ON A PROBLEM OF STORMER

BY
D. H. LEEMER

1. Introduction

Let ¢1 < g2 < +++ < ¢: be a given set of ¢ primes, and let @ be the set of
all numbers

¢t et gt (a; 20, 7= 1(1)¢)

generated by these primes. We consider the question of finding pairs
(8, 8 + 1) of consecutive integers such that both S and S 4+ 1 belong to Q.
Since it is obvious that no such pair exists unless ¢; = 2, we are at the same
time asking about those members of @ which are triangular numbers. Interest
in such pairs dates back to the 18t century and seems to have been awakened
by their usefulness in calculating logarithms of integers to. great accuracy.
Gauss notes for example that

9800 = 2°.5°.7°, 9801 = 3*.11%

Such pairs lead to sets of “nearly’”’ dependent logarithms of primes. For
instance the number

K = log 63927525376 — log 63927525375
= 13log2 — 3log3 — 3log5 — 7log7
+ 4 log 11 4 log 13 — log 23 4 log 41,

which cannot be zero because of the unique factorlzatmn theorem, is, however,
less than 1.56427-107".
Another use for such pairs is in finding particular solutions of diophantine
equations of the form
Az™ — By™ = 1.
For example the equation
=14t =1

has the solution (55, 6) because of the pair (3024, 3025). In a recent proof
of some results on the distribution of consecutive pairs of higher residues,
many hundreds of such pairs were used with ¢ ranging up to 32 [1].

The problem proposed and solved by Stgrmer [2] is that of finding all pairs
(8, 8§ 4+ 1) both belonging to the given set Q. He showed that there are
indeed only a finite number of such pairs, and that they can be found in a
nontentative way by solving 3° — 2° Pell equations. He gave all 23 pairs
that go with the set

Q1271 3%2 5% 7%,
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58 D. H. LEEMER

Itt, follotws from Stgrmer’s procedure that the number of pairs cannot exceed
3" — 2%

The mere finiteness of the number of such pairs follows from the celebrated
theorem of Thue as Thue [7] himself noted in 1908. However this non-
constructive argument fails to furnish the actual pairs. An upper bound of
32" for the number of pairs follows from “certain results on diophantine
cubics’ according to a recent remark of Nagell [3].

The large number of Pell equations required by Stgrmer’s method makes it
impractical except for very limited values of {£. The purpose of this paper
is to present an alternative to Stgrmer’s algorithm requiring the solution of
only 2° — 1 Pell equations. It follows from the new procedure that the
number of pairs cannot exceed (g; + 1)(2° — 1)/2 when ¢, > 3. It is also
possible to give an upper limit for the largest possible pair in terms of the
given ¢’s.

Stgrmer’s procedure depends on his interesting lemma to the effect that
if 2% — Dy’ = 1, and if all the prime factors of y divide D, then (z, y) is the
fundamental solution of this Pell equation. The present method makes use
of the multiple solutions of the Pell equation and their characteristic prime
factors. The theory [4] is that of Lucas’s function U, , but in this particular
case rather more can be proved in a simpler self-contained elementary treat-
ment.

Although in the present method the number of Pell equations to be solved
is drastically reduced, a complete set of pairs corresponding to a given set @
still may represent a great deal of calculation, with quite large numbers
appearing frequently. We have made these calculations for the most useful
case in which ¢, is the 7t prime and ¢ = 13, that is, for the set

an=2 ¢=3, ¢=95 -, qz=4L

The results are tabulated with the expectation that they will be of future use.
The computer used was the IBM 704 at the University of California Com-
puter Center at Berkeley.

2. The Lucas function U,

The exact procedure for solving Stgrmer’s problem is contained in Theorem
1. The proof of the theorem justifying the procedure is approached by way
of five lemmas dealing with the multiple solutions of the Pell equation

(1) o> — Dy’ = 1.

It is assumed that the reader is familiar with the classical method of finding
the fundamental or least positive solution (2, y1) of (1) by means of the
continued fraction expansion of the square root of D (see [5]). The nt
multiple solution (z, , y.) is then given by

xn+yn\/D = (x1+y1\/D)n (n = 0) 172y37 )'
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For brevity we write

a =2 + yl'\/D, ,3 =T — ylvD!

so that
a+B=2r, aof=1 a—B=2uVD,

and

2, = a"+ 8", 2yN/D =" — 6"
We also introduce

Un = ya/th = (" — B")/(a — B).
It will be convenient later to introduce the number M defined by
M = max (3, (¢: + 1)/2).

The following identities are easily verified

(2) T = 225 — 1,

(3) U = 22,U,,

(4) Tmin = TmTn =t DYm Yn,

(5) Upin = € Upn £ 20 Us,

(6) U = 2izo GA) Dyl ™7,

() T = Dise (5)Dyial ™,

®) Upn = 2izo (23) DUR yien™

Let p = 2 be a prime, and let w(p) = w be the “rank of apparition” of p in
the sequence {U,}, that is, the least positive j for which Uj; is divisible by p.
Lemma 1 shows that w exists. By (5) we see that the set of all subscripts 5
for which p divides U; is a module. Hence p divides U, if and only if w
divides n.

Lemma 1 (Law of Apparition). w(2) = 2; w(p) = p ¢ p divides Dy, .
For any other prime p, w(p) divides (p — €)/2, where

€= <§) = D*™? (mod p).

Proof. U, =1, Up= 2z;. Hence w(2) = 2. If p divides Dy, then
(6) gives
(9) U, =nzi™" (mod p).
Since

#Zi=14+Dyi=1 (modp),

it follows from (9) that U, is the first U to be divisible by p. Finally suppose
p > 2, and p does not divide Dy; . Then (6) gives for n = p
(10) Up= D" = ¢ (mod p),



60 D. H. LEHMER
bgcause of the divisibility of the binomial coefficients by p. Similarly (7)
gives
(11) =21 =2; (mod p).
Using (5), (10), and (11) we have
Upe =Upt1 — €2, =2:{Up, — ¢ =0 (mod p),
Tpe=TpZ — DYy =21 — €Dy =1 (mod p).

