.,(Z.) be as in 1. Then ll has transition
functions

ki. 0 (,,i)/0 (’,.)]=0 (see 1.3).

We have the local maps:

(1 -’q,.) (Z, ,) --, (Z, W),

(1, q.,) (Z., W) -- (Z., (see (1.18)).

Denoting the holomorphic Jacobian of any analytic mapping C --+ C
by J (), we have that

J(r., .,) J(1, q.,)J(r. .)J(1,
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Thus

By checking through the definition of the induced bundle, we see that we are
done.

3.1. From Theorems 2 and 3, the cohomology group in which we are
interested is H (M, f-1 (5’)). We have

0 --> f-l(Ss) ---> f-(5’) ---> f-(gZ) ---> 0

(3.1) ]" T
o--, If(M) --, 0

and

0---* H(M,f-1 (5/)) H(M,f-I(5’)) - H(M,f-I(9"L)) " HI(M,f-(5.))

O Ho(f(M),Sy)) HO(f(M),5 If(M)) H(f(M),) H’(f(M),/),

We then hve that

(3.3) H (M, f- (’)) A B,

where

(3.4) A H(M,f-(3/)) and B ker’H(M,ff()).

3.2. In Kodaira’s theory, where seeking the ways of embedding X in Y,
he assumed that H (X, 9Zy) 0 where 9Zy is the normal sheaf of X of Y.
In our context, we have split up 9Zy f- (5’) by the exact sequence (3.1);
thus we shall replace Kodaira’s assumption by two,assumptions, one each to
insure no obstructions in A and B. These two hypotheses taken together
will be weaker than the assumption of Theorem 2.
We have a diagram

5 5f

M f, )f(i),

and there is an induced mapping

]. z

M id.. M.
We let :/= ker ]; then /is e-coherent, and we have
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Geometrically, /is the sheaf of holomorphic tangents to the fibres of the
mapping f" M --. M.

(3.5) Assumption 1. H (M, /) O.

Assumption 1 is satisfied in the following cases"

(i) f is an injection or a covering map;
(ii) f is the projection in an analytic fibration

F---.M f f(M),

and either (a)or () below is satisfied:
(a) Hl(F,3(F)) 0 H(F,3(F)),
(/)2 H if(M), 0ff(M))) 0 H (F, 3(F)).

(Off(M)) V’/ if(M)) where if(M)) is the sheaf of ideals of f(M).)
Both (a) and () are satisfied in a large number of examples.

(iii) f is a blowing down map collapsing finitely many subvarieties
V1, V8 of M, each having the property that H (V., 5 (V.)) 0. Such
is the case with the usual blowing down maps.

There are, of course, important cases where (3.5) fails.

DEFINITION 5. Let R c H (M, 5) be the set

lO eH(M, 5) If(m) f() f(O,) f(0); m, eM}.

Geometrically, R is the set of all holomorphic vector fields which are con-
stant along the fibres of the mapping

f M---. M’.

PROPOSITION 5. R is a complex subalgebra of H (M, 5).
ping ]" H (M,

and, if (3.5) is satisfied,
] (R) ] (H (M, 5) ),

] (R H.(M, f-1 (5/)).

Under the map-

Assuming (3.5), if 0 e R, we let g exp tO, h exp t(fO). Then

fog hof.
This proposition follows easily from the exact cohomology sequence of

0 -, - -, f- () 0.

We may interpret the results of this paragraph in the following statement"

I. Let A be as in 3.1, (3.4), and suppose that (3.5) is satisfied. Then the
deformations of the holomorphic mapping f" M -+ M’ which are infinitesimally

We assume that l(f(M)) acts trivially on the fibres.
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parametrized by A constitute the complex subgroup As of A (M) consisting of
a A (M) which leave fixed the fibres of the mapping f. If at is a curve in
then the corresponding deformation is given by the maps gt f at

We return to the situation of 3.1. Corresponding to B, we have

Assumption 2. H (f(M 9Z O.

(Assumption 2 is satisfied, e.g., if 9Z is a positive sheaf in the sense of [1].)
Here we encounter a problem. The result of Kodaira (1.3) held under

the assumption that X was nonsingularly embedded in Y. However, as his
proof did not involve any derivatives, harmonic theory, or the like, pre-
sumably the result might hold when X is singular in y.4

We wish to apply Kodaira’s result not only to Gs c M >( M’, but also to
f(M) M’, where the restriction of nonsingularity of f(M) in M’ severely
limits f. Thus we shall make

(3.7) Assumption N.S. f(M) is nonsingularly embedded in M’.

We now determine, B ker in (3.2).

PROPOSITION 6. There is a surjective mapping

p H if(M), 5s) H(f(M), ) --+ H (M, f- (Ss)) ---+ 0

where Z ---. f(M) is given by the presheaf

U -- H (f-1 (V), f- (3:) IF (U)) for U : f(M).
Furthermore, p H (f (M), 3:) is injective, and this p is the same as that given
in (3.2).

Proof. The proof follows immediately from the Leray Spectral Sequence.

COROLLAtY. In the notation of (3.2),

and p ker a(kerS).

Under the assumptions (3.6) and (3.7), the subspace B has an interpreta-
tion which we now discuss. Under the mapping

ti H if(M), 9) ---+ H M), 3:),

we may, by choosing a complement, write

H if(M), ) ker 8 @ H if(M), 3:).

The subspace H (f(M), 3s) has been discussed in [3, 12], where, under cer-
tain conditions, it was termed the space of relative moduli of f(M) in M’. If

As usual, A(M) denotes the identity component of the complex automorphism
group of M.

Added in proof. This can be done under the weaker assumption
H(f(M), Torl()) 0.
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(3.6) and (3.7) are satisfied, the following interpretation holds: If, by 1.3,
we think of H (f(M), 9) as infinitesimally parametrizing the variations of
f(M) in M’, then ker parametrizes those deformations keeping the complex
structure on f(M) fixed, and H(f(M), 3]) infinitesimally parametrizes
those variations of f(M) in M’ obtained by varying the complex structure
of f (M). Thus we have

II. Under assumptions 2 and N.S., the deformations of the holomorphic
mapping f M ---. M’ which are infinitesimally parametrized by B ((3.4)) are
given locally by a dim B family Bs of injections off(M) in M retaining the same
complex structure on f(M).

Thus, Fin this case, the deformations of the holomorphic mapping f do not
cover the variations of structure of f (M) in M’.

3.4. Combining I and II, we have finally

THEOREM 4. Under the assumptions (3.5), (3.6), and (3..7), there exists a
locally complete family fv gv (v V) of holomorphic mappings of M into M’
varying the holomorphic mapping f: M M’. The space V may be chosen
to have the property that V As X B] with the following interpretation: Any
1-parameter family g such that go f may be factored as gt bt o f o at where
at, bt are 1-parameter families in A] Bs respectively, and A] B] were given
in I, II of 3.2, 3.3.
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