THE LINEAR CUBIC p-ADIC RECURRENCE AND ITS VALUE FUNCTION

ΒY

HAROLD C. KURTZ

1. Introduction and summary of results

Let

(1.1)
$$\Omega_{n+3} = P\Omega_{n+2} - Q\Omega_{n+1} + R\Omega_n$$

be a linear cubic *p*-adic recurrence with coefficients in the rational *p*-adic field R_p . The roots α , β , and γ of the characteristic polynomial

$$f(Z) = Z^{3} - PZ^{2} + QZ - R = (Z - \alpha)(Z - \beta)(Z - \gamma)$$

are *p*-adic algebraic numbers generating the root field $R_p(\alpha, \beta, \gamma) = \Re_p$ and will be assumed distinct and nonzero.

Let $(W_n) : W_0, W_1, \dots, W_n, \dots$ be a solution of (1.1) with given initial values W_0, W_1 , and W_2 in R_p not all zero, and let $w_n = \phi(W_n)$ be the *p*-adic value of W_n . We investigate the following "valuation problem": Given a sequence (W_n) satisfying (1.1) with specified initial values as above, to determine $\phi(W_n)$. This problem is trivial if one of the ratios of the roots of f(Z) is a root of unity in \Re_p ; f(z) is then termed degenerate. Hence we assume nondegeneracy, i.e., $(\alpha/\beta)^n$, $(\beta/\gamma)^n$, and $(\alpha/\gamma)^n \neq 1$ for all positive integers n.

We show that we may restrict ourselves to recurrences whose coefficients and initial values are *p*-adic integers where at least one coefficient and one initial value are *p*-adic units. Except when p = 2 or 3, we need only consider these cases:

- I P, Q, and R all p-adic units,
- II P and Q units, R a non-unit,
- III P a unit, Q and R non-units.

In Case III, the determination of $\phi(W_n)$ is trivial; for $n \ge \text{some } n_0, \phi(W_n)$ equals a constant. In II, the Hensel Lemma enables us to analyze the valuation of the cubic recurrence in terms of the valuation of the quadratic recurrence (results (3.2)-(3.5)), explicit formulas for the latter being given in Ward's paper [2]. Case I has been studied by Ward [1] when coefficients and initial values are rational integers; the results are extended to recurrences where these are p-adic integers in Section 4.

It appears likely that for a given integer t, the valuation problem for the t^{th} order nondegenerate recurrence

$$\Omega_{n+t} = A\Omega_{n+(t-1)} + \cdots + M\Omega_n$$

Received August 24, 1962.

may also be reduced to cases where all coefficients are p-adic integers and at least one is a p-adic unit. However, the complexity of reduction when t = 3, when contrasted with the simplicity of case t = 2 [2], indicates that a general reduction procedure for all t would be quite complicated, for as the order of the recurrence increases, the number of cases which must be considered also increases. Including p = 2 and 3, the quadratic recurrence reduces to two cases, the cubic to six.

2. Reduction of problem to Cases I, II, and III

For any given positive integer k, let j be a fixed integer in [0, k). Let $(W_n^{(k)})$ be any one of the k subsequences of (W_n)

$$W_n^{(k)} = W_{kn+j}$$
 $(n = 0, 1, 2, \cdots),$

and let $f_k(Z) = (Z - \alpha^k) (Z - \beta^k) (Z - \gamma^k) = Z^3 - P_k Z^2 + Q_k Z - R_k$. Then each $(W_n^{(k)})$ is a solution of

(2.1)
$$\Omega_{n+3} = P_k \Omega_{n+2} - Q_k \Omega_{n+1} + R_k \Omega_n,$$

and $f_k(z)$ is nondegenerate. If $\phi(W_n^{(k)})$ can be found for each j, $\phi(W_n)$ is known.