Now by (2)
20(p-02 — 1 = 2y =1 (mod p).

Hence p does not divide 2,—s2 . But by (3)
2202 Up—oryp = Up—e =0 (mod p).

Thus p divides U(p—e);2 . By the remark preceding the lemma, w(p) divides
(p —€)/2.
LemMa 2. Let p > 3 be a prime dividing Dy, . Then U, = p (mod p*).
Proof. By (6), with n = p,
Up=pal™ + (§)Dyiaf™ (mod Dys).
Since p > 3, and since p divides Dy; but not x; , we have
1

=p (mod p").

The condition p > 3 is necessary since U; = 15 if D = 3 and U; = 99 if
D =6.

U, = pai™

Lemma 3 (Law of Repetition). Let A = 0, and let k& be an integer not
divisible by the prime p. Let p°, a > 0, be the highest power of p dividing U, .
Then the highest power of p dividing Uimp is p* .

Progf. It is clearly sufficient to establish the lemma for A = 0 and A = 1
as the rest follows by repeated application of the case A = 1.
For A = 0 we set n = k in (8) and obtain

Uim = kU257 (mod US,).

Since U, and z.. are relatively prime, it follows that Uy, and U. contain the
same highest power, p°, of p. For A = 1 we set n = kp in (8) and obtain

Utmp = kpUnmzn? ™ (mod Up).
This shows that Upmp is divisible by p**™ but not by p**:.

3. The function G,
We now introduce a factor G, of U, defined as follows
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G, =1,
G, a+ B =2z = U,
Gy = o +af+ 6 =Us,
and in general for n > 1
Gn = IIs {a — Bexp (2mik/n))

where & ranges over all ¢(n) numbers < n and prime to n. It is clear that
@, is an integer, being a symmetric function of « and 8 and of the primitive
n roots of unity. In fact

Un = Hsm Gs

where the product ranges over the divisors of n. We distinguish two kinds
of prime factors of G, . A prime factor of G, which divides n is called ¢ntrinsic.
The other prime factors of G, are called extrinsic.

LemmaA 4. If G, has an intrinsic prime factor p, then p is the largest prime
factor of n. If n > 3, G, is not divisible by p’.

Proof. Let d be the greatest common divisor of G, and n. If d =1,
there is nothing to prove. If d > 1, let p be any prime factor of d, and let
w = w(p) be the rank of apparition of p in the sequence U. Since p divides
G, and hence U, , it follows that w divides n. Let

n = kwp" ANz0, pAEk).
We first show that £ = 1. In fact if & > 1, the integer
Un/Un/k = H&]n,ﬁ,{’n/k G6
is divisible by G, and hence by p. But by the Law of Repetition (Lemma 3),
U,/ U, is not divisible by p. Hence &k = 1, and
n = wp' Az 0).

By Lemma 1, p =2 w. Thus p is the largest prime factor of n. It remains to
show that if » > 3, G, is not divisible by p°. Suppose the contrary, and
suppose that A > 0. Then the ratio

U/ Uppr—1

would be divisible by G, and hence by p’. But Lemma 3 denies this. Hence

=0andn = w. Sincep|n,p = w. Butp =Zw. Hencep =w=n> 3.
By Lemma 2, G, = G, = U, is not divisible by p>. This establishes the
lemma.

Lemma 5. If n > 3, y, s divisible by a prime = 2n — 1.
Proof. Let

t o
n = i=1 s "



62 D. H. LEHMER

be the factorization of n into its prime factors of which the prime p; is the
largest. Then

¢(n) = [Licp® (i = 1) 2 pe— 1.
Hence

|G| = IIsla — Bexp (2nih/n) | > (a — £)*”
— (zyl,\/D)‘#(n) > 211:—1 = D .

Therefore, by Lemma 4, G, has an extrinsic prime factor p*. Let w = w(p™)
be rank of apparition of p*. Since p* divides @, and hence U, , w divides n.
Suppose, if possible, that w < n, so that G, divides the integer

Un/Uw = n&]n,ﬁ/[’w G3 .

Then p* divides this ratio. But p*, being extrinsic, does not divide n or w
and so, by Lemma 3, U,/U, is not divisible by p*. This contradiction
proves that w = n. But then p* # w since p* does not divide n. Therefore
by Lemma 1, w, and hence n, divides 3(p* 4= 1). Thus p* = 2n — 1.
But p* divides G,, which divides U,, which in turn divides y, = U, y: .
This proves the lemma.

4. The procedure
We are now in a position to prove the following theorem.

TaroreM 1. Let
2= < @< - <q

be a given set of t primes. Let Q be the set of numbers of the form
atet gt (e; 2 0, ¢=1(1)%),

and let Q' be the subset of all 2° — 1 square-free members of Q with the exception
of 2. Let S be an integer such that both S and S+ 1 belongs to Q.
Then S = (2, — 1)/2 where (2, , Ya) 18 a solution of the Pell equation

(12) 2 — 20 =1
in which
(13) AeQ, 1Z2n=M, y.eQ.

Conversely, if (Zn,Yn) s a solution of (12) subject to conditions (13), then
S = (2, — 1)/2 and S + 1 both belong to Q.

Proof. Suppose first that (x,,y.) satisfies (12) and (13). Then, since
Z, is odd and y, is even,

S(S+1) = (a2 — 1)/4 = 2A(ya/2)° € Q.
On the other hand, suppose that S(S + 1) € @, so that
(14) S(8S+1) =2¢7" ¢3* -+ ¢i*
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where
;= €i+2.8i, €i=0,1 (’i= l(l)t).
Furthermore let

r=28+4+1 y=2¢ - ¢eQ, A=gi'gs -+ gi'eQ.
Multiplying (14) by 4 we see that
48" + 48 = 2" — 1 = 244°.

