a remark on a paper of mine on polynomials

BY
Kurt Mahler

1. The measure $M(f)$ of a polynomial

$$
f(x)=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}
$$

with real or complex coefficients is defined by

$$
\begin{array}{rlrl}
M(f) & =\exp \left\{\int_{0}^{1} \log \left|f\left(e^{2 \pi i t}\right)\right| d t\right\} & \text { if } f(x) \neq 0, \\
& =0 & & \text { if } f(x) \equiv 0 .
\end{array}
$$

Denote by $S_{m n}$ the set of all polynomial vectors

$$
\mathbf{f}(x)=\left(f_{1}(x), \cdots, f_{n}(x)\right)
$$

with components $f_{h}(x)$ that are polynomials at most of degree m and that do not all vanish identically. Further put

$$
\begin{gathered}
M(\mathbf{f})=\sum_{k=1}^{n} M\left(f_{h}\right), \quad N(\mathbf{f})=\sum_{h=1}^{n} \sum_{k=1}^{n} M\left(f_{h}-f_{k}\right), \\
Q(\mathbf{f})=N(\mathbf{f}) / M(\mathbf{f}) .
\end{gathered}
$$

In my paper On Two Extremum Properties of Polynomials ${ }^{1}$ I proved that the least upper bound

$$
C_{m n}=\sup _{\epsilon \epsilon s_{m n}} Q(\mathbf{f})
$$

satisfies the nearly trivial inequality

$$
\begin{equation*}
C_{m n} \leqq 2^{m+1}(n-1) \tag{1}
\end{equation*}
$$

and is attained for a polynomial vector

$$
\mathbf{F}(x)=\left(F_{1}(x), \cdots, F_{n}(x)\right)
$$

in $S_{m n}$ with the following properties:
(2) Those components $F_{h}(x)$ of $\mathbf{F}(x)$ that do not vanish identically all have the exact degree m, and all their zeros lie on the unit circle.

It does not seem to be easy to determine the exact value of $C_{m n}$. In this note I shall replace (1) by an inequality (9) which is slightly better when m is large relative to $\log n$.
2. Let $\mathbf{F}(x)$ be defined as before. Without loss of generality,

$$
F_{1}(x) \not \equiv 0, \quad \cdots, \quad F_{p}(x) \not \equiv 0, \quad F_{p+1}(x) \equiv \cdots \equiv F_{n}(x) \equiv 0
$$

Received October 7, 1963.
${ }^{1}$ Illinois Journal of Mathematics, vol. 7 (1963), pp. 681-701.
where p is a certain integer satisfying

$$
1 \leqq p \leqq n
$$

By (2), each of the first p components of $\mathbf{F}(x)$ allows a factorisation

$$
F_{h}(x)=c_{h}\left(x-\gamma_{h 1}\right) \cdots\left(x-\gamma_{h m}\right)
$$

where

$$
c_{h} \neq 0, \quad\left|\gamma_{h 1}\right|=\cdots=\left|\gamma_{h m}\right|=1
$$

Therefore

$$
M\left(F_{h}\right)=\left|c_{h}\right| \prod_{l=1}^{m} \max \left(1,\left|\gamma_{h l}\right|\right)=\left|c_{h}\right| \quad(h=1,2, \cdots, p)
$$

and it follows, in particular, that

$$
\begin{equation*}
M(\mathbf{F})=\sum_{h=1}^{p}\left|c_{h}\right| \tag{3}
\end{equation*}
$$

The problem is to obtain an upper estimate for

$$
N(\mathbf{F})=\sum_{h=1}^{n} \sum_{k=1}^{n} M\left(F_{h}-F_{k}\right)=2 \sum_{1 \leqq h<k \leqq n} M\left(F_{h}-F_{k}\right) .
$$

Here, from the hypothesis,

$$
\begin{aligned}
M\left(F_{h}-F_{k}\right) & =\left|c_{h}\right| & \text { if } \quad 1 \leqq h \leqq p, \quad p+1 \leqq k \leqq n \\
& =0 & \text { if } \quad p+1 \leqq h \leqq n, \quad p+1 \leqq k \leqq n
\end{aligned}
$$

Thus it suffices to estimate the remaining terms

$$
M\left(F_{h}-F_{k}\right) \quad(1 \leqq h \leqq p, \quad 1 \leqq k \leqq p)
$$

of $N(\mathbf{F})$.
3. As usual, put for positive s

$$
\log ^{+} s=\max (0, \log s)
$$

so that

$$
\begin{gather*}
\log s \leqq \log ^{+} s ; \quad \log ^{+}(s t) \leqq \log ^{+} s+\log ^{+} t \\
\log ^{+}|s \mp t| \leqq \log ^{+} s+\log ^{+} t+\log 2 \tag{4}
\end{gather*}
$$

If further $f(x)$ is again any polynomial, put

$$
\begin{aligned}
M^{+}(f) & =\exp \left\{\int_{0}^{1} \log ^{+}\left|f\left(e^{2 \pi i t}\right)\right| d t\right\} \\
& =0
\end{aligned} \quad \begin{aligned}
& \text { if } f(x) \not \equiv 0 \\
& \text { if } f(x) \equiv 0
\end{aligned}
$$