Let $p_k = \phi(P_k)$, $q_k = \phi(Q_k)$, $r_k = \phi(R_k)$, and $d_k = \min\{p_k, [q_k/2], [r_k/3]\}$. Then $(U_n^{(k)}) = (W_n^{(k)} \cdot p^{-nd_k})$ is a solution of

(2.2)
$$\Omega_{n+3} = P'_k \Omega_{n+2} - Q'_k \Omega_{n+1} + R'_k \Omega_n ,$$

where $p'_k = \phi(P'_k) = p_k - d_k$, $q'_k = q_k - 2d_k$, $r'_k = r_k - 3d_k$. Hence P'_k , Q'_k , and R'_k are *p*-adic integers, and $\phi(W_n^{(k)})$ is known if $\phi(U_n^{(k)})$ is. By elementary algebra,

$$P_{2} = P^{2} - 2Q, \qquad Q_{2} = Q^{2} - 2RP, \qquad R_{2} = R^{2},$$

$$P_{3} = P^{3} - 3PQ + 3R, \qquad Q_{3} = Q^{3} + 3R^{2} - 3PQR, \qquad R_{3} = R^{3}.$$

When $k = 1, P'_1, Q'_1$, and R'_1 are *p*-adic integers. Hence we are justified in assuming to begin with that the coefficients P, Q, and R of (1.1) are *p*-adic integers. Assuming this, let $f = \min \{\phi(W_0), \phi(W_1), \phi(W_2)\}$; then $(W'_n) = (W_n \cdot p^{-f})$ is a solution of (1.1) with $\phi(W'_n) = \phi(W_n) - f$. Hence W'_0, W'_1 , and W'_2 are *p*-adic integers, and at least one is a *p*-adic unit. We therefore assume to begin with that the initial values of (W_n) are integers, and at least one is a *p*-adic unit. Henceforth, in transitions to subsequences $(W_n^{(k)})$, it will be assumed that the preceding transformation is made on the terms of $(W_n^{(k)})$.

With the two preceding assumptions, let $d = \min \{p_1, [q_1/2], [r_1/3]\}$, and $U_n = W_n \cdot p^{-nd}$; then (U_n) satisfies (2.2) with k = 1. If $d = p_1$, then $p'_1 = 0$ and P'_1 is a unit; if $d = [q_1/2]$, then $q'_1 = 0$ or 1; if $d = [r_1/3]$, $r'_1 = 0$, 1, or 2. Since it is sufficient to determine $\phi(U_n)$, we see on examining the three possible values of d that we may assume one of the following holds:

126

(1) $\phi(P) = 0$, $\phi(Q)$ and $\phi(R) \ge 0$; (2a) $\phi(Q) = 0$, $\phi(P) \ge 1$, $\phi(R) \ge 0$; (2b) $\phi(Q) = 1$, $\phi(P) \ge 1$, $\phi(R) \ge 1$; (3a) $\phi(R) = 0$, $\phi(P)$ and $\phi(Q) \ge 1$; (3b) $\phi(R) = 1$, $\phi(P) \ge 1$, $\phi(Q) \ge 2$; (3c) $\phi(R) = 2$, $\phi(P) \ge 1$, $\phi(Q) \ge 2$.

We now show we may assume that at least one of P, Q, R is a p-adic unit; of the above, (2b), (3b), and (3c) must be dealt with.

(2b) If $\phi(R) = 1$, consider $(W_n^{(3)})$. Then prime $p \neq 3$ implies $\phi(P_3) = p_3 = 1$, $q_3 = 2$, $r_3 = 3$; hence $d_3 = 1$ and $\phi(R'_3) = 0$. If p = 3, we similarly have R'_3 a p-adic unit. When $\phi(R) \geq 2$, consider $(W_n^{(2)})$. Then $p \neq 2$ implies $\phi(P'_2) = 0$, and p = 2 implies $\phi(Q'_2) = 0$.

Hence in (2b), $\phi(W_n)$ is known if we can find the valuation of sequences $(U_n^{(k)}) = (W_n^{(k)} \cdot p^{-nd_k})$ in which at least one coefficient is a *p*-adic unit. Cases (3b) and (3c) may be similarly dealt with by considering subsequences $(W_n^{(3)})$.

Finally we show we may further restrict ourselves to the following six subcases:

Ia P, Q and R all p-adic units, Ib p = 2, Q and R units, P a double unit, Ic p = 3, R a unit, P and Q triple units, IIa P and Q units, R a non-unit, IIb p = 2, P a double unit, Q a unit, R a non-unit, III P a unit, Q and R non-units.

Since at least one coefficient may already be assumed a unit, it remains to reduce the following four cases to the preceding six:

(1) $\phi(Q) = 0$, $\phi(P)$ and $\phi(R) > 0$; (2) $\phi(R) = 0$, $\phi(P)$ and $\phi(Q) > 0$; (3) $\phi(P) > 0$, $\phi(Q) = \phi(R) = 0$; (4) $\phi(Q) > 0$, $\phi(P) = \phi(R) = 0$.