Hence each such S leads to some solution (z,y) of (12) in which y and A
belong to Q and Q' respectively. As is well known, (z, ) must be (z, , ¥a)
for some n = 1. It remains to show that n < M.

Suppose, instead, that » > M. Applying Lemma 5 we conclude that y,
is divisible by a prime p such that

pZ2m—1>2M —12q.

Hence y,, is not a member of @, contrary to fact. Thusn < M.

Stgrmer considered also the question of finding two members of @ differing
by 2, and Nagell [3] that of two members of @ differing by 4. The present
method extends to both these cases. In fact we have the following counter-
parts of Theorem 1.

TarEOREM 2. Let
< @p<--<q

be a given set of t primes, and let Q be the set of numbers generated by them. Let
Q' be the subset of all square-free members of Q. Let S be a number such that
both S and S + 2 belong to Q. Then S = x, — 1 where (X, , Ya) ©s a solution
of the Pell equation

(15) =Dy =1
in which
(16) 1<DeQ, 1=n=M y.eQ.

Conversely, if (Zn , Ya) 18 6 solution of (15) subject to (16), then both 8 = z, — 1
and S + 2 belong to Q.

THEOREM 3. Let
ql < o e < Qt

be a set of odd primes, and let Q be the set of numbers generated by them. Let Q'
denote the set of all square-free members of Q of the form 8m + 5. If both S and
S + 4 belong to Q, then S = &, — 2 where (£, , 1a) is the n™ solution, in order
of magnitude, of the equation

(17) £—Dy =4

where
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D € Q' and is such that (17) has a solution in odd integers (&, ),
1=n=M, n#0 (mod3), M € Q.

Conversely, if (&n, 1) s @ solution of (17) in odd integers subject to (18),
then S = &, — 2 and 8 + 4 both belong to Q.

The proofs of Theorems 2 and 3 are similar to that of Theorem 1. In each
case use is made of Lemma 5.

(18)

5. Bounds

These theorems give immediately upper bounds for the number of numbers
S such that S and S 4+ d have their prime factors taken from a set of ¢ primes
for d = 1, 2, 4. In fact this number cannot exceed M times the number of
Pell equations involved. Thus we have

THEOREM 4. For d = 1, 2, let N4(t) denote the number of pairs of numbers
differing by d whose product has its prime factors restricted to a given set of ¢
primes of which the largest is q: .  Then

Ni(t) £ M(2' — 1).

TureoreM 5. Let Ny(t) denote the number of pairs of odd numbers differing
by 4 whose product has its prime factors taken from a set of odd primes

(19) n<@<--<g.

Then
Ni(t) £ h2'(M + %)/3

where h = % if the set (19) contains a prime of the form 8n + 5 and at least
one prime of the form 8n + 3 or 8n + 7; h = 1 ¢f (19) contains at least one
prime of the form 8n + 5 but no prime of the form 8n 4 3 or 8n + 7; h = § if
(19) contains primes of both forms 8m + 3 and 8m + 7 but no prime of the
form 8m + 5; and finally h = 0 otherwise.

It is possible to use Theorems 1, 2, 3 to obtain upper bounds for the largest
pairs. For this we use a theorem of Hua [6]:

TuroreM 6. Let D be a positive nonsquare integer congruent to 0 or 1 modulo
4. Let (&, m) be the least positive solution of the equation

(20) £ — Dy’ = 4.
Let
9 = (& + m/D).
log 6 < %(2 + log D)A/D.

LemMmA 6. Let D be a positive nonsquare integer, and let (x., y.) be the

Then
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n™ multiple solution of (1). If D = 0,1 (mod 4), let (&, , n.) e the n* solu-
tion of (20). Then

(21) log (2. 4+ ¥aV/D) < n(2 + log (4D))\/D,
(22) log {3(t, + 7.+/D)} < 2(2 + log D)A/D.

Proof. The inequality (22) is an immediate consequence of Theorem 6
and the fact that
%(En -+ ﬂn\/D) = 0"
To prove (21) we note that (2z, y) is a solution of £ — 4D»* = 4 if and
only if (x, y) is a solution of (1). Therefore

log (2 + yaV/D) = nlog (21 + 11/ D) = nlog {3(2z1 + y:v/(4D))}.
Applying Theorem 6 with D replaced by 4D gives

log (n + ¥av/D) < n(2 + log (4D))\/D.

We can now easily prove the following inequalities.

TureorReEM 7. Let S; be the largest S such that S(S + 1) has all its prime

factors taken from the set
n<@e<-: --<gq.
Then
log 8, < M{2 -+ log (8P)\/(2P) — log 4
where
P=qg- - q.

Proof. By Theorem 1, S; will correspond to some value of 2A with A e Q'

(so that A = P), and to some value of n < M. Hence

28 =2, — 1 < 3@+ 12V(24)) £ $(zn + yuV/(28)).
By (21)
log 4 + log S; < M(2 + log 8A)4/(24).
The theorem now follows from the inequality A < P.
TurorREM 8. Let S; be the largest S such that S(S + 2) has all its prime
factors taken from the set

3=a<@e< - <g.
Then
log S: < M{2 + log (4P)\/P — log 2
where
P=qqg - q.
This is proved in the same way from Theorem 2 and (21).

TureorREM 9. Let Sy be the largest S such that S(S + 4) has all its prime
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factors taken from the set

3=qa<@e<- - <g.
Then, if Si exists,

log S: < M'[log 2 + (2 + log P')\/P'] — log 2

where P’ is the largest product of ¢’s that is congruent to 5 modulo 8 and M’
is the largest integer = (q: + 1)/2 not divisible by 3.

This follows from Theorem 3 and (22).

Of course, these inequalities and even those of Theorems 4 and 5 are very
weak. The actual values of Ni(¢) and S; = Si(¢) for the case in which
gr, is the kt prime are given for ¢ < 13 in Table A. In contrast, for ¢ = 13,
Theorems 4 and 7 give

Ny(13) = 172011, S,(13) < 10109.925.

