THE LINEAR CUBIC p-ADIC RECURRENCE AND ITS VALUE FUNCTION

BY
 Harold C. Kurtz
 1. Introduction and summary of results

Let

$$
\begin{equation*}
\Omega_{n+3}=P \Omega_{n+2}-Q \Omega_{n+1}+R \Omega_{n} \tag{1.1}
\end{equation*}
$$

be a linear cubic p-adic recurrence with coefficients in the rational p-adic field R_{p}. The roots α, β, and γ of the characteristic polynomial

$$
f(Z)=Z^{3}-P Z^{2}+Q Z-R=(Z-\alpha)(Z-\beta)(Z-\gamma)
$$

are p-adic algebraic numbers generating the root field $R_{p}(\alpha, \beta, \gamma)=\Re_{p}$ and will be assumed distinct and nonzero.

Let $\left(W_{n}\right): W_{0}, W_{1}, \cdots, W_{n}, \cdots$ be a solution of (1.1) with given initial values W_{0}, W_{1}, and W_{2} in R_{p} not all zero, and let $w_{n}=\phi\left(W_{n}\right)$ be the p-adic value of W_{n}. We investigate the following "valuation problem": Given a sequence (W_{n}) satisfying (1.1) with specified initial values as above, to determine $\phi\left(W_{n}\right)$. This problem is trivial if one of the ratios of the roots of $f(Z)$ is a root of unity in $\Re_{p} ; f(z)$ is then termed degenerate. Hence we assume nondegeneracy, i.e., $(\alpha / \beta)^{n},(\beta / \gamma)^{n}$, and $(\alpha / \gamma)^{n} \neq 1$ for all positive integers n.

We show that we may restrict ourselves to recurrences whose coefficients and initial values are p-adic integers where at least one coefficient and one initial value are p-adic units. Except when $p=2$ or 3 , we need only consider these cases:

I P, Q, and R all p-adic units,
II P and Q units, R a non-unit,
III P a unit, Q and R non-units.
In Case III, the determination of $\phi\left(W_{n}\right)$ is trivial; for $n \geqq$ some $n_{0}, \phi\left(W_{n}\right)$ equals a constant. In II, the Hensel Lemma enables us to analyze the valuation of the cubic recurrence in terms of the valuation of the quadratic recurrence (results (3.2)-(3.5)), explicit formulas for the latter being given in Ward's paper [2]. Case I has been studied by Ward [1] when coefficients and initial values are rational integers; the results are extended to recurrences where these are p-adic integers in Section 4.

It appears likely that for a given integer t, the valuation problem for the $t^{\text {th }}$ order nondegenerate recurrence

$$
\Omega_{n+t}=A \Omega_{n+(t-1)}+\cdots+M \Omega_{n}
$$

Received August 24, 1962.
may also be reduced to cases where all coefficients are p-adic integers and at least one is a p-adic unit. However, the complexity of reduction when $t=3$, when contrasted with the simplicity of case $t=2$ [2], indicates that a general reduction procedure for all t would be quite complicated, for as the order of the recurrence increases, the number of cases which must be considered also increases. Including $p=2$ and 3, the quadratic recurrence reduces to two cases, the cubic to six.

2. Reduction of problem to Cases I, II, and III

For any given positive integer k, let j be a fixed integer in $[0, k)$. Let ($W_{n}^{(k)}$) be any one of the k subsequences of $\left(W_{n}\right)$

$$
W_{n}^{(k)}=W_{k n+j} \quad(n=0,1,2, \cdots)
$$

and let $f_{k}(Z)=\left(Z-\alpha^{k}\right)\left(Z-\beta^{k}\right)\left(Z-\gamma^{k}\right)=Z^{3}-P_{k} Z^{2}+Q_{k} Z-R_{k}$. Then each ($W_{n}^{(k)}$) is a solution of

$$
\begin{equation*}
\Omega_{n+3}=P_{k} \Omega_{n+2}-Q_{k} \Omega_{n+1}+R_{k} \Omega_{n} \tag{2.1}
\end{equation*}
$$

and $f_{k}(z)$ is nondegenerate. If $\phi\left(W_{n}^{(k)}\right)$ can be found for each $j, \phi\left(W_{n}\right)$ is known.