Then, by (4), $M^{+}(f)$ has the properties:

$$
\begin{align*}
M(f) & \leqq M^{+}(f) \\
M^{+}(f g) & \leqq M^{+}(f) M^{+}(g) \tag{5}\\
M^{+}(f \mp g) & \leqq 2 M^{+}(f) M^{+}(g)
\end{align*}
$$

If further a is any constant,

$$
\begin{equation*}
M^{+}(a)=\max (1,|a|) \tag{6}
\end{equation*}
$$

4. From these formulae (5) and (6),

$$
M\left(F_{h}-F_{k}\right) \leqq M^{+}\left(F_{h}-F_{k}\right) \leqq 2 M^{+}\left(F_{h}\right) M^{+}\left(F_{k}\right)
$$

where, e.g.

$$
M^{+}\left(F_{h}\right) \leqq \max \left(1,\left|c_{h}\right|\right) \prod_{l=1}^{m} M^{+}\left(x-\gamma_{h l}\right)
$$

Moreover,

$$
M^{+}\left(x-\gamma_{h l}\right)=M^{+}(x-1)
$$

because $\gamma_{h l}$ has the absolute value 1 .
For shortness therefore put

$$
\theta=M^{+}(x-1)=\exp \left\{\int_{0}^{1} \log ^{+}\left|e^{2 \pi i t}-1\right| d t\right\}
$$

It follows then that

$$
M^{+}\left(F_{h}\right) \leqq \max \left(1,\left|c_{h}\right|\right) \theta^{m}
$$

whence, for $1 \leqq h \leqq p, \quad 1 \leqq k \leqq p$,
(7) $M\left(F_{h}-F_{k}\right) \leqq M^{+}\left(F_{h}-F_{k}\right) \leqq 2 \max \left(1,\left|c_{h}\right|\right) \max \left(1,\left|c_{k}\right|\right) \theta^{2 m}$.

Now, for any constant $a \neq 0$,

$$
Q(a \mathbf{f})=Q(\mathbf{f})
$$

Thus there is no loss of generality in assuming that

$$
M(\mathbf{F})=\sum_{h=1}^{p}\left|c_{h}\right|=1
$$

and hence that

$$
\max \left(1,\left|c_{h}\right|\right)=1 \quad(h=1,2, \cdots, p)
$$

The estimate (7) takes then the simpler form

$$
M\left(F_{h}-F_{k}\right) \leqq 2 \theta^{2 m} \quad(1 \leqq h \leqq p, \quad 1 \leqq k \leqq p)
$$

and it follows that

$$
\sum_{h=1}^{p} \sum_{k=1}^{p} M\left(F_{h}-F_{k}\right) \leqq 2\left(p^{2}-p\right) \theta^{2 m}
$$

because the p terms with $h=k$ vanish. Therefore, by

$$
N(\mathbf{F})=\sum_{h=1}^{p} \sum_{k=1}^{p} M\left(F_{h}-F_{k}\right)+2(n-p) \sum_{h=1}^{p} M\left(F_{h}\right),
$$

we obtain the inequality

$$
\begin{equation*}
Q(\mathbf{F})=N(\mathbf{F}) \leqq 2\left(p^{2}-p\right) \theta^{2 m}+2(n-p) \tag{8}
\end{equation*}
$$

5. An approximate value of θ is now easily obtained. Write

$$
j=\log \theta=\int_{0}^{1} \log ^{+}\left|e^{2 \pi i t}-1\right| d t=\int_{-1 / 2}^{1 / 2} \log ^{+}\left|e^{2 \pi i t}-1\right| d t
$$

The function

$$
\left|e^{2 \pi i t}-1\right|=2\left|\left(e^{\pi i t}-e^{-\pi i t}\right) / 2 i\right|=2|\sin \pi t|
$$

is even and of period 1 , and

$$
\begin{aligned}
\left|e^{2 \pi i t}-1\right| & \text { if } \quad 0 \leqq t \leqq \frac{1}{6} \\
>1 & \text { if } \quad \frac{1}{6}<t \leqq \frac{1}{2}
\end{aligned}
$$

It follows that

$$
j=2 \int_{1 / 6}^{1 / 2} \log (2 \sin \pi t) d t=\frac{1}{3} \log 4+2 \int_{1 / 6}^{1 / 2} \log \sin \pi t d t
$$

Here, by numerical integration (for which I am much indebted to my colleague Professor K. J. Le Couteur),

$$
\int_{1 / 6}^{1 / 2} \log \sin \pi t d t=-0.069516 \cdots
$$

and hence

$$
j=0.32307 \cdots
$$

Therefore

$$
\theta^{2}=e^{2 j}<1.91
$$

Since $p \leqq n$, it follows then finally from (8) that

$$
Q(\mathbf{F}) \leqq 2\left(n^{2}-n\right) \theta^{2 m}+2(n-n)
$$

and therefore that

$$
\begin{equation*}
C_{m n} \leqq 2\left(n^{2}-n\right) \lambda^{m} \quad \text { where } \quad \lambda<1.91 \tag{9}
\end{equation*}
$$

Apart from the value of the constant λ, this result is best possible for fixed n and increasing m. This is easily seen for $n=2$ on taking for $\mathrm{f}(x)$ the polynomial vector

$$
\mathbf{f}(n)=\left((x+1)^{m},(x-1)^{m}\right)
$$

Australian National University

Canberra, Australia