TABLE A

t q: Ni(t) S:1(t) t q: Ni(2) 81 (8)

1 2 1 1 8 19 167 11859210
2 3 4 8 9 23 241 11859210
3 5 10 80 10 29 345 177182720
4 7 23 4374 11 31 482 1611308699
5 11 40 9800 12 37 653 3463199999
6 13 68 123200 13 41 869 63927525375
7 17 108 336140

6. Remarks on procedure

The following remarks may be of use to the reader who may wish to apply
Theorems 1, 2, or 3 to a given set of ¢’s. Tables of the solutions of the Pell
equation are so limited that it becomes necessary to use a digital computer
except for very small ¢ and g; . As is well known, solutions of the Pell equa-
tion may be exceedingly large even for small D, so one must be prepared for
multiprecise arithmetic operations, that is, one must use subroutines which
perform addition, multiplication, and square-root of numbers which occupy
many hundreds of machine words.

The successive solutions (x, , y.) are quickly found recursively by means of
the familiar relations

Tm41 = 2151 Tm — Tm—, Ym+1 = 2-771 Ym — Ym—,

once the continued fraction procedure has produced the fundamental solution
(131 ’ yl)

To decide whether or not y, belongs to @, it is only necessary to test y,
for divisibility by each of the ¢, removing at each step whatever powers of
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¢: it may chance to contain. If at any step the quotient becomes unity, then
Yn € Q, if not, y, ¢ Q.

Since every ¥, is divisible by ¥ , it is useless to examine multiple solutions
if 3 does not belong to Q. More generally, if ¥, does not belong to @, then
neither does yx» . These facts, incorporated in the routine, eliminate a great
deal of multiprecise testing of large y’s for membership in Q.

In dealing with the very large values of D that the method requires, one
is running the risk of having an intolerably long period in the continued
fraction for A/D. Indeed it is not uncommon for the period to be more
than+/D. Insuch a case the value of ¥, is apt to exceed

exp {7"/D/ log 4096} .

Had this occurred for any one of the large values of D encountered in our
examination of the case

q1=27 Q2=3, ] Q13=41,

we would have had to abandon the project. As it was, the longest period ex-
perienced was 7922, the period corresponding to

D = 43464323361030
= 2-3-5-11-13-17-19-23-29-31-37 -41.

Apparently, for D a product of small primes, one may expect unusually
short periods, a fortunate phenomenon for our method.

If for some D the continued fraction turns out to have a long period, the
value of y; would be very large, and so it is almost certain that y; does not
belong to Q. We can find the highest power of each ¢, dividing y; , without
calculating ¥, itself, by simply carrying out the calculation of the convergents
of the continued fraction modulo m,, ms, -+ where each m is a suitably
chosen product of powers of ¢’s and each m is a single machine word. In this
way a great deal of multiprecise arithmetic isavoided. If weknow the highest
power of ¢; contained in y; and the length K of the period, it is easy to prove
that y; must be divisible by some prime greater than ¢,. In fact, y; exceeds
the Kt Fibonacci number, which is almost sure to be greater than the product
of powers of ¢; actually dividing y, .

7. Description of tables

We append three tables described as follows.

Table I gives all 869 numbers N greater than 1 such that N(N — 1) has
no prime factor greater than 41. Table I is divided into two parts. In
Table TA the 869 numbers in question are classified according to the largest
prime factor of N(N — 1). Table IB gives the 251 numbers N greater than
10° such that N(N — 1) has no prime factor greater than 41 and, for each
such N, gives the exponents of the primes in the factorization of N/(N — 1).
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Thus the entry

N 235 7 11 13 17 19 23 29 31 37 41
116964 2 4 -3 -1 2 -1

in Table IB means that
116963 = 7°.11-31, 116964 = 2°.3*.19%

Table II gives all 101 odd numbers N greater than 1 such that N(N — 2)
has no prime factor greater than 31. In Table ITA these numbers are classi-
fied according to the largest prime factor of N(N — 2), while Table IIB gives
the factorization of N/(N — 2) for those N greater than 10°.

Table III gives all 99 odd numbers N greater than 3 such that N(N — 4)
has no prime factor greater than 31. In Table IITA these numbers are classi-
fied according to the largest prime factor of N(N — 4), while Table ITIB
gives the factorization of N/(N — 4) for those N greater than 10°.

The corresponding factorizations for values of N less than 10° can be readily
supplied from [8].
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TABLE IA

Integers N greater than 1 such that the largest prime factor of N(N — 1) is the #th
prime number, ¢ £ 13

69

t = t = t=3 t=4 t=5
2 3 5 7 50 1 99 540
4 6 8 64 12 100 3025
9 10 15 126 22 121 9801
16 21 225 33 176
25 28 2401 45 243
81 36 4375 55 385
49 56 441
13 91 364 4225 17 136 442 1225 5832
14 105 625 6656 18 154 561 1275 12376
26 144 676 10648 34 170 595 1701 14400
27 169 729 123201 35 221 715 2058 28561
40 196 1001 51 256 833 2431 31213
65 325 1716 52 273 936 2500 37180
66 351 2080 85 289 1089 2601 194481
78 352 4096 120 375 1156 4914 336141
19 343 2432 14365 23 391 1863 8281 71875
20 361 2926 23409 24 392 2024 8625 75141
39 400 3136 27456 46 460 2025 10626 76545
57 456 3250 28900 69 484 2185 11271 104329
76 476 4200 43681 70 507 2300 11662 122452
77 495 5776 89376 92 529 2646 12168 126225
96 513 5929 104976 115 576 2737 16929 152881
133 969 5985 165376 161 736 3060 19551 202125
153 1216 6175 228096 162 760 3381 21505 264385
171 1331 6860 601426 208 875 3520 21736 282625
190 1445 10241 633556 231 897 3888 23276 328510
209 1521 10830 709632 253 1105 4693 25025 2023425
210 1540 12636 5909761 276 1197 4761 25921 4096576
286 1729 13377 11859211 300 1288 5083 43264 5142501
324 2376 14080 323 1496 7866 52326
=10
29 145 320 609 1015 1683 2465 3510 5916 9802
30 175 378 638 1045 2001 2640 4641 6670 10557
58 204 406 726 1276 2002 2755 4785 7106 11340
88 232 494 783 1450 2176 2784 4901 7425 12006
116 261 551 784 1596 2205 3249 5104 7889 12673
117 290 552 841 1625 2262 3451 5888 8671 13225
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TABLE IA (Continued)

t = 10 (continued)

13311 24795 47125 158050 240787 949026 2697696 96059601
13312 25840 53361 166635 244036 1163800 4004001 177182721
13456 27000 72501 168751 303601 1235169 4090625

19228 30625 83521 176001 410670 1243840 8268800

20736 30856 87465 176176 418761 1625625 10556001

23751 35322 136851 184093 613089 1852201 18085705

t=11

31 528 1519 5797 11781 29792 116964 453376 3897166
32 589 1520 6076 11935 31465 122265 459173 14753025
63 621 1768 6138 12122 31900 174097 509796 16093000
93 651 1860 6293 13300 32799 175770 773605 76271625
125 714 2016 6325 13455 41262 178126 863940 80061345
155 806 2233 6480 15625 42688 190464 912951 133920000
156 837 2945 6728 17577 49011 207576 1147125 181037025
187 868 2976 7657 19251 58311 212382 1154440 370256250
217 900 3565 7905 19344 78337 227448 1255501 1611308700
248 931 3751 7936 19965 96876 240065 1594176

280 961 3876 8092 21142 98736 245025 2307361

341 1024 3969 8464 22816 102487 260338 2310400

342 1054 4186 8526 23375 108376 268801 2345057
435 1210 4960 8960 23716 111321 278784 3206269
465 1365 4992 9425 24025 111476 288145 3301376

496 1426 5643 10881 27405 116281 314433 3346110

t=12

37 741 2553 7696 20350 49248 120176 466830 2598400
38 851 2738 8991 23200 50025 143375 469568 2772225
75 9256 2850 9177 26011 550566 155585 494209 2893401
111 962 3146 9251 28750 56203 156066 675584 3930400
112 1000 3220 9361 28861 60606 161875 777925 4765600
148 1036 3256 10693 29601 67600 164836 787176 5538975
185 1184 3367 11914 33264 68783 165649 812890 6615675
186 1296 3563 12321 34225 71485 198912 837200 6770556
222 1332 3626 13690 34596 77441 208495 923521 7105000
260 1369 3627 13950 35816 78625 227070 986272 7475000
297 1444 3774 14652 37962 80920 254449 1000000 7491169
407 1480 4256 15873 38962 82621 285418 1055241 13147876
408 16656 4625 16170 41515 85064 319125 1341250 14080573
481 1666 5201 16576 42625 88320 348726 1510785 21386001
630 1702 5292 17205 43401 93093 360640 1763125 27994681
666 1925 5440 17576 44955 93500 378880 1771561 50481025
667 2109 5625 18241 45696 108780 390166 2085136 71843751
703 2146 6993 19500 47916 108928 443556 2417876 308915776
704 2295 7105 19684 48841 117624 446369 2560845 3463200000
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TABLE IA (Continued)

t=13

41 1395 6273 22100 64125 228781 1050625 9174816

42 1518 6561 22386 70357 243049 1082565 9222500

82 1600 6601 23001 76384 275808 1104376 9458086
124 1681 6930 24150 76875 284376 1152921 10491040
165 1682 7176 24273 81345 330625 1205646 13745537
205 1805 7216 27676 81549 386631 1294371 14235529
246 1886 7750 28126 81796 389500 1319626 19826576
247 1887 8569 29233 82369 395200 1362636 24601600
287 2091 8856 29602 82944 412091 1413721 25836889
288 2255 9472 30381 91840 432345 1437501 25872148
369 2296 10045 31488 101270 453871 1536640 27005265
370 2542 10374 32800 103156 461825 1600313 30138076
451 2584 10660 40426 103936 466089 1729750 30944914
493 2625 11440 40960 106191 476749 1740000 32517265
533 2665 13776 41041 121771 482448 1946721 36315136
575 2871 14145 41328 130340 524800 2185300 40750802
616 3690 14801 41616 134850 536239 2267916 41808151
697 3773 15376 46208 136161 589744 2304324 43075585
780 4060 15457 47151 142885 610204 2351350 85459375
820 4264 16400 48750 151250 638001 2825761 119094300
1025 4551 16524 52480 152685 643126 2829124 132663168

1026 4675 16606 53505 153791 679042 3063808 203635441
1148 4921 17425 56376 156333 728365 3331251 415704576
1189 4961 17836 60516 174825 769120 3453840 876219201
1190 5084 17918 61009 186592 798721 3556996 1075774401
1312 5577 19721 63427 203320 1011840 4588311 45105689161
1353 6069 19845 63714 212381 1048576 5267025 63927525376

TABLE IB

Integers N greater than 100,000 such that N (N — 1) has no prime factor greater than 41,
with factorizations of N/(N — 1)

N 2 3 5 7 11 13 17 19 23 29 31 37 41
101270 1 1 -1 1 -1 1 -1 ~1 1
102487 -1 -1 1 4 -1 -1 -1
103156 2 -1 -1 -1 1 -2 1 1
103936 9 -1 -1 1 -2 1 -1
104329 -3 —4 -1 2 2 -1
104976 4 8§ -2 -1 -1 -1
106191 -1 5 -1 -1 1 1 -1 -1
108376 3 -1 -3 -2 1 1 1
108780 2 1 1 2 -2 -1 -1 1
108928 7 =2 -2 -1 -1 1 1
111321 -3 3 -1 1 -2 1 -1 1

111476 2 -2 -3 -1 1 2
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TABLE IB (Continued)

N 2 3 5 7 11 13 17 19 23 29 31 37 41
116281 -3 -2 -1 2 -1 -1 2
116964 2 4 -3 -1 2 -1
117624 3 1 -1 2 -2 1 -1
120176 4 -2 1 -1 -1 -1 1 1
121771 -1 -3 -1 -1 1 1 1 1 -1
122265 —3 2 1 1 1 -1 1 -1 -1
122452 2 -1 —4 3 -1 1
123201 —6 6 -2 -1 -1 2
126226 —4 3 2 -3 1 1 -1
130340 2 1 3 -1 -2 1 -1
134850 1 1 2 -1 -1 -1 1 1 -1
136161 —5 4 -1 -1 -1 2
136851 —1 1 -2 -1 2 1 -1 -1 1
142885 —~2 -6 1 -2 1 2
143375 -1 3 -3 -1 -1 1 1
151250 1 4 -1 2 -1 -1 -1
152685 —2 4 1 =2 1 -1 1 -1
152881 -4 -1 —1 =2 -1 2 2
153791  —1 -1 -1 2 -3 1 1
155585 —6 1 -1 -1 =1 2 1
156066 1 1 -1 -4 -1 1 2
156333 —2 1 -2 -1 -1 1 2
158950 1 -3 2 -1 1 2 -2
161875 —1 -2 4 1 -1 -2 1
164836 2 -4 -1 2 -1 2 -1
165376 9 -3 -3 =2 1 1
165649 —4 -1 -1 2 -1 -1 2
166635 —1 2 1 1 -2 -1 2 -1
168751 —~1 -3 -5 1 2 1
174097 —4 -3 2 1 -1 1 1 -1
174825 -3 3 2 1 -1 1 -2
175770 1 4 1 1 -1 -1 -2 1
176001 -7 1 -3 1 -1 2 1
176176 4 -5 -2 1 2 1 -1
178126 1 -1 =5 2 1 -1 1
184093 -2 -1 2 1 2 -2 -1
186592 5 -1 3 1 -1 =2
190464 11 1 -2 -2 -1 1
194481 —4 4 -1 4 -1 -1 -1
198912 8 1 1 -3 -1 1
202125 —2 1 3 2 1 -3 ~1
203320 3 -2 1 1 1 -1 1 -1 -1
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TABLE IB (Continued)

N 2 3 5 7 11 13 17 19 23 29 31 37 41
207576 3 3 -2 -2 -1 2
208495 —1 —6 1 2 -1 -1 1 1
212381 —2 -1 -1 1 1 2 -1 -1
212382 1 5 -1 -1 1 1 -2
227070 1 3 1 -1 -2 2 -1
227448 3 7 -1 1 -1 -1 -1
228096 8 4 -1 -4 1 ~1
228781 -2 -2 -1 3 1 1 -1 -1
240065 —6 1 1 -2 3 -1
240787 -1 -3 -3 -1 2 1 1
243049 -3 -1 -1 2 -1 2 -1
244036 2 -2 -1 -1 2 -1 2 -1
2450256 —5 4 2 2 -1 -1 -1
254449 —4 —3 1 -1 2 -1 1
260338 1 -1 -3 -1 1 1 1 -1 1
264385 —6 —5 1 2 -1 1 1
268801 -9 -1 -2 -1 1 1 1 1
275808 5 1 -1 2 1 -2 -1
278784 8 2 2 -1 -2 -1
2826256 —12 —1 3 1 1 1 -1
284376 3 1 -5 -1 -1 2 1
285418 1 -3 1 -1 1 1 -2 1
288145 —4 —3 1 1 2 -1 -1 1
303601 —4 -1 -2 -1 2 -1 2
314433 —6 2 2 -3 1 1
319125 —2 1 3 -1 -1 =2 1 1
328510 1 -3 1 1 1 2 -3
330626 —7 —2 4 -1 2 —1
336141 —2 2 -1 =5 3 1
348726 1 1 -2 1 -1 2 1 -1 -1
360640 6 —3 1 2 -2 1 -1
378880 1 -1 1 -2 -1 -1 1
386631 —1 2 -1 1 1 2 -1 -2
389500 2 -1 3 -2 1 -1 —1 1
390166 1 -1 -1 1 -1 1 2 =2
395200 6 —4 2 -1 1 -1 1 -1
410670 1 5 1 -2 2 -2 -1
412091 -1 -1 -2 1 2 =2 1
418761 —3 2 -1 1 2 -2 1 -1
432345 —3 1 1 -1 -3 1 1 1
443556 2 4 -1 -1 -1 -1 -1 2
446369 —5 1 2 -1 1 -1 1 -1
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TABLE IB (Continued)

N 2 3 5 7 11 13 17 19 23 29 31 37 41

453376 8§ -2 -3 1 1 -1 1 -1

453871 -1 -3 -1 4 1 -2

459173 -2 -1 1 3 1 -2 -1

461825 —10 2 2 -1 1 1 -1

466089 —3 1 -2 1 1 1 -1 1 -1

466830 1 3 1 1 -1 1 1 -1 -2

469568 6 -3 1 1 1 -2

476749 -2 -2 1 3 -1 -1 1 -1

482448 4 1 -1 1 2 -3

494209 -7 -3 -1 -1 2 2

509796 2 2 -1 2 -1 -1 2 -1 -1

524800 9 —4 2 -1 -1 -1 1

536239 -1 —2 1 1 -3 2

589744 4 =2 -1 -1 -1 1 1 -1 1

601426 1 -7 =2 2 -1 1 2

610204 2 -1 1 -2 1 1 1 -2

613089 —5 6 -2 -1 -1 2

633556 2 -3 -1 1 3 -1 1 -2

638001 —4 2 -3 1 -1 1 1 -1 1

643126 1 -1 -4 =3 1 1 1 1

675584 8 1 1 -1 1 -2 -1

679042 1 -2 2 -1 2 -3 1

709632 10 2 1 1 -3 -1 -1

7283656 —2 -1 1 -1 1 -1 1 1 -1 -1 1

769120 5 -1 1 1 -2 1 1 -1 -1

773605 —2 -3 1 1 -1 -1 1 -1 2

777925 —2  —4 2 —4 2 1

787176 3 2 =2 1 -1 2 -2

798721 —-12 -1 -1 1 2 -1 1 1

812890 1 -3 1 -1 -1 3 -1 -1 1

837200 4 2 1 -3 1 -1 1 -1

863940 2 1 1 1 2 1 -1 -3

912951 —1 5 -2 1 2 -1 -2

923521 -7 -1 -1 -1 4 -1

949026 1 1 -2 -1 -1 1 -1 3 -1

986272 5 -1 2 -3 -1 1 -1 1
1000000 6 -3 6 -1 -1 -1 -1
1011840 7 1 1 1 -1 -1 1 -1 -1
1048576 20 -1 =2 -1 -1 -1
1050625 —11 -3 4 -1 2
1055241 -3 3 -1 2 1 1 -1 -1 -1
1082565 —2 9 1 -1 1 -1 -2
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TABLE IB (Continued)

75

N 2 3 5 7 11 13 17 19 23 29 31 37 41
1104376 3 —~-1 -4 1 1 -1 -1 1 1
1147125 -2 1 3 1 -1 1 1 -2 -1
1152921 -3 1 -1 2 1 -1 1 1 -1 -1
1154440 3 -3 1 2 -1 =2 1 -1 1
1163800 3 =2 2 -3 1 -1 2 ~1
1205646 1 1 -1 -3 2 -1 1 —1 1
1235169 —5 5 -3 1 1 1 -1
1243840 6 -1 1 2 -1 1 -3
1255501 -2 —4 -3 2 1 1 1 -1
1294371 -1 2 -1 -1 -1 2 1 1 -2
1319626 1 -3 =3 1 2 ~1 1 -1 1
1341250 1 -1 4 1 -1 -3 1 1
1362636 2 3 -1 1 -2 -1 1 1 -1
1413721 -3 -3 -1 -1 -1 -1 2 2
1437501 -2 1 -6 1 -1 1 1 1
1510785  —7 3 1 -1 2 -1 1 -1
1536640 7 -1 1 4 -1 -2 -1
1594176 6 1 =2 -2 -1 2 1 -1
1600313 -3 -1 1 1 -1 2 1 -2
1625625 —3 2 4 -2 -1 -1 2 -1
1729750 1 -1 3 =3 1 1 1 -2
1740000 5 1 4 1 -1 -2 -1
1763125 —2 -1 4 1 -1 1 -2 1 -1
1771561 -3 -2 -1 -1 6 -1 ~1
1852201 -3 -3 -2 -3 1 3 1
1946721 =5 1 -1 2 1 1 -3 1
2023425 ~—13 2 2 -1 1 -1 2
2085136 4 -1 -1 -1 =2 4 -1
2185300 2 -5 2 1 -1 -2 2
2267916 2 1 -1 3 -1 1 -1 1 -1 -1
2304324 2 2 -2 2 2 -1 -1 -1
2307361 -5 -1 -1 4 -1 -1 -1 2
2310400 8 =2 2 -2 -2 2 -1
2345057 -5 -1 1 1 -2 2 -1 1
2351350 1 —4 2 -1 -1 -1 -1 1 1 1
2417876 2 -3 1 -1 =2 2 1
2560845 —2 1 1 1 -3 -1 3 -1
2598400 9 -5 2 1 -2 1 -1
2697696 5 2 -1 -3 =2 -1 1 1 1
2772225 -8 4 2 -2 -1 -1 2
2825761 -5 -1 ~1 -1 -2 4
2829124 2 =2 -1 -1 4 -2
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TABLE IB (Continued)

N 2 3 5 7 11 13 17 19 23 29 31 37 4
2893401 -3 10 -2 2 -1 -1 -1
3063808 14 -2 1 1 -2 -1 -1
3206269 —2 -2 1 -2 -1 1 2 1 -1
3301376 13 -3 -4 -1 1 1
3331251 -1 2 -5 1 2 -1 1 1 -1
3346110 1 9 1 -1 1 -2 -1 -1
3453840 4 4 1 1 -3 -1 -1 1
3556996 2 -1 -1 -1 -1 2 -1 -1 2
3897166 1 -1 -1 3 1 -2 1 1 -1 -1
3930400 5 -2 2 -1 3 -1 -2
4004001 —5 2 -3 -1 -1 -1 2 2
4090625 —8 5 1 1 1 -1 -2
4096576 6 —4 -2 -1 2 -2 2
4588311 —1 1 -1 6 1 -2 -1 -1
4765600 5 -2 2 1 -1 1 -1 -2 1
5142501 —2 3 -4 2 -2 2 -1 1
5267025 —4 6 2 -1 2 -1 -1 -1
5538975 -1 1 2 -1 2 -2 1 1 -2
5909761 -8 -5 —1 2 2 2 -1
6615675 —1 7 2 2 -2 -2 -1
6770556 2 2 -1 -2 1 1 -2 1 -1 1
7105000 3 -1 4 2 -2 -2 1 -1
7475000 3 5 -3 1 -1 1 -1 -1
7491169 -5 -2 2 2 -1 2 -2
8268800 10 2 -2 -1 1 1 -2 -1
9174816 5 3 -1 1 -1 -1 -2 -1 1 1
9222500 2 4 1 -3 -2 1 1 -1
9458086 1 -1 -1 -1 4 -3 1 1 -1

10491040 5 -9 1 1 -1 1 1 1 -1
10556001 —5 4 -3 -1 -1 4 -1

11859211 -1 -4 —1 1 -4 1 4

13147876 2 -2 -3 4 -1 -1 -1 2
13745537 -7 -1 1 1 -2 -1 1 2
14080573 —2 —2 -1 4 1 1 -2 -1
14235529 —3 ~—1 6 2 -1 -1 -1 -1
14753025 -8 2 2 1 -1 =2 1 1 1 -1

16093000 3 —4 3 1 2 -1 -1 1 -1 -1

18085705 —3 —1 1 -3 1 -3 1 1 2

19826576 4 -2 2 3 1 -1 -2 -1
21386001 —4 1 -3 2 1 -2 2 1 -1
24601600 10 -2 2 -2 -1 -1 2 -1
25836889 —3 -1 -1 -2 2 2 2 -1 -1
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TABLE IB (Continued)

N 2 3 5 7 11 13 17 19 23 29 31 37 41
25872148 2 -2 -3 -2 3 1 -1 1
27005265 —4 3 1 1 -2 -1 1 -1 -1 2
27994681 -3 -3 -1 -2 2 2 -2 2
30138076 2 -5 =2 -2 2 2 1 -1
30944914 1 -1 1 1 2 -1 -2 1 -1 -1 1
32517265 —4 —1 1 1 -1 1 2 -1 1 -2
36315136 13 —-11 -1 1 1 1 -1
40750802 1 -3 -2 1 -1 1 1 -1 2
41808151 —1 —6 —2 1 1 1 1 -1 -1 2
43075585 —11 —3 1 1 -1 1 1 2 -1
50481025 —7 —1 2 4 -1 -1 -1 2 -1
71843751 —1 2 —6 3 =2 1 -1 2
76271626 —3 9 3 -3 -1 -1 -1 1
80061345 —5 3 1 4 -2 1 1 -1 -1 -1
854593756 —1 —4 5 -1 -1 -1 -1 1 1 -1 1
96059601 —4 8 -2 -2 4 -2 -1

119094300 2 5 2 2 -2 -1 -2 1 -1
132663168 7 2 -1 1 -1 2 1 -2 -1 -1
133920000 8 3 4 -2 -1 -3 1
177182721 —11 6 -1 -3 -1 2 2
181037025 —5 4 2 -1 2 2 -2 =2
293635441 —4 -2 -1 -3 1 1 -1 1 3 -1
308915776 6 —4 -2 -1 6 -1 -1 -1
370256250 1 1 5 2 =7 1 -1 1
415704576 9 1 -2 1 -3 -1 1 -2 2
876219201 —6 4 =2 2 2 -2 2 -1 -1
1075774401 —6 2 -2 2 -2 4 -1 -1
1611308700 2 6 2 -4 -1 =2 -2 1 2
3463200000 8 2 5 -5 1 -2 -1 -1 1
45105689161 —3 -5 —1 -1 2 2 -1 -1 4 —1 -1
63927525376 13 -3 -3 =7 4 1 -1 1
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TABLE ITIA

0dd integers N greater than 1 such that the largest prime factor of N(N — 2) is the
ith prime, ¢ £ 11

t=2 t=3 t=4 t=25 t=26 t=1
3 5 7 11 13 17
27 9 35 15 51
245 77 65 119
275 121
847 189
1575 1377
t=38 t=9 t=10 t=11
19 23 29 31 86275
21 25 87 33 130977
57 117 145 93 203205
135 209 147 95 2509047
171 255 377 155 3322055
247 299 437 343 287080367
325 345 495 405
363 1127 667 527
627 1311 2873 529
665 2187 8381 715
1617 2277 9947 899
3213 2875 12675 1085
3971 3705 14877 1521
6877 16445 1955
8075 24565 2697
9317 41327 3627
18515 45619 4125
41745 87725 5425
57477 184877 7163
1128127 19437
1447875 22477
TABLE IIB

0Odd integers N greater than 100,000 such that N(N — 2) has no prime factor greater
than 31, with the factorization of N/(N — 2)

N 3 5 7 11 13 17 19 23 29 31
130977 5 -2 2 1 -2 -1
184877 -1 -3 5 1 -1 -1
203205 1 1 -2 -1 -1 1 1 -1 1
1128127 -5 3 1 1 -2 1
1447875 4 3 -1 1 1 -1 -3
2509047 2 -1 —4 -1 1 -1 2 1
3322055 -7 1 -2 2 2 1 -1

287080367 -1 -1 5 -2 -1 1 -3 1 1
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TABLE IITA

Odd integers N greater than 3 such that the largest prime factor of N(N — 4) is the
{th prime number, ¢ £ 11

t=3 t=4 t=5 t=26 t=17
5 7 11 13 17
9 25 15 39 21
49 81 121 55
125 147 85
169 225
4459 429
459
14161
21879
t=38 t=9 t =10 t=11
19 23 29 10469 31 98553
95 27 33 21025 35 112999
99 69 91 294151 221 117649
175 119 207 442225 279 212629
247 165 319 8254129 345 344379
289 441 323 403 10439037
361 529 609 589
935 625 667 837
2299 1449 729 841
35563 1729 845 1089
6175 1863 1131 1705
60025 2695 1309 1771
121125 7429 1425 2639
12397 1885 4437
13689 2527 15345
54625 2875 27625
110565 3861 58125

TABLE IIIB

0dd integers N greater than 100,000 such that N (N — 4) has no prime factor greater
than 31, with the factorization of N/(N — 4)

N 3 5 7 11 13 17 19 23 29 31
110565 5 1 1 -1 1 -1 -2
112999 -6 -1 3 1 -1
117649 -1 -1 6 -1 -1 -1
121125 1 3 -1 -3 -1 1 1
212629 -5 -3 -1 3 1
294151 -2 -2 3 1 1 -1 -1
344379 1 —4 1 -1 2 -1 1
442225 -1 2 2 -1 ~1 2 -1 -1

8254129 -2 -3 -1 4 2 -1 -1
10439037 5 1 -4 1 2 -1 -1