(1) Consider $(W_n^{(2)})$. If $p \neq 2$, $\phi(P_2) = \phi(Q_2) = 0$, $\phi(R_2) > 0$; this is Case IIa. If p = 2, $P_2 = 2 \times \text{unit}$, $\phi(Q_2) = 0$, $\phi(R_2) > 0$; Case IIb.

(2) Consider $(W_n^{(3)})$. If $p \neq 3$, reduce to Ia; if p = 3, to Ic.

(3) Consider $(W_n^{(2)})$. If $p \neq 2$, reduce to Ia; if p = 2, to Ib.

(4) If $p \neq 2$, consider $(W_n^{(2)})$ and reduce to Ia. If p = 2, consider $(W_n^{(3)})$; here $\phi(Q_3) = \phi(R_3) = 0$. If $\phi(P_3) > 0$, then we have (3) with p = 2, and this has been reduced to Ib; if P_3 is a unit, then we have Ia.

3. Cases II and III

We investigate Case IIa in detail employing the Hensel Lemma, subsequently applying the same methods to IIb; the triviality of III will then be shown. Case IIa. $\phi(P) = \phi(Q) = 0, \phi(R) > 0$. Then $f(Z) = Z^3 - PZ^2 + QZ - R \equiv Z(Z^2 - PZ + Q) \quad (p).$

By the Hensel Lemma,

$$f(Z) = (Z - \alpha) (Z^2 - P^*Z + Q^*) = (Z - \alpha)g(Z) \text{ in } R_p,$$

where $Z - \alpha \equiv Z$ (p) and $Z^2 - P^*Z + Q^* \equiv Z^2 - PZ + Q$ (p). In $R_p(\beta)$,
 $f(Z) = (Z - \alpha)g(Z) = (Z - \alpha) (Z - \beta) (Z - \gamma),$

with $\phi(\beta) = \phi(\gamma) = 0$. Then

$$W_n = A\alpha^n + B\beta^n + C\gamma^n$$

$$= ((\gamma - \beta)/\delta)[A^*\alpha^n + B^*\beta^n + C^*\gamma^n] = ((\gamma - \beta)/\delta)W_n^*.$$

Here $\delta = (\alpha - \beta) (\beta - \gamma) (\alpha - \gamma)$ is the square root of the discriminant of f(z), and

$$A^{*} = -[W_{2} - W_{1}P^{*} + W_{0}Q^{*}],$$

$$B^{*} = [W_{2} - W_{1}(\alpha + \gamma) + W_{0}\alpha\gamma](\gamma - \alpha)/(\gamma - \beta),$$

$$C^{*} = [W_{2} - W_{1}(\alpha + \beta) + W_{0}\alpha\beta](\alpha - \beta)/(\gamma - \beta).$$

From [2], $(B^*\beta^n + C^*\gamma^n) = (V_n^*)$ satisfies

(3.1)
$$\Omega_{n+2} = P^* \Omega_{n+1} - Q^* \Omega_n$$

with characteristic polynomial g(z) having unit coefficients, and

$$V_n^* = \frac{(V_1^* - V_0^* \gamma)\beta^n - (V_1^* - V_0^* \beta)\gamma^n}{\beta - \gamma}.$$

Then

$$V_0^* = [W_2 - \alpha^2 W_0 + (\alpha W_0 - W_1) P^*]$$

and

$$W_1^* = [W_2 \alpha - W_1(\alpha^2 + Q^*) + W_0 \alpha P^*]$$

are *p*-adic integers, and so (V_n^*) is a quadratic *integral* recurrent sequence. Letting $f = \min \{\phi(V_0^*), \phi(V_1^*)\}$, define

$$W'_{n} = p^{-f} \cdot W^{*}_{n} = p^{-f} (A^{*} \alpha^{n} + V^{*}_{n}) = (A' \alpha^{n} + V'_{n});$$

then $\phi(W_n) = \phi((\gamma - \beta)/\delta) + f + \phi(W'_n)$. The problem is to determine the valuation of $(W'_n) = (A'\alpha^n + V'_n)$ where (V'_n) satisfies the quadratic integral recurrence (3.1) with at least one of V'_0 or V'_1 a unit.