Let $p_{k}=\phi\left(P_{k}\right), q_{k}=\phi\left(Q_{k}\right), r_{k}=\phi\left(R_{k}\right)$, and $d_{k}=\min \left\{p_{k},\left[q_{k} / 2\right],\left[r_{k} / 3\right]\right\}$. Then $\left(U_{n}^{(k)}\right)=\left(W_{n}^{(k)} \cdot p^{-n d_{k}}\right)$ is a solution of

$$
\begin{equation*}
\Omega_{n+3}=P_{k}^{\prime} \Omega_{n+2}-Q_{k}^{\prime} \Omega_{n+1}+R_{k}^{\prime} \Omega_{n} \tag{2.2}
\end{equation*}
$$

where $p_{k}^{\prime}=\phi\left(P_{k}^{\prime}\right)=p_{k}-d_{k}, q_{k}^{\prime}=q_{k}-2 d_{k}, r_{k}^{\prime}=r_{k}-3 d_{k}$. Hence P_{k}^{\prime}, Q_{k}^{\prime}, and R_{k}^{\prime} are p-adic integers, and $\phi\left(W_{n}^{(k)}\right)$ is known if $\phi\left(U_{n}^{(k)}\right)$ is. By elementary algebra,

$$
\begin{array}{lll}
P_{2}=P^{2}-2 Q, & Q_{2}=Q^{2}-2 R P, & R_{2}=R^{2} \\
P_{3}=P^{3}-3 P Q+3 R, & Q_{3}=Q^{3}+3 R^{2}-3 P Q R, & R_{3}=R^{3}
\end{array}
$$

When $k=1, P_{1}^{\prime}, Q_{1}^{\prime}$, and R_{1}^{\prime} are p-adic integers. Hence we are justified in assuming to begin with that the coefficients P, Q, and R of (1.1) are p-adic integers. Assuming this, let $f=\min \left\{\phi\left(W_{0}\right), \phi\left(W_{1}\right), \phi\left(W_{2}\right)\right\}$; then $\left(W_{n}^{\prime}\right)=$ $\left(W_{n} \cdot p^{-f}\right)$ is a solution of (1.1) with $\phi\left(W_{n}^{\prime}\right)=\phi\left(W_{n}\right)-f$. Hence W_{0}^{\prime}, W_{1}^{\prime}, and W_{2}^{\prime} are p-adic integers, and at least one is a p-adic unit. We therefore assume to begin with that the initial values of (W_{n}) are integers, and at least one is a p-adic unit. Henceforth, in transitions to subsequences ($W_{n}^{(k)}$), it will be assumed that the preceding transformation is made on the terms of $\left(W_{n}^{(k)}\right)$.

