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Introduction

There are two three-dimensional orthogonal groups over the field R of
real numbers determined by whether or not the quadratic form which defines
the "metric" on the space is anisotropic (ordinary Euclidean 3-space) or
not. In both cases the commutator subgroup is a simple group. (When
the space is anisotropic, the commutator subgroup is the set of all isometries
of determinant -t-1; when the space is isotropic, it is a normal subgroup of
index 2 in that group.) Thus if a 1 is in and b e , there exists a posi-
tive integer n such that

(,) b II-: t

Let N,(b) denote the smallest n for which (,) is true. By the use of qua-
ternions, we give an explicit formula for N(b) in both cases.

1. Quaternion algebras
Let K be a field of characteristic 2. By a quaternion algebra H over K

we mean a central simple associative algebra of dimension 4 over K. It is
well known that H has a basis of the form 1, I, J, IJ with i the multiplicative
identity, I a, J /, IJ -JI, where a, e K* (the multiplicative
group of nonzero elements of K). (See [1, Theorem 27, p. 146].) We shall
use the notution (a, ) for a quaternion algebra possessing such a basis.
possesses an antiautomorphism of period 2 called conjugation, the image of
X e H being denoted X. Then we have X W X S(X)I, XX N(X)I
th S(X), N(X)e K called respectively the trace and norm of X, and
X S(X)X + N(X)I 0 for each X e H. If S(X) 0, we call X pure.
IfX o1 I J alJ, we have

For future use we set H {X e H N(X) 1}. We conclude this section
by stating

EOnE 1. Let A, Bell. There exists TeH such that B TAT-and only if N(A) N(B) and S(A S(B). There exists T H such that
B TAT- if and only if in additi to the above conditions,

(i) (N(B A), S:(A) 4N(A)) M(K), the algebra of all 2 X 2
matrices over K provided N(B A) and S(A) 4N(A) are both nonzero

(ii) if S:(A) 4N(A) O, then N(B A) K.
Received July 10, 1962.
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Proof. The first assertion is well known, and the second one follows im-
mediately from the Main Theorem of [3].

2. Rotations in a three-dimensional space
Let V be a three-dimensional vector space over K upon which is defined

a nonsingular quadratic form f. Let O(V) denote the orthogonal group of
V, O+(V) the subgroup of elements of determinant W1 (called rotations),
O’(V) the spinorial kernel, and (V) the commutator subgroup of O(V).
We denote by sc the symmetry with respect to the hyperplane perpendicular

to the anisotropic vector C and remark that every e O+(V) is of the form
K*sc sD (see [2] for details) We note that replacing.f by f for some

leaves O(V) unchanged, and hence if we choose a basis for V and write

f a -- a -- a , replace f by (a a a)f, and set- a a, we may assume f has the form f -a fl - a. Com-
paring this with (1) we see that there is no loss in generality in assuming
that V s the set of pure quaternions in the algebra It. We also note that
so(X) -CXC-, and hence for each e O+(V) we have t(X) TXT-where T CD if scs. If O(t) denotes the spinor norm of t, we hve
O(t) N(T)K*. It is easily seen that the epimorphism I-I --+ O’(V)
given by T -- TXT- has kernel /+/-1}. We finally observe that
O’(V) (V) since dim V 3. We shall use this epimorphism in the sequel.

3. The number N(b)
Let a, b e (V), and suppose a 1. If there exists a positive integer n

such that

(2) b II=l ta=elt
set N(b) smallest n for which (2) is true. If (2) is false for all n, set
N(b) -t- oo. We shall give explicit formulas for N(b) when K R, the
field of real numbers. We can reformulate our problem in terms of H1. Let
A, B e H1, A d=l. If there exists a positive integer n such that

(3) B II= T A T(, Tie H,

set N(B) smallest positive integer such that (3) is true. If (3) is false
for all n, set N(B) + oo. Then if we adopt the convention that n < - oo

for all positive integral n and apply our epimorphism , we immediately have

I)nOOSTON 1. N(b) min {N(B), N(--B)} where A and B are
preimages of a and b respectively under

It will prove sufficient to consider the weaker condition

(4) B II= T A T-, Te H.

We define a number V(B) in an obvious manner and note that V(B) =<
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N(B). Because of the first part of Theorem 1, we see that (4) is equivalent
to

(5) B I-I=A, AeH, S(A) S(A) for i= 1,...,n.