We refer to [2] to determine $\phi(V'_n)$. If $\phi(V'_n) = 0$ for all *n*, then for $n \ge \text{some } n_0$

(3.2)
$$w'_n = \phi(W'_n) = 0,$$

since $\phi(\alpha) > 0$ implies $\phi(A'\alpha^n) > 0$ for $n \ge n_0$.

Otherwise let V'_h be the first term of (V'_n) with positive value, and let ν denote the following *p*-adic integer, expressed as a *p*-adic logarithm:

$$\nu = \log [V'_{h+1} - V'_h \gamma / V'_{h+1} - V'_h \beta] / \log (\gamma / \beta)^r.$$

Here r = 1 if $\phi(\beta - \gamma) > 0$. If $\phi(\beta - \gamma) = 0$, sequence (V'_n) is termed ordinary, and r is the least positive n for which $\phi((\beta^n - \gamma^n)/(\beta - \gamma))$, denoted by l_n , is ≥ 1 . [2] now yields the following:

If (V'_n) is ordinary and $\phi(V'_h) < l_r$, then by [2, Theorem 9.3]

$$\begin{split} \phi(V'_n) &= 0 & \text{if } n-h \not\equiv 0 \ (r), \\ \phi(V'_n) &= \phi(V'_h) & \text{if } n-h \equiv 0 \ (r). \end{split}$$

Here, there is an n_0 such that $n \ge n_0$ implies

(3.3)
$$\begin{aligned} \phi(W'_n) &= 0 & \text{if } n-h \neq 0 \ (r), \\ \phi(W'_n) &= \phi(V'_h) & \text{if } n-h \equiv 0 \ (r). \end{aligned}$$

Since l_r will usually be 1, the above situation is rare. When the above is not the case, then we have from [2, Theorems 10.1 and 11.2]

(3.4)
$$\begin{aligned} \phi(V'_n) &= 0 & \text{if } n-h \neq 0 \ (r), \\ \phi(V'_n) &= \phi(\nu - (n-h)/r) + l_r & \text{if } n-h \equiv 0 \ (r). \end{aligned}$$

For those *n* for which $\phi(A'\alpha^n) \neq \phi(V'_n)$, we then have

$$\phi(W'_n) = \min \{ \phi(A'\alpha^n), \phi(V'_n) \}.$$

Since $\phi(V'_n) = 0$ if $n - h \neq 0$ (r), there is an n_0 such that

(3.5)
$$\phi(W'_n) = 0 \quad \text{if} \quad n \ge n_0 \quad \text{and} \quad n - h \ne 0 \quad (r).$$

Criteria for (V'_n) to have terms of positive valuation are given by [2, Theorems 8.1, 9.2, and 11.1], the last giving necessary and sufficient conditions for the value function $\phi(V'_n)$ to be unbounded.

Note that in general we cannot say more about $\phi(W'_n)$ by separately examining $\phi(V'_n)$ and comparing with $\phi(A'\alpha^n)$, because for given α , there exist integral sequences (V'_n) satisfying (3.1) with initial values so chosen that

$$\phi(V'_n) = \phi(A'\alpha^n) \quad \text{if} \quad n - h \equiv 0 \ (r).$$

The proof is a consequence of [2, Theorem 12.1] in conjunction with the canonical representation for p-adic integer μ :

$$\mu = \sum_{k=0}^{\infty} a_k p^k \qquad (0 \leq a_k < p),$$

with $A_n = \sum_{k=0}^n a_k p^k$ the $(n + 1)^{\text{st}}$ convergent.

Case IIb. $p = 2, \phi(Q) = 0, \phi(P) = 1, \phi(R) > 0$. Then $f(Z) \equiv Z(Z^2 + Q)$ (2), and by the Hensel Lemma,

$$f(Z) = (Z - \alpha) (Z^2 - P^*Z + Q^*)$$

in R_2 with $\phi(\alpha) = \phi(R) > 0$ and $\phi(P^*) > 0$. Assume $\phi(P^*) = 1$. Then, as in IIa, $2^{-f} \cdot W_n = ((\gamma - \beta)/\delta) W'_n$ with $W'_n = A'\alpha^n + V'_n$, (V'_n) satisfying (3.1) with at least one initial value a unit. P^* a double unit implies $\phi(\beta - \gamma) > 0$, and so r = 1 in (3.4).