With the two preceding assumptions, let $d=\min \left\{p_{1},\left[q_{1} / 2\right],\left[r_{1} / 3\right]\right\}$, and $U_{n}=W_{n} \cdot p^{-n d}$; then $\left(U_{n}\right)$ satisfies (2.2) with $k=1$. If $d=p_{1}$, then $p_{1}^{\prime}=0$ and P_{1}^{\prime} is a unit; if $d=\left[q_{1} / 2\right]$, then $q_{1}^{\prime}=0$ or 1 ; if $d=\left[r_{1} / 3\right], r_{1}^{\prime}=0$, 1 , or 2 . Since it is sufficient to determine $\phi\left(U_{n}\right)$, we see on examining the three possible values of d that we may assume one of the following holds:
(1) $\phi(P)=0, \quad \phi(Q)$ and $\phi(R) \geqq 0$;
(2a) $\phi(Q)=0, \quad \phi(P) \geqq 1, \quad \phi(R) \geqq 0$;
(2b) $\phi(Q)=1, \phi(P) \geqq 1, \phi(R) \geqq 1$;
(3a) $\phi(R)=0, \quad \phi(P)$ and $\phi(Q) \geqq 1$;
(3b) $\phi(R)=1, \quad \phi(P) \geqq 1, \phi(Q) \geqq 2$;
(3c) $\phi(R)=2, \quad \phi(P) \geqq 1, \quad \phi(Q) \geqq 2$.
We now show we may assume that at least one of P, Q, R is a p-adic unit; of the above, (2b), (3b), and (3c) must be dealt with.
(2b) If $\phi(R)=1$, consider $\left(W_{n}^{(3)}\right)$. Then prime $p \neq 3$ implies $\phi\left(P_{3}\right)=$ $p_{3}=1, q_{3}=2, r_{3}=3$; hence $d_{3}=1$ and $\phi\left(R_{3}^{\prime}\right)=0$. If $p=3$, we similarly have R_{3}^{\prime} a p-adic unit. When $\phi(R) \geqq 2$, consider $\left(W_{n}^{(2)}\right)$. Then $p \neq 2$ implies $\phi\left(P_{2}^{\prime}\right)=0$, and $p=2$ implies $\phi\left(Q_{2}^{\prime}\right)=0$.

Hence in (2b), $\phi\left(W_{n}\right)$ is known if we can find the valuation of sequences $\left(U_{n}^{(k)}\right)=\left(W_{n}^{(k)} \cdot p^{-n d_{k}}\right)$ in which at least one coefficient is a p-adic unit. Cases (3b) and (3c) may be similarly dealt with by considering subsequences ($W_{n}^{(3)}$).
Finally we show we may further restrict ourselves to the following six subcases:

Ia P, Q and R all p-adic units,
Ib $\quad p=2, \quad Q$ and R units, P a double unit,
Ic $p=3, \quad R$ a unit, P and Q triple units,
IIa P and Q units, $\quad R$ a non-unit,
$\operatorname{IIb} \quad p=2, \quad P$ a double unit, Q a unit, R a non-unit,
III $\quad P$ a unit, $\quad Q$ and R non-units.
Since at least one coefficient may already be assumed a unit, it remains to reduce the following four cases to the preceding six:
(1) $\phi(Q)=0, \quad \phi(P)$ and $\phi(R)>0$;
(2) $\phi(R)=0, \quad \phi(P)$ and $\phi(Q)>0$;
(3) $\phi(P)>0, \quad \phi(Q)=\phi(R)=0$;
(4) $\phi(Q)>0, \quad \phi(P)=\phi(R)=0$.
(1) Consider $\left(W_{n}^{(2)}\right)$. If $p \neq 2, \phi\left(P_{2}\right)=\phi\left(Q_{2}\right)=0, \phi\left(R_{2}\right)>0$; this is Case IIa. If $p=2, P_{2}=2 \times$ unit, $\phi\left(Q_{2}\right)=0, \phi\left(R_{2}\right)>0$; Case IIb.
(2) Consider $\left(W_{n}^{(3)}\right)$. If $p \neq 3$, reduce to Ia; if $p=3$, to Ic.
(3) Consider $\left(W_{n}^{(2)}\right)$. If $p \neq 2$, reduce to Ia; if $p=2$, to Ib.
(4) If $p \neq 2$, consider $\left(W_{n}^{(2)}\right)$ and reduce to Ia. If $p=2$, consider $\left(W_{n}^{(3)}\right)$; here $\phi\left(Q_{3}\right)=\phi\left(R_{3}\right)=0$. If $\phi\left(P_{3}\right)>0$, then we have (3) with $p=2$, and this has been reduced to Ib ; if P_{3} is a unit, then we have Ia.

3. Cases II and III

We investigate Case IIa in detail employing the Hensel Lemma, subsequently applying the same methods to IIb; the triviality of III will then be shown.

Case IIa. $\phi(P)=\phi(Q)=0, \phi(R)>0$. Then

$$
f(Z)=Z^{3}-P Z^{2}+Q Z-R \equiv Z\left(Z^{2}-P Z+Q\right)(p)
$$

By the Hensel Lemma,

$$
f(Z)=(Z-\alpha)\left(Z^{2}-P^{*} Z+Q^{*}\right)=(Z-\alpha) g(Z) \text { in } R_{p}
$$

where $Z-\alpha \equiv Z(p)$ and $Z^{2}-P^{*} Z+Q^{*} \equiv Z^{2}-P Z+Q(p) . \quad \operatorname{In} R_{p}(\beta)$,

$$
f(Z)=(Z-\alpha) g(Z)=(Z-\alpha)(Z-\beta)(Z-\gamma)
$$

with $\phi(\beta)=\phi(\gamma)=0$. Then

$$
\begin{aligned}
W_{n} & =A \alpha^{n}+B \beta^{n}+C \gamma^{n} \\
& =((\gamma-\beta) / \delta)\left[A^{*} \alpha^{n}+B^{*} \beta^{n}+C^{*} \gamma^{n}\right]=((\gamma-\beta) / \delta) W_{n}^{*}
\end{aligned}
$$

Here $\delta=(\alpha-\beta)(\beta-\gamma)(\alpha-\gamma)$ is the square root of the discriminant of $f(z)$, and

$$
\begin{aligned}
& A^{*}=-\left[W_{2}-W_{1} P^{*}+W_{0} Q^{*}\right] \\
& B^{*}=\left[W_{2}-W_{1}(\alpha+\gamma)+W_{0} \alpha \gamma\right](\gamma-\alpha) /(\gamma-\beta) \\
& C^{*}=\left[W_{2}-W_{1}(\alpha+\beta)+W_{0} \alpha \beta\right](\alpha-\beta) /(\gamma-\beta)
\end{aligned}
$$

From [2], $\left(B^{*} \beta^{n}+C^{*} \gamma^{n}\right)=\left(V_{n}^{*}\right)$ satisfies

$$
\begin{equation*}
\Omega_{n+2}=P^{*} \Omega_{n+1}-Q^{*} \Omega_{n} \tag{3.1}
\end{equation*}
$$

with characteristic polynomial $g(z)$ having unit coefficients, and

$$
V_{n}^{*}=\frac{\left(V_{1}^{*}-V_{0}^{*} \gamma\right) \beta^{n}-\left(V_{1}^{*}-V_{0}^{*} \beta\right) \gamma^{n}}{\beta-\gamma}
$$

Then

$$
V_{0}^{*}=\left[W_{2}-\alpha^{2} W_{0}+\left(\alpha W_{0}-W_{1}\right) P^{*}\right]
$$

and

$$
V_{1}^{*}=\left[W_{2} \alpha-W_{1}\left(\alpha^{2}+Q^{*}\right)+W_{0} \alpha P^{*}\right]
$$

are p-adic integers, and so $\left(V_{n}^{*}\right)$ is a quadratic integral recurrent sequence. Letting $f=\min \left\{\phi\left(V_{0}^{*}\right), \phi\left(V_{1}^{*}\right)\right\}$, define

$$
W_{n}^{\prime}=p^{-f} \cdot W_{n}^{*}=p^{-f}\left(A^{*} \alpha^{n}+V_{n}^{*}\right)=\left(A^{\prime} \alpha^{n}+V_{n}^{\prime}\right)
$$

then $\phi\left(W_{n}\right)=\phi((\gamma-\beta) / \delta)+f+\phi\left(W_{n}^{\prime}\right)$. The problem is to determine the valuation of $\left(W_{n}^{\prime}\right)=\left(A^{\prime} \alpha^{n}+V_{n}^{\prime}\right)$ where $\left(V_{n}^{\prime}\right)$ satisfies the quadratic integral recurrence (3.1) with at least one of V_{0}^{\prime} or V_{1}^{\prime} a unit.

We refer to [2] to determine $\phi\left(V_{n}^{\prime}\right)$. If $\phi\left(V_{n}^{\prime}\right)=0$ for all n, then for $n \geqq$ some n_{0}

$$
\begin{equation*}
w_{n}^{\prime}=\phi\left(W_{n}^{\prime}\right)=0 \tag{3.2}
\end{equation*}
$$

since $\phi(\alpha)>0$ implies $\phi\left(A^{\prime} \alpha^{n}\right)>0$ for $n \geqq n_{0}$.

Otherwise let V_{h}^{\prime} be the first term of $\left(V_{n}^{\prime}\right)$ with positive value, and let ν denote the following p-adic integer, expressed as a p-adic logarithm:

$$
\nu=\log \left[V_{h+1}^{\prime}-V_{h}^{\prime} \gamma / V_{h+1}^{\prime}-V_{h}^{\prime} \beta\right] / \log (\gamma / \beta)^{r}
$$

Here $r=1$ if $\phi(\beta-\gamma)>0$. If $\phi(\beta-\gamma)=0$, sequence $\left(V_{n}^{\prime}\right)$ is termed ordinary, and r is the least positive n for which $\phi\left(\left(\beta^{n}-\gamma^{n}\right) /(\beta-\gamma)\right)$, denoted by l_{n}, is $\geqq 1$. [2] now yields the following:

If $\left(V_{n}^{\prime}\right)$ is ordinary and $\phi\left(V_{h}^{\prime}\right)<l_{r}$, then by [2, Theorem 9.3]

$$
\begin{array}{ll}
\phi\left(V_{n}^{\prime}\right)=0 & \text { if } \quad n-h \neq 0(r) \\
\phi\left(V_{n}^{\prime}\right)=\phi\left(V_{h}^{\prime}\right) & \text { if } \quad n-h \equiv 0(r)
\end{array}
$$

Here, there is an n_{0} such that $n \geqq n_{0}$ implies

$$
\begin{array}{ll}
\phi\left(W_{n}^{\prime}\right)=0 & \text { if } \quad n-h \not \equiv 0(r) \\
\phi\left(W_{n}^{\prime}\right)=\phi\left(V_{h}^{\prime}\right) & \text { if } \quad n-h \equiv 0(r) \tag{3.3}
\end{array}
$$

Since l_{r} will usually be 1 , the above situation is rare. When the above is not the case, then we have from [2, Theorems 10.1 and 11.2]

$$
\begin{array}{lr}
\phi\left(V_{n}^{\prime}\right)=0 & \text { if } n-h \not \equiv 0(r) \\
\phi\left(V_{n}^{\prime}\right)=\phi(\nu-(n-h) / r)+l_{r} & \text { if } n-h \equiv 0(r) \tag{3.4}
\end{array}
$$

For those n for which $\phi\left(A^{\prime} \alpha^{n}\right) \neq \phi\left(V_{n}^{\prime}\right)$, we then have

$$
\phi\left(W_{n}^{\prime}\right)=\min \left\{\phi\left(A^{\prime} \alpha^{n}\right), \phi\left(V_{n}^{\prime}\right)\right\}
$$

Since $\phi\left(V_{n}^{\prime}\right)=0$ if $n-h \not \equiv 0(r)$, there is an n_{0} such that

$$
\begin{equation*}
\phi\left(W_{n}^{\prime}\right)=0 \quad \text { if } \quad n \geqq n_{0} \quad \text { and } \quad n-h \neq 0(r) \tag{3.5}
\end{equation*}
$$

Criteria for $\left(V_{n}^{\prime}\right)$ to have terms of positive valuation are given by [2, Theorems 8.1, 9.2, and 11.1], the last giving necessary and sufficient conditions for the value function $\phi\left(V_{n}^{\prime}\right)$ to be unbounded.

Note that in general we cannot say more about $\phi\left(W_{n}^{\prime}\right)$ by separately examining $\phi\left(V_{n}^{\prime}\right)$ and comparing with $\phi\left(A^{\prime} \alpha^{n}\right)$, because for given α, there exist integral sequences $\left(V_{n}^{\prime}\right)$ satisfying (3.1) with initial values so chosen that

$$
\phi\left(V_{n}^{\prime}\right)=\phi\left(A^{\prime} \alpha^{n}\right) \quad \text { if } \quad n-h \equiv 0(r)
$$

The proof is a consequence of [2, Theorem 12.1] in conjunction with the canonical representation for p-adic integer μ :

$$
\mu=\sum_{k=0}^{\infty} a_{k} p^{k} \quad\left(0 \leqq a_{k}<p\right)
$$

with $A_{n}=\sum_{k=0}^{n} a_{k} p^{k}$ the $(n+1)^{\text {st }}$ convergent.
Case IIb. $\quad p=2, \phi(Q)=0, \phi(P)=1, \phi(R)>0$. Then

$$
f(Z) \equiv Z\left(Z^{2}+Q\right)
$$

and by the Hensel Lemma,

$$
f(Z)=(Z-\alpha)\left(Z^{2}-P^{*} Z+Q^{*}\right)
$$

in R_{2} with $\phi(\alpha)=\phi(R)>0$ and $\phi\left(P^{*}\right)>0$. Assume $\phi\left(P^{*}\right)=1$. Then, as in IIa, $2^{-f} \cdot W_{n}=((\gamma-\beta) / \delta) W_{n}^{\prime}$ with $W_{n}^{\prime}=A^{\prime} \alpha^{n}+V_{n}^{\prime},\left(V_{n}^{\prime}\right)$ satisfying (3.1) with at least one initial value a unit. P^{*} a double unit implies $\phi(\beta-\gamma)>0$, and so $r=1$ in (3.4).

If $\phi\left(V_{n}^{\prime}\right)=0$ for all n, then $\phi\left(W_{n}^{\prime}\right)=0$ for all $n \geqq$ some n_{n}. Otherwise let V_{h}^{\prime} be the first non-unit of $\left(V_{n}^{\prime}\right)$. Then

$$
\begin{equation*}
\phi\left(V_{n}^{\prime}\right)=\phi(\nu-(n-h)), \tag{3.6}
\end{equation*}
$$

and the valuation of $\left(V_{n}^{\prime}\right)$ is unbounded, as is

$$
\phi\left(W_{n}^{\prime}\right)=\min \left\{\phi\left(A^{\prime} \alpha^{n}\right), \phi\left(V_{n}^{\prime}\right)\right\} \quad \text { if } \quad \phi\left(A^{\prime} \alpha^{n}\right) \neq \phi\left(V_{n}^{\prime}\right)
$$

If P^{*} had not initially been a double unit, then note that

$$
W_{2 n+j}^{\prime}=A^{\prime} \alpha^{2 n+j}+V_{2 n+j}^{\prime} \quad(j=0,1)
$$

where $\left(V_{2 n+j}^{\prime}\right)=\left(V_{n}^{\prime \prime}\right)$ satisfies a quadratic recurrence whose coefficients $P^{\prime \prime}$ and $Q^{\prime \prime}$ are a double unit and a unit respectively [2]. Therefore P^{*} may be assumed a double unit to begin with.

Case III. $\phi(P)=0, \phi(Q)$ and $\phi(R)>0$. Then one root of $f(Z)$, say α, must have valuation 0 , while β and γ have positive valuations. Consider the expression $W_{n}=(1 / \delta) W_{n}^{\prime}=(1 / \delta)\left(A^{\prime} \alpha^{n}+B^{\prime} \beta^{n}+C^{\prime} \gamma^{n}\right)$. Then for $n \geqq$ some n_{0}

$$
\min \left\{\phi\left(B^{\prime}\right)+n \phi(\beta), \phi\left(C^{\prime}\right)+n \phi(\gamma)\right\}>\phi\left(A^{\prime} \alpha^{n}\right)=\phi\left(A^{\prime}\right)
$$

and so $\phi\left(W_{n}\right)=\phi\left(A^{\prime} / \delta\right)$ for $n \geqq n_{0}$.

4. Case I

Cases Ia, Ib, Ic will be dealt with by generalizing the results of [1] for rational integral sequences $\left(W_{n}^{\prime}\right)$ to p-adic integral sequences $\left(W_{n}\right)$. We use the canonical power series representation for p-adic integers together with the fact that proofs in [1] depend upon the behavior of (W_{n}^{\prime}) modulo successively higher powers of p in the residue class sequences of (W_{n}^{\prime}) modulo p^{k}. Let $\left({ }_{k} W_{n}^{\prime}\right)$ be a rational sequence whose corresponding coefficients and initial values have the same $(k+1)^{\text {st }}$ convergents as those of $\left(W_{n}\right)$. Then the residue class sequences of $\left(W_{n}\right)$ and $\left({ }_{k} W_{n}^{\prime}\right)$ modulo $p^{i}(i \leqq k+1)$ are identical. If $\max _{n \leqq n_{0}}\left\{\phi\left(W_{n}\right)\right\}=k$, then $\phi\left(W_{n}\right)=\phi\left({ }_{k} W_{n}^{\prime}\right)$ for $n \leqq n_{0}$; if $\phi\left(W_{n}\right) \leqq k$ for all n, then $\phi\left(W_{n}\right)=\phi\left({ }_{k} W_{n}^{\prime}\right)$ for all n. From such arguments and [1], it follows that for $\left(W_{n}\right)$ of Case I with at least one initial value a unit, $\min \left\{\phi\left(W_{n}\right), \phi\left(W_{n+1}\right), \phi\left(W_{n+2}\right)\right\}=0$ for all n, that is, $\left(W_{n}\right)$ is not a null sequence.

Define $\Delta(W)$, restricted period ρ_{k}, rank of apparition, and ideal cube
with respect to a p-adic integral $\left(W_{n}\right)$ in the manner of [1]. Here $\alpha^{n} \equiv a\left(p^{k}\right)$ means $\alpha^{n}-a=\alpha_{0} p^{k}$ with α_{0} a p-adic algebraic integer. We say the fundamental prime p of R_{p} is an ideal cube of order $l \geqq 1$ with respect to a given p-adic $\left(W_{n}\right)$ if $\rho_{1}=1$ and $l=\min \{\phi(\alpha-\beta), \phi(\beta-\gamma), \phi(\alpha-\gamma)\}$. Then by the type of argument used in the preceding paragraph, the following theorems and lemmas of [1], as well as the accompanying discussions, are proved valid for p-adic integral $\left(W_{n}\right)$: Theorems $5.1-5.3,6.1,7.1,7.2$; Lemmas 3.3, 5.1, 5.2. The following corrections of errors in [1] should be noted: the hypothesis of Lemma 3.3 should be "prime not dividing $R \delta^{2} \Delta(W)$ "; Theorem 5.3 should conclude, "if and only if p does not divide $\Delta(W)$ and $H^{2} \equiv K^{2}-4 H M(\bmod p) . "$

References

1. Morgan Ward, The laws of apparition and repetition of primes in a cubic recurrence, Trans. Amer. Math. Soc., vol. 79 (1955), pp. 72-90.
2. ——— The linear p-adic recurrence of order two, Illinois J. Math., vol. 6 (1962), pp. 40-52.

California Institute of Technology
Pasadena, California