4. A factorization theorem in quaternion algebras
We first establish the following.

LEMMA 1. Suppose C and D are pure quaternions such that

N(C).N(CD DC) O.

Then 1, C, CD DC, C(CD DC) are linearly independent over K, and
hence C, CD DC)) H.

Proof. Suppose

(6) a 1 + C + "r(CD DC) + C(CD DC) O.

Multiply (6) successively by 1, C, CD DC, C(CD DC), and take traces.
One obtains a system of four homogeneous linear equations in a, , %/t whose
coefficient matrix has determinant 2(N(C))2(N(CD DC)) O. Thus
a i 0, and we have linear independence. The remaining as-
sertion follows from the fact that C and CD DC are pure and

C(CD- DC) -(CD- DC)C.

We now prove a factorization theorem for elements of H1 from which all
our subsequent results will follow.

THEOREM 2. Let al a e K and B e H1 satisfying S(B) 4. There exist
A1, A. e H1 such that

(i) B A1A,
(ii) S(A) for i 1,2

if and only if
(Z(B) , ’(B) + d Z(B). + )

provided the left-hand side is defined. If

then there always exist A1, A2 e HI satisfying (i) and (ii).

Proof. First suppose that S2(B) 4 - a S(B)al a. -k a O. Set

1
A2 - + S’.(B) -Then A. e H and S(A.) a2. Set A1 BA. Then A1 ella and

S(Ax) . Since B A1 A2, we are through.
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We now assume that S(B) 4 + a S(B)al a + a 0 and prove
necessity. B A1 As implies A1 BA, and thus writing

AI a/2 + C, As ao./2 + C, B S(B)/2 + C

with S(C) S(C) S(C) 0, we obtir/

a/2 -t-- C (S(B)/2 + C)(a/2 C.);

hence S(CC.) a. S(B)/2 a. Also CC. C C 2CC S(CC.).
Thus

N(CC- C. C) 4N(C)N(C) S(CC.)
4(1 $2(B)/4)(1 a/4) (a. S(B)/2- a)

-(S’(B) 4 -t-- a S(B)a a. +
Since C and CC C C are pure and have nonzero norms,

C, (CO,.- C,. C) ") --by our lemma. But C (S(B) 4)/4, and

(CC C. C) S(B) 4 --[- a S(B)al as --[- a..

Hence necessity is proved.
Now we prove sufficiency. By hypothesis, there exist pure quaternions

X, Y e H such that

X= S(B)/4- 1, Y S(B) 4 - S(B)a d- al,
XY+ YX=O.

Set B’ S(B)/2 + X,

---ff + x+ 2XY
S.(B) 4’

A B’A. By direct calculation one shows that B’,A,’ A H S(B’)
S(B), S(A) afori 1,2, and of course, B’ AA3. By Theorem
1, there exists Tett such that B TB’T-. Set A TA1T-, A.
TAT-1, and we have B AA. with A1, A.ettland S(A) afor
i 1, 2 as desired.

5. Determination of Na(b) when K R and V is anisotropic
We may assume that f is positive definite. Then the quaternion algebra

tt is the classical quaternion algebra of Hamilton, and (, t) tt if and
only if both and t are negative. We also observe that (V) O+(V) in
this case. We now have

LEMMA 2. N(b) min V(B), V B) where A and B are preimages
of a and b respectively under
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Proof. Since f is positive definite, we may replace Ti in (4) by Ti/N(T)
and obtain (3). Thus IA(B) =<. VA(B). Since V(B) _-< I(B) in general,
1(B) V(B), and we are through by Proposition 1.

LEMMA 3. Let a, e 2, 2), and suppose a O, a > (2 - )1/2. For
x e (--2,2) define 2f(x) lalx + [(a 4 )(x 4)]/2. Setf()(x) x,
f(1) (x) f(x), and f(+) (x) f( f() (x) for t 1, 2, .... Then there
exists a positive integer n such that al <= [2 + f()()]l/2.

Proof. Set-f()(). ThuslY0 . Now [al > (2 + )l/2ifnd
only if+ < a as a simple calculation shows. Thus < a We shall
establish the lemma by showing that the assumption <
leads to a contradiction. One easily verifies that x < f(x) if -2
(2 - ]a[)1/2. Since lal < (2 - lal)1/2, the sequence l} is strictly
monotone increasing; hence lim exists. Set lim f, and note that
/-< al. Butf(,) =f(lim) =limf(k) =limk+l=/. If,< a[,
we get the contradiction < f(,). Hence lim [a[. Thus

0 limk. (+ k)

lim. 1/2(I a f, -F [(a: 4)(/ 4)]/) / 2

whence ]al 2. But a e (-2, 2) by hypothesis. This is our desired
contradiction, and the lemma is proved.

THEOREM 3. Let V be three-dimensional Euclidean space. Let a, b e O+( V)
and a 1. Let o(A) a, (B) b where HI ----> O+(V) is the epimor-
phism of 2. Of the two choices for B, assume B is chosen so that S(B) >- O.
Then ll(b) 1 if [S(A)I [S(B)I. la(1) 2. If lS(A)I
and b 1, ll(b) n + 2 where n is the smallest nonnegative integer such that
S(A)I <__ [2 -F f(’) (S(B))]1/. Here f(’) (x) has the same meaning as in
Lemma 3, and 2f(x) IS(A)[ x + [(S:(A) 4)(x- 4)]1/.

Proof. Setting a S(A), / S(B), we compute V(B), temporarily
ignoring the assumption >- 0. Obviously V(B) 1 if and only if
a[ fll, so let us assume al [1. We may also assume that
[[ 2, for [1 2 implies B =i=l, whence b 1, and obvi-
ously lla(1) 2. Since [/ 2, f 4 < 0, and Theorem 2 tells us that
B A A, A1, A eH, S(A) a (i 1, 2) if and only if the point
(a, a) lies in the interior or on the boundary of the ellipse E() defined by
the equation

(7) x- xy - y 4-

in the (x, y) plane of elementary analytical geometry. As varies, we obtain
a one-parameter family of ellipses, all internally tangent to the square having
corners (2, 2), :t: (2, -2), and major axis the line x y when > 0, and
major axis the line x -y when < 0. (Of course we have a circle whea
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0.) Observe that E(f) touches the line x 2 at the point (2,/). Let
us denote by A() the abscissa of the point in the first quadrant lying on
both E(#) and the line x y. Then we see that V(B) 2 if and only if
lal -< A(). If lal > A(f), we choose a point (a, (sgna)tl) on the
line x and inside or on the boundary of E(). Then by Theorem 2,
we have

B AI B, A1, B eH, S(A) a, S(B) (sgn a).

Can h be chosen so that B As Aa, As, Aa e H, S(A:) S(Aa) a (and
hence V(B) 3)? We must have [al =< A(Ch). It is clear that the
best choice for h is the one that makes zX(f) as large as possible. From the
geometry of the situation, we see that this is determined as follows"
(a, (sgn a)Ch) lies on E(/), and of the two possibilities we take that one
having larger ordinate if a > 0, and smaller ordinate if a < 0 (a 0 is
trivial). Analytically, 2 ]al -k [(a 4)( 4)]/. If
a _-< A(), we are through, and Vx(B) 3. If not, we repeat the process

on B. We continue in this way until we obtain our minimal factorization.
Analytically this means the following. Set

2f(x) six+ [(a2- 4)(x- 4)11/,

and denote by f() (x) the n*h iterate of f(x). Then f(n) () and A()
(2 - )1/2. Hence V(B) n -t- 2 if n is the first iterate of f(x) such that
[a] -< [2 -t- f()()]/. The existence of n is guaranteed by Lemma 3.
As one easily checks, f(x) is strictly monotone increasing on -2 <: x <

[al,andf(x) < [al if [a[ > (2+x)1/. From these facts it is obvious
that V(C1) => V(C.) if S(C1) < S(C). This is the reason for assuming

S(B) >- O, for now min[VA(B), V(-B)} VA(B). By Lemma 2
we are through.

COROLLARY 1. 0+(V) is a simple group.

Na(b) is unbounded. Indeed if b 1, Na(b) ---Y O0 a8

(See [2, p. 210].)
COROLLARY 2.
S(A)I -- 2-.

Proof. Adopting the notation of the proof of Theorem 3, we have

k-t-1 k }((I + 4)]1/2) + 0

as lai +2-fork=0,1,.... Let o be a real number such that laol <2
anda- 2- > 0. (a0existssince [5i < 2byhypothesis.) Letnbe
a positive integer. Choose e > 0 so small that a 2 > he. Find so
closeto2that- _, < efork 1,...,nandalso0 a < 2. Then

a- 2 a-- 2 > +ne= 0+ne > 0+ (-- -) .
Thus a(b) > n. As n was arbitrary, we are through.
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COROLL,nY 3. The smallest positive integer n such that Na(b) -< n + 2 for
all b is the smallest positive integral n such that

Proof. We observed in the proof of Theorem 3 that V(C1) -> V(C) if
S(C1) < S(C.). Since S(B) -> 0, the smallest possible value is S(B) 0.
Apply Theorem 3.

ConoLAn 4. o 0 is the unique real number such that every quaternion
of norm one can be written as the product of at most two quaternions of norm one
and trace .

Proof. A() (2 + )1/ -- 0 as --+ --2.
exists f such that I/[ < 2 and a > A().

Let; al :> 0. Then there

6. Determination of la(b) when K R and V is isotropic
In this case the quaternion algebra H is IVI(R), and (, ) H if and

only if at least one of ), and t is positive. We also observe that (V) O’(V)
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hs index 2 in O+(V) since O+(V)/O’(V) is isomorphic to R*/I* in this
case.

LEMM 4. N,(b) rain {V(B), V(-B)}.

Proof. We must show that N(B) V(B). Since V(B) -< N(B),
we need only prove the reverse inequality. It will suffice to show thut au
equation of type (5) for a given n implies an equation of type (3) for the
same n. Thus we must demonstrate the existence of T e tt such Chat
A T A-T(- for i 1, n. (Incidentally A- A since A e tt .)
This will follow from the following identity"

(8) N(A- A) - N(A- A) 4- S(A).
Thus suppose S(A) 4. If S(A) 4 > 0, then by (8) at leas one of
N(A A) and N(A A) is nonzero, and our T is guaranteed by Theorem
l(i). If S(A) -4 < 0, then at least one of N(A- A) and N(A- A)
is positive by (8), and again we have our T by Theorem 1 (i). If S (A) 4,
then at least one of N(A A) and N(A A) is nonnegative by (8), and
our T is guaranteed by Theorem 1 (ii). This completes the proof.

TEOnEM 4. Let V be a three-dimensional isotropic space over R. Let
a, b O’(V) and a 1.- Let (A) a, q(B) b where q H O’(V) is
the epimorphism of 2. Then N,(b) 1 if S(A)I S(B)I N(1) 2.
If I’S(A) IS(B)[ and b 1,

N.(b) 2 if S(B) > 4,

or S(B) 4 and S(A) 0,

or Se(B) < and IS(A)[ _-> [2 S(B)[],
3 otherwise.

Proof. Suppose S(B) 4. If S(B) 4 > 0, then Va(B) 2 by
Theorem 2. If S(B) 4 < 0, we are in the elliptical situation of Theorem
3, and we may use the same type of argument. However now we want our
point in the exterior or on the boundary of E(fl). Thus V(B) 2 if and
only if al => A(fl) (2 -t- f). Of the two choices for B, the one with
nonpositive trace gives us our minimum V(B) and hence the formula
S(A) => [2 S(B)I]/. If this condition does not obtain, select , e R so

large that , 4 > 0 and S(B) 4 + S(A S(A) S(B), + ? > 0.
Then V(B) 3 by Theorem 2.

Suppose S(B) 4. Since H IVI(R), we shall use matrices. Of the
two choices for B, select B so that S(B) -2. Replacing B by a conjugate
if necessary, we may assume

B=
0 --1
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If S(A) # 0, we have

(--1 1) [ S(A) [2S(A)]-1)( 0
0 -1 k-2S(A) 0 -2S(A)

and V(B) 2.
If S2(B) 4 and S(A) 0, weproceed as follows:

coniugate if necessary, we may assume B has the form

where e =t= 1.
Write

[2S(A)]-I
S(A) ]’

replacing B by a

An obvious brute force calculation shows us that V(B) > 2.

where ),, are to be chosen so that ) -1. Then

If we now choose so that 2 4 > 0, we may apply our preceding results to
C and obtain V(C) 2, and hence V(B) 3. By Lemma 4 we are
through.

COROLLARY 5. O’(V) (V) is a simple group.
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