If $\phi(V'_n) = 0$ for all n, then $\phi(W'_n) = 0$ for all $n \ge \text{some } n_0$. Otherwise let V'_h be the first non-unit of (V'_n) . Then

(3.6)
$$\phi(V'_n) = \phi(\nu - (n-h)),$$

and the valuation of (V'_n) is unbounded, as is

$$\phi(W'_n) = \min \{ \phi(A'\alpha^n), \phi(V'_n) \} \text{ if } \phi(A'\alpha^n) \neq \phi(V'_n).$$

If P^* had not initially been a double unit, then note that

$$W'_{2n+j} = A'\alpha^{2n+j} + V'_{2n+j} \qquad (j = 0, 1),$$

where $(V'_{2n+j}) = (V''_n)$ satisfies a quadratic recurrence whose coefficients P'' and Q'' are a double unit and a unit respectively [2]. Therefore P^* may be assumed a double unit to begin with.

Case III. $\phi(P) = 0, \phi(Q)$ and $\phi(R) > 0$. Then one root of f(Z), say α , must have valuation 0, while β and γ have positive valuations. Consider the expression $W_n = (1/\delta)W'_n = (1/\delta)(A'\alpha^n + B'\beta^n + C'\gamma^n)$. Then for $n \ge \text{some } n_0$

$$\min \left\{ \phi(B') + n\phi(\beta), \phi(C') + n\phi(\gamma) \right\} > \phi(A'\alpha^n) = \phi(A'),$$

and so $\phi(W_n) = \phi(A'/\delta)$ for $n \ge n_0$.

4. Case I

Cases Ia, Ib, Ic will be dealt with by generalizing the results of [1] for rational integral sequences (W'_n) to *p*-adic integral sequences (W_n) . We use the canonical power series representation for *p*-adic integers together with the fact that proofs in [1] depend upon the behavior of (W'_n) modulo successively higher powers of *p* in the residue class sequences of (W'_n) modulo p^k . Let $(_kW'_n)$ be a rational sequence whose corresponding coefficients and initial values have the same $(k + 1)^{\text{st}}$ convergents as those of (W_n) . Then the residue class sequences of (W_n) and $(_kW'_n)$ modulo p^i $(i \leq k + 1)$ are identical. If $\max_{n \leq n_0} \{\phi(W_n)\} = k$, then $\phi(W_n) = \phi(_kW'_n)$ for $n \leq n_0$; if $\phi(W_n) \leq k$ for all *n*, then $\phi(W_n) = \phi(_kW'_n)$ for all *n*. From such arguments and [1], it follows that for (W_n) of Case I with at least one initial value a unit, $\min \{\phi(W_n), \phi(W_{n+1}), \phi(W_{n+2})\} = 0$ for all *n*, that is, (W_n) is not a null sequence.

Define $\Delta(W)$, restricted period ρ_k , rank of apparition, and ideal cube

with respect to a *p*-adic integral (W_n) in the manner of [1]. Here $\alpha^n \equiv a (p^k)$ means $\alpha^n - a = \alpha_0 p^k$ with α_0 a *p*-adic algebraic integer. We say the fundamental prime *p* of R_p is an ideal cube of order $l \geq 1$ with respect to a given *p*-adic (W_n) if $\rho_1 = 1$ and $l = \min \{\phi(\alpha - \beta), \phi(\beta - \gamma), \phi(\alpha - \gamma)\}$. Then by the type of argument used in the preceding paragraph, the following theorems and lemmas of [1], as well as the accompanying discussions, are proved valid for *p*-adic integral (W_n) : Theorems 5.1–5.3, 6.1, 7.1, 7.2; Lemmas 3.3, 5.1, 5.2. The following corrections of errors in [1] should be noted: the hypothesis of Lemma 3.3 should be "prime not dividing $R\delta^2\Delta(W)$ "; Theorem 5.3 should conclude, "if and only if *p* does not divide $\Delta(W)$ and $H^2 \equiv K^2 - 4HM \pmod{p}$."

References

- 1. MORGAN WARD, The laws of apparition and repetition of primes in a cubic recurrence, Trans. Amer. Math. Soc., vol. 79 (1955), pp. 72–90.
- The linear p-adic recurrence of order two, Illinois J. Math., vol. 6 (1962), pp. 40-52.

CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA