
SUBFIELDS OF K(2) OF GENUS 0

BY
JOSEPH B. DENNIN,

1. Introduction
Let F be the group of linear fractional transformations

w----) (aw + b)/ (cw + d)

of the upper half plane into itself with integer coefficients and determinant 1.
F is isomorphic to the 2 X 2 modular group, i.e. the group of 2 X 2 matrices
with integer entries and determinant 1 in which a matrix is identified with
its negative. Let F (n), the principal congruence subgroup of level n, be the
subgroup of F consisting of those elements for which a d 1 (mod n)
and b c 0 (mod n). G is called a congruence subgroup of level n if G
contains r (n) and n is the smallest such integer. G has a fundamental
domain in the upper half plane which can be compactified to a Riemann surface
and then the genus of G can be defined to be the genus of the Riemann
surface. H. Rademacher has conjectured that the number of congruence
subgroups of genus 0 is finite. The conjecture has been proven if n is prime
to 2.3.5 or is a power of 3 or 5 [5, 1]. In this paper we show that the conjecture
is true if n is a power of 2.

Consider Mr(.), the Riemann surface associated with 1 (n). The field of
meromorphic functions on Mr(.) is called the field of modular functions of
level n and is denoted by K (n). If j is the absolute Weierstrass invariant,
K (n) is a finite Galois extension of C (j) with r/r (n) for Galois group. Let
SL (2, n) be the special linear group of degree two with coefficients in Z/nZ
and let LF (2, n ) SL (2, n)/:i: Id. Then r/r (n) is isomorphic to LF (2, n).
If 1’ (n) G 1 and H is the corresponding subgroup of LF (2, n), then
by Galois theory, H corresponds to a subfield F of K (n) and the genus of
H equals the genus of F equals the genus of G.
The following notation will be standard. A matrix

will be written d= (a, b, c, d).

I= d= (1,0,0,1); T ::i:: (0, --1, 1,0);

S (1,1,0,1); R-- (0,-1,1,1).

T and S generate LF (2, 2") and R
g (H) the genus of H and h or ISl the order of H. [A] or [:t: (a, b, c, d)]
will denote the group generated by A or d: (a, b, c, d) respectively. ’ will
denote the natural homomorphism from LF (2, 2") to LF (2, 2), 1 _< r _< n,
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obtained by reducing all the entries in a matrix in LF (2, 2n) mod 2r.
the kernel of and so is a normal subgroup of LF (2, 2n).
LF(2, 2)1 3.2-3 and g 23(-r)if r 1 and 2-’ if r 1.
Our main result is

THEOREM 1. Let H be a subgroup of LF (2,2n) with H n K_:

_
4.

g (H) O, then n < 8.

To compute g (H)we use the following formula derived from McQuillan
[5]" Let r, and s (2) be the number of distinct cyclic subgroups of H generated
by a coniugate in LF (2, 2) of R, T and Sr respectively where 1

_
2 _< 2n.

Then

(I.I)
g(H)

1 - {(2 6).3.22-2 (8rp(2") + 6tr(2n) -f- 6.2-W)}/24h
where W s(2), p(2n) 3.2-: and r(2) 2.
One consequence of this is that if two groups are coniugate they have the

same genus.

2. Some results on the structure of K
We first analyze K_: for n > 2 which has order 8 and in which every non-

identity element has order two. It contains the center of

LF (2, 2n) [:i= (1 -t- 2n-:, 0, 0, 1 + 2-:)]
which will be denoted by [Z.]. The other subgroups of K;_: of order two in
which we are interested are the three conjugates of [S’-1], namely

[S"-’], [d= (1, 0, 2-:, 1)] and [=t: (1 -[- 2-:, 2n-:, 2n-:, 1 - 2"-:)].
The subgroups of K;_: of order four are divided into three different conjugacy
classes" (1) three groups containing Z and one conjugate of S- such as

D II, Z, ,S’, .4- (i -t- 2"-:, 2"-:, 0, I - 2"-:)};
(2) three groups containing two conjugates of S’- such as

C {I, S"-’, :t: (1 -[- 2n-:’ 0, 2-:, 1 -{- 2-:),
d= (1 -t- 2-:, 2-:, 2-:, 1 + 2-:)};

B {I, :{= (1 + 2-:, 2-:, 0, 1 - 2n-:), d= (1 -}- 2-, 0, 2-, 1 - 2-:),
(3)

(1, 2-:, 2-:, 1

which contains neither Zn nor any conjugate of S’-1 and is normal in LF(2, 2" ).
We wish to prove for LF (2, 2) two results for subgroups of K which

Gierster [2] has already done for LF (2, p), p > 2. For p > 2, an element of
K has the form

4- u + ptt p prp u p"tt
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where 0 _< , v, p < 2"‘- and u -= 1 W p,.r (,. + vp) (mod p’‘) which has two
solutions for u. Gierster fixed the choice of u by further assuming u --- 1
(rood p) so that , , p determine a unique element of K’. For p 2,

u2-- 1 +2(+vp) (mod2")

has four solutions for n > 3. We can restrict the choices for u to two by
assuming u -= 1 (mod 4) but the representation of an element of K" depends
on the choice of u as well as , and p. In fact,

{, v, p, u} and { + 2"‘--1, v, p, u + 2"‘-1}
determine the same element of K. For an element of K, n >_ 3, we also
require that #2 + vo be even since u - 1 + 4 (" + o) (mod 2"‘) has a solu-
tion if and only if 1 + 4 (# + vo) 1 (mod 8). Further note that if U is
an element of K, then U is in K,+I and so an element in K K+I has
order exactly 2"‘-.
The proofs of the propositions require the following two lemmas.

LEMMA 2.1. Suppose U1 and U are elements of K. Then U U if
and only if U1 U2. k-I where k,_l is an element of

Proof. Since K’ U.K’, Ut U .k, for some k in K’.
K"._x, then, since K._ is in the center of K[ [4],

U UkUk
Conversely suppose UkU&, U. Then U,k, kTU. Let

If k is in

and
U2-- 4- (u’+ 2’, 2v’, 20 u’- 2’)

k =t= (u + 2, 2’, 2’0, u 2).
We may assume not all of , v and o are divisible by two since we could then
factor out two and change to 1. To show n 1, we assume
< n 1 and prove that then two divides each of
Since U..k k71. U, we have by multiplying and comparing terms"

(2.1) 2u1 + 2r+t + 2"+vp

(2.2) 2*up =- -2*u’p (mod 2"‘)

(2.3) 2*utv m 2*uv
Congruences (2.2) and (2.3) imply that

2’u’p 0 (mod 2"‘-1) and 2*u’v 0 (mod 2"-a)
so that 2 divides p and v since u’ is odd and < n 1.
by 2v0 and 2p0 in congruence (2.1), we have

Replacing v and o

2’u’u + 2+%’ + 2’+o’v0 + 2"+’00v’ - 0 (mod 2"‘-1)
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or-2tu’# 2r+’ - 2r+p’,o-- 2r+’p0 + 2"-1w for some w. Now the
right hand side of the equation is divisible by a power of two higher than
so that two divides which ves our contradiction.

CoaoaY 2.1. Eh element in K has 8 square roots if it has any and,
by induction, has at most 2 2-th roots.

LEMMA 2.2. Suppose U and U belong K_, Thenfor s r 1, "U’ if and only U U. k,_, where

_
is an element of K_,.

Proof. By induction on s with the case s 1 being Lemma 2.1. Assume
fort < s, U U if and only if U Ub._. Let U k,_,U. Then
U’ (k_,U)’. Since K_, is a normal subgroup, k_,U Uk,_, for
some k_, in K_,. Since k_, and k_, are conjugate, they have the same
order, 2’. Then

v-’ (_.)’-’ v (’_.)’-’ (_.)-’
belongs to K_which is in the center of K_, [4] so that (k_,)- (k,_,’ )-.
Hence by induction k,_, k_,k,_ for some k_ in K._, where < s. But
then

(k._.

where k,_,+ is in K_,+. Hence

U[’= (.u)’= u(:_.._.u)"-’’= u(._.+,u)’-’.
But by induction (k,+U)’-’ (U)’-’ U’. So if U k,U, ’U’. On the other hand, by Corollary 2.1, ’ has at most 2’ 2*-th roots
and there are 2’ elements in U.K_, ;so if U’ ’, U bdongs to U.K,_,.

Coaov 2.2. Suppose U an element of H K_,. Then U is an
elnt of H n K_ and U" U’, if and only if U U. k_, wre
is an element of H n

Paoeoso 2.1. U ]H n K_ 2, then H K: is cyclic of the form

wkere s - r, U (u 2, 2, 2to, U- 2) and ua are
inductively by the formul

u u_u + -(u 1) a f f_u + u_

both mod 2" with ul u and 1.

Proof. We prove H a K is cyclic by induction. Since H a K_ is cyclic,
we suppose H n K,+, is cyclic and show H n K is cyclic for s _> r. Let
H K,+ [U0] and let U be a fixed element of (H n K (H K,+).
If there are no such elements we are done as then H n K [U0]. Let U1
be any other element in (H n K (H K,+I). Both U and U belong
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to HnK,+I so [U0] [Us] [U]. So U (U) (U)which, by
Corollary 2.2, implies that U1 k_l. U where k_l belongs to H n K_.
Also U0 (U) for some m. Therefore U k_.U UU U.
U. So U is in [U]. Clearly ny element of H K, is in [U] since U0 is.
So H K [U] which has order less thn or equal to 2-’.

Finally suppose we fix representation of

U (u 2, 2, 2, u 2)
orand suppose U (u W 2 , 2 , 2 p, u ). Then

U+ UU (uu + (u 1) + 2"(u + u), 2v(u + u),

2 o(u + + 1) +
and we are done.

PoPosIIO 2.2. If [H n K_x[ 4, then H n K is generated by two
elements Ux and U of orders 2- and 2-* respectively where s r. Further

so that g n g_ 2-’-" 2-.
Proof. We first show that H n K: 2’-’. This is true for r n 1

so we assume that, for x > r, [g n K2] 2"- and show that
g 2-’+. By Lemma 2.1 and the fact that H n K-x] 4, if U is an ele-
ment of H n K;x, there are four elements in H n K;x which square to U.
Since H n K 2’-’, there are at most 2- possibilities for U. Hence
there are at most 4.2"- 2"-+ elements in H n

Let 2"-* be the maximum of the orders of elements in H n K, let Ux be
an element of order 2"- in H n K and note that
is contained in K and so Hx[ < 2-’. Ux"-*-t is an element of H n K"
Let V {U’]U’ is in HnK and U’ Ua"-*- for some m}. Then
Hx V is non-empty since H n K_x[ 4 and so (Hx V) n (H n K_x)
has two elements in it. Let 2 be the maximum of the orders of elements
in H V, let U be an element of order 2"-’inHx V and note
that s r. Since V # U for 1 i 2"-*, 1 j 2"-’, the set VU}
has 2"-’-’ elements in it and is contained in H. On the other hand, V u
(H nK) is all of Hx. By the first part of the proof ]H n K] g 2"-’.
But the set U*U} where 2’-, 1 i, j 2"-, contains 2"- elements
all belonng to HnK. So ]HnK] 2"-*. By Corollary 2.2 and
choice of s,

K U--Yn
_

g (Hng)

which has order 2-. So H n K[ 2-* 2-. In general,

n K_(_, (H n K_(_,
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which has order H n K,’-(q-1) i. Hence

HI KI -[- IV, (K K)[ 2s"-’ -t- 2’-’z.,=0tV’’--I 2) 2s-,-t

which is the order of UU}. So H U1U}.
3. Conjugates of S, T, and R

Unless otherwise indicated, by a conjugate of S, T, or R we mean aSa-1,
aTa-1 or aRa-1 where a is in LF (2, 2"). To calculate W for a given H, we
are interested in how many groups conjugate to Ssr belong to H. A conju-
gate of +/- (1, 2r, 0, 1 has the form

+/-(a, b, c, d).+/-(1, 2r, 0, 1).+/-(d, -b, -c, a)

+/- (1 2ac, 2as, 2c, 1 - 2rac).

Since ad bc 1 (mod 2") both a and c cannot be even. The group gener-
ated by -(1 2ac, 2ra, -2c, 1 - 2ac) is

-+- (1 2tac, 2tas, 2tc, 1 - 2tac), 0 <_ <._ 2 11.
Thus if a is odd, any other conjugate of Ssr generating the same group also
has a odd. From [1], to obtain the number of subgroups of H conjugate
to Ss for which a is odd, it is sufficient to count the number of elements in
H of the form

+/- (1 2"c, 2r, -2"c, 1 - 2"c),

i.e. we set a 1. For each r, there are 2"-r such elements and so there are
’_-01 2"-" 2"+1 2 such elements in LF (2, 2"). Similarly if a is even,
c has to be odd and to count the number of groups conjugate to S gener-
ated by such elements we can set c 1. For each r, there are 2"-r-1 such
elements and so ’--01 2"-’-1 2 1 such elements are in LF (2, 2"). So
for LF (2, 2"),

W 2"+1- 2-t-2"- 1 3(2"- 1).

Note that if U is conjugate to S, then U is conjugate to S+.
LEMMA 3.1. Suppose U is conjugate to S. Then U1 is conjugate to S

and U U if and only if U1 Z,,. U.

Proof. Suppose U +/- (1 2ac, 2a, -2rc, 1 + 2ac). Then

U.Z, +/-(1 2"ac - 2"-1, 2as, --2cs, 1 -{- 2rac T 2"-1).
If a is odd, set a a and 7 c 2"--1; if a is even, c is odd and set , c
and a a -t- 2"-r-. In either case we see that

U. Z, +/- (1 2a-, 2"a, 2,s, 1 "t- 2ra)

and is conjugate to Ss. Further U U since Z, is in the center of
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LF (2, 2"). On the other hand, if

A =t= (1 2r+lac, 2’+1as, 2"+1cs, 1 -+- 2"+1ac)
is conjugate to Sr+l, then U :i= (1 2rac, 2ra, -2c, 1 2"ac) is conju-
gate to S’ and Us A. But then U.Z is also conjugate to S" and
(U Z) A. So each conjugate of S r _> 0, has at least two square
roots conjugate to S. Since K-I has three conjugates of Sn-, ifany
conjugate of S+ had more than two square roots conjugate to S, W would
be greater than 3 (2 1), a contradiction.

COROLLARY 3.1. S (2) the number of groups conjugate to

Next we calculate number of conjugates of T and r (n) for LF (2, 2")
and obtain some information about conjugates of T. Let E K.[T]
which is one of the three conjugate Sylow 2-groups in LF(2, 2"). So

3t’ where is the number of conjugates of T in Er. Note that a con-
jugate of T has the form

+/- (ac -t- bd, b as, c -[- d, ac bd)

and so has trace 0.

L, 3.2. In LF (2, 2), 3.2- and r (2") 2".

Proof. Since E’ contains K’,
0 g(E’) 1 -[2"-’(2" 6)

t’r (n)
so that t’r(n) 28"-s. By writing down the elements one sees that, in
LF (2, 4), E’ has two conjugates of T. Let

: LF (2, 2") --* LF (2, 2"-1)
be the natural homomorphism with kernel K_I. If T in LF (2, 2"-1) has
precisely four pre-images under which are conjugate to T in LF(2, 2"),
then any conjugate of T in LF (2, 2"-1) has precisely four pre-images conjugate
to T in LF(2, 2). Using the fact conjugates of T have the form

=l= (ac A- bd, b as,c A- d, ac bd),

we calculate that T in LF (2, 4) has precisely four pre-images in LF (2, 8) so
that t’ 8 2"-’8 for LF (2, 8). In general, for n > 4, the kernel of

{+/- (1 A-2"-1a, 2"-1, 2"-’, 1 A-2"-’a), 0 < a, , , < 1}.

Then the elements U in LF (2, 2") such that (U) T in LF (2, 2"-1) are
given by

K_,. T {:i: (2"-1.,- 1 A-2"-1a, 1 A-2"-’a, 2"-1)}.
Since conjugates of T have trace 0, for an element of K;_,. T to be conjugate
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to T, it is necessary that/ ,. To see that the four elements of K_. T with
/ are actually conjugate to T we need a, b, c and d which simultaneously
satisfy

(3.1)
(3.2)

(3.3)

(3.4)

all mod 2.
cs+d 1 +2-a,
asq-bm 1 +2-a,
ac "4- bd =- 2=-,
ad-- bc 1,

Since n _> 4, let u be a solution to

xs 1+2- (mod2).

Ifa 0,1etc= b 0, anda= d= 1;ifa 0, 1,1eta=2-,
c 1, b 1, d 0; if a 1, 0, let c b 0, a u and d u +2-;
if a 1, let b 0, c 2-, d u and a u + 2-. We then see that
T has four conjugates in LF (2, 2) which reduce to T in LF (2, 2"-). Hence,
by induction, t’ 4.2s-)-a 2s- in LF (2, 2"). So 3.t’ 3.2s-a

and r (n) 2-a/t’ 2.
LEMMA 3.3. For n > 2, an element of E’ or any of its conjugates has trace 0 if

and only if it is conjugate to T.

Proof. We have seen that a conjugate of T has trace 0. An element of
K has trace 2u 0 since u is odd. So the only elements with trace 0 in E’
are in the set

K.T {+/- (-2r, uA-2,- (u- 2tt),2p)}.

So an element in E’ has trace 0 if and only if p which implies there are
2-1. 2-/2 22=- such elements. But E’ contains 22-8 conjugates of T all
of which have trace 0 and hence these are the only elements of E’ with trace 0.
If A, an element of one of the conjugates of E, has trace 0, then.since conjuga-
tion preserves traces, A is conjugate to an element in E’ with trace 0 and
so is conjugate to T.
From the proof of this lemma, we see that, if

U =t= (u -4- 2, 2, 2p, u 2t),

then U. T has order two if and only if r p. Furthermore, by multiplying
and comparing entries, we see first that if U has r p so does U and second
that if U has r p so does d. U where d is in

{I, Z, -+- (1, 2n-’, 2-, 1 ), =t= (1 -4- 2-, 2-1, 2=-’, 1 A- 2-1)} D’
which is conjugate to D. Finally (d. U) U so that, if an element of K
has one square root with p, it has precisely four.

Finally we obtain some information about conjugates of R in LF (2, 2")
and calculate r the number of conjugates of R and p(n) for LF (2, 2).
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LEMlVIA 3.4. An element of LF (2, 2) is conjugate to R if and only if it has
order 3 if and only if it has trace 1.

Proof. R has order three and all elements of LF (2, 2) of order three are
conjugate by Sylow. Since R has trace 1 and conjugation preserves traces,
all conjugates of R have trace 1. On the other hand, if an element has trace
1, it has the form :i: (a, b, c, 1 a) where a bc - 1 (rood 2") which
has order three and hence is conjugate to R.

LEMMn 3.5. p (n) 3.2"- and r 2’-for LF (2, 2).

Proof. Let H K[’. [R] which is normal in LF (2, 2") and so contains all
the conjugates of R.

0 g(H) 1 + [3(2" 6).2-- 9.2’’-(2-- 1) (n).r]/9.2-so that p (n). r 3.2-. Arguing as in Lemma 3.2, there are eight elements
of trace 1 in LF (2, 4) and R, in LF (2, 2), s n, has four pre-images in
LF(2, 2’+) which have trace 1 and which are given by B.R in LF (2, 2*+ ).
So we see that LF (2, 2") contains 2’- elements of trace 1 and therefore
r 2-. This implies that p (n) 3.2-.

4. Subgroups of genus 0

Since LF (2, 4) has genus 0 [3], we can restrict our attention to LF (2, 2")
for n >_ 3.

PROPOSITION 4.1. Suppose ,,- l andn >_ 4. Theng (H > O.

Proof. SincelUnKl 1,1Hl_6andW=0. So

g (H) _> 1 + (2a’- 3.2’- 2"+" 3.2"+)/48 > 0
forn

LEM. 4.1. (a) If lH n K_ 2, then r

_
2"-.

(b) If lHaK,_I 4 and H n K,_ B then r O.

Proof. Suppose r 0 and conjugate H so that R is an element of H"
(a) Any element of order three in LF (2, 2) is in K’. [R]. Thus any ele-

ment of order three in H is in (H K[’ ). [R].
But] H K _< 2"- and so the number of groups of order three is bounded
by2-’.

(b) Let

S S"-, S d= (1 -}- 2"-, 2"-, 2"-, 1 - 2"-),

Sa (1,0,2-,1)

denote the three conjugates of S"- in K,"_. Then S.R R.S,
Sa R R S and S.R R Sa Since H n K_ 4 and H K._ B,
at least one of S, S and Sa is in H. But then since R is in H, the above
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equalities show that St, S and $3 all are in H and so H n K_I K_I which
is a contradiction. Therefore r 0.

COROLLARY 4.1. If iHng_l[ 4 and H n g_l B, then H 2l
for some l.

Proof. Since r 0, there are no elements of order 3 in H and so 3 does not
divide HI.
Suppose H 3.2 and that P1, P and P3 are the three Sylow 2-groups of

LF(2,2n). If lHng 2-l,theniHnP,l,i= 1,2,3,= 21 This can
be seen by observing that

H= (U-i (H n P)) u (H n E)

where E K.[R] and then counting elements. So H has three Sylow
groups, H n P, i 1, 2, 3, which are conjugate in H. Each of these contains
the same number of conjugates in LF (2, 2") of T since T’ bTb-1 for b in
LF (2, 2n) if and only if trace T 0. But conjugation, whether by elements
of H or LF (2, 2n), preserves traces. So if T1, T are the conjugates in
LF (2, 2") of T which are in H nP and a (H n P1)a -1 H n Pwhere a is in
H, then aTa- are precisely the elements of H n P. of trace 0, i.e. the con-
jugates in LF (2, 2") of T which are in H n P. Similarly for H n Pa.
LEMMA 4.2. Suppose H n K-I 2. If 3 does not divide H I, <_ 2"-;

if 3 divides [HI, <_ 3.2-.
Proof. Ift 0, conjugateHsothatTisinH. Sincel Hn K_I[ 2,

H n K is cyclic of order bounded by 2"- and the set (H n K). T also has
order bounded by 2n-. Now if is 2, then U (HnK).[T] and
since no conjugate of T belongs to K, all the conjugates of T in H are in
(HnK).T. So _< 2"-. If IH 3.2, then H has three conjugate
subgroups of order 2 each containing the same number of conjugates of T.
So < 3.2-.
PROPOSITION 4.2. Suppose T is an element of H and lHn K-li 4.

Suppose HI 2. If H n K K,-1 D’ then < 2n- ;ifHn D’ then

t_< 2"-1+2"(n- s-- r+ 1)

where H n K 2=’-.-r orSuppose ]HI 3 2. Then t_< 3 2n-1

3 (2"-1 + 2" (n s r + 1 depending on whether H n K’_1 D or D’.

Proof. If [H 3.2, it contains three conjugate subgroups of order 2
all containing the same number of elements conjugate to T. So we only
have to consider H with order 2 containing T.

By the remark following Lemma 3.3, to compute t, it is sufficient to count
the number of elements U in H n K" with p. IfHnKi* D’, then
H n K-I has at most, one non-identity element with p and so, again by
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the remarks after Lemma 3.3, H n K_ has at most 2 elements with v p.
So < 2-.

Suppose now that H n K_ D’ and that r is the smallest number such
that H n K contains an element with v p. By Propositions 2.1 and 2.2,
H n K has the form

uu} {-,- (u,u + 2, ,u + 2% ,’u, + 2"+’, (’ + ’),

2’ u’u + 2" ru + 2"+’ (U’ g’),

2" ou + 2’ o’u + 2"+’ (’ ’),

where

Ua m (u + 2%, 2"v, 2"o, u 2%), U m(u’ + 2’u’, 2’v’, 2’0’, u’ 2’u’),
s > r, 1 2-", 1 2-’ and 2-"-- of the and 2-’-’- of the

are disible by precisely 2" since the and deterne which K U
and U belong to. By the choice of r, to calculate t, it is sufficient to consider
H n K rather than H n K.
Suppose both Ux and U have p. We want the number of elements

in {UU} such that

2" v’u + 2u + (v’ ’) (mod 2)

which is satisfied if and oy if i(vu’) m (’) (mod 2-’-’-). Now
using the fact that o and o’ v and the observation that if ,

v’ and o m o’ all mod 2, then Ui"-’-’ U"-’- one calculates that
vv’uv’ (mod2). So

(’ ’) m 0 (mod 2"-’-’-a)
if and only if m 0 (mod 2"--’-a). If 2--]] where 0 x s 1,
there are 2a choices for if x > 0 and one choice if x 0. Then i can be
chosen arbitrarily so there are 2-’ choices for $i. If 2-’-" ]] where
s x n r, there are 2"- choices for and 2-+ choices for since
2"-’- has to divide . So

t= 2"-’ + 2"-’ :I 2’- + z: 2" 2"-’ + 2" (n- r- + 1).

Suppose U does not have v p. We want the number of elements such
that

2’’u + 2’+’ (u’-- ’) 2"io’u + 2"+’(vu’ p’u) (mod 2)

which holds if and only if

2"iu(v’ p’) + 2’+’() m 0 (mod 2)

where u(v’ + p’) 2’. Let 2"][’ p’. Ifx 0, there are no
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solutions unless 2n-8 divides in which case there are at most 2n-r such ele-
ments; if x 1, there are no solutions unless 2-’- divides in which case
there are at most 2-r+l such elements. Suppose x _> 2. If v’, p’ and
are even and ’ and v are odd, then 4 divides (’ W p’) and 2 precisely divides
2’ so that 2 II ’. Considering the other possible combinations for , ,
’, ’ and p’ in the same way we see that if x > 2, 2 ’. So, if x > 2, we want
the number of elements such that

(4.1) 28+j u y + 2++1, " 0 (mod 2")

where y, ’ are odd. Clearly x _< n s. We can assume that r s < n
since otherwise the number of elements in {UU} is bounded by 2 so that
< 2". If x < r + 1, then 2"-’- has to divide and so one has less than

or equal to 2. 2"- _< 2 elements of the type desired. So we can assume
r+ l_<x_<n-s. Let2]lwhere0_<l_<n-s. For eachl, 0 <l<
n s r 1, there are at most 2" elements of the type desired since there
are at most 2"-*-- choices for and for each choice of j there are

2n-r--(n-r--/-1) 2’+1+
choices for , because in these cases congruence (4.1) becomes

2--’y + ’" ------ 0 (mod 2"-8--r-’)
with y and ’ odd. For eachl, n- s- r- 1_< l<n- s-l, thereare
2"--’- choices for } and 2"- choices for } for each }. Finally for n s,
there is one choice for }j and 2"- choices for },. So the total number of
elements of the type desired is bounded by

(n s r- 1 )2 + 2- + z.,X’-’---.-- 2---1-

(n-- s-- r-- 1)2n+2"-+2"-r-’+xx2’

LEMMA 4.3.

2"(n-- s-- r+ 1).

Ifl UnK,_x[ 2, W <_ n.

Proof. By Proposition 2.1, HnK,"_, is cyclic. So for n r # 0,
s (2-) _< 1 and therefore W _< n 1 + s (1). If Z, is not an element of
H then, from Lemma 3.1 and the fact that H n K is cyclic, there can be at
most one group conjugate to S in H. If Z, is in H, W 0. So, in any case,
W<_n.

LEMMA 4.4. If H n K_x is conjugate to C, then W <_ 2n.

Proof. Note that Z, does not belong to H. Hence given U in H conjugate
to S"-’+, Lemma 3.1 implies that at most one of its square roots which are
conjugate to S"-" belongs to H. So, arguing by induction, we see that, in
passing from conjugates of [S"-’+] to conjugates of [S"-’] we add at most
two conjugates of [S"-"]. So W _< 2n.
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PROPOSITION 4.3. If H n K,_ is conjugate to D,
W _< 2("+)a -}- 2+ 3.

Proof. Recall that a conjugate of S has the form

+/- (1 2ac, 2a, 2c, 1 2ac
and that for computing s (2) the relevant conjugates of S are the ones with
a 1;so we restrict our attention to these conjugates of S. By conju-
gating H, assume that H K_ D and that H n K has as many conjugates
of S, 1 r n 1, with zero in the lower left corner as possible. If H
can be conjugated so that all the conjugates of S, 1 r g n 1, have this
form, then if n is even,

(n/2)--I 2i 2(n/2)+2W g 1 2(n2)+l 2 -1 3;
if n is odd,

W _< 1 + 2(+) + 2 (-)_ 2 =3.2(+) -3.

Since n 2, W ( 2(+) 2+ 3.
If not, let m be the smallest integer such that 2-c 0 (mod 2) for

some c0 and suppose m 2n/3 1/3. Since m has the property that

2"-c 0 (mod 2) and 2-(-)c 0 (mod 2),

c 0 (mod 2-) and c 0 (mod 2) that 2- c] implying that m
is odd. Now

(1 + 2-c0, 2-, -2"-c, 1 2"-c0)--(1- 2-c0,2- 2 ,z c0,1+2-c0)

is in H. By the second statement of the proof, we may assume that H con-
tains S’-m. So H contains

S’.S2-’ -+-(1 2-c0 22n-2mC0 "- 2n-l, -’’-"C0,2 1 - 22n-2mC -- 2"-c0)

:i: (1 2-’x, 2-, 2-, 1 + 2-’x)

where x is odd and 1 _< s (m -t- 1)/2 _< n]3 -[- 1/3. The last equality is
obtained by factoring the highest power of two out of co and c and observing
thatm <_ 2n/3 1]3 implies that 2n- 2m + (m- 1)/2 _> n. Taking
powers of

+/- (1 2-’x, 2-, 2-, 1 -{- 2a-’x),

we get U’ 4-(1 2-’, 2-, 2-, 1 -{- 2-’) is in H.
Now suppose U and V are conjugates of S’- such that U’ V’ and

s is the smallest integer for which this is true. Then

U +/- (1 -[- 2-c, 2-, 2-c, 1 2-c)
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and
V =I= (I A- 2n-rT, 2n-r, 2-7, 1 2-7)

with c- 2-a. Let

n--1/2_> r_> m-[- 1 > (m-I- 1)/2 s.

If U and V belong to H, so does

U. V -4- (1 -[- 2- (c -t- k,) -[- 2-k, (c ), 2 (] -t- 1 ) -t- 2-k (c , ),

2 (c + ) 2’-c(c ),

1 2 (c -t- k,) 2’*-kc (c ) ).

Further note that 2’-’ 2(-’) divides c since if not, let 2 ] c with
< (m- 1)/2andletx r- (m- 1). Since Uisconjugateto
U is conjugate to S’-+ and the lower left corner of

U -2"-(-’)c 2-(-’)+y 0 (mod 2")

where y is odd. But this contradicts the choice of m. Set k 2-’ 1.
Then

2"- (c + }) + 2’-k (c )

2"- (c + 2-’c c + 2+’) + 2’- (2-’ 1)(c 2-’)2
2"-’ (mod 2")

since r n ], s < r/2 and 2 divides c.

2"-" (d + k) 2’-kc (c )

--2"- (d + (2 1) (c 2*)) 2’- (2-’ 1) (c 2-*c)2-*

0 (mod 2")

since r n , s < r/2 and 2’- divides c.

2 (k + 1) + 2-k (c- ) 2"-’ (mod 2").

So U.V m(1+2-’,2-’,0,1- 2-’). But then

U’. U. V (1, 0, 2-’, 1

is in H contradicting the fact that H n K_ D. So any two conjugates
of S’-" where n r m whose 2"-th powers are the smallest powers
which are equal can not both belong to H.

For the rest of the proof, the phrase "at the r-th level" will mean in
K_ K,_(_,). At the (m 1)-th level, all conjugates of S’-(-’) have
zero in the lower left corner so that there are at most 2’- conjugates of
S’-(-’) in H. At the m-th level, there are at most 2’ conjugates of
since each conjugate of S’-(-’) has at most two square roots which are con-
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jugate to S2"-’. For each of these 2’-1 divides c and all 2’ powers are equal.
At the (m - 1)-th level, there are at most 2.2’ conjugates of S
divides c and all 2’+ powers are equal. So there are at most two elements
in the set of 2’ powers and each has at most 2’ 2-th roots from the (m -[- 1 )-th
level. From each of these two disjoint collections of 2"-th roots, whose union
is all the conjugates of S-(+>, at most 2’- 2"-th roots can in H since,
if Uven by c is in H, U’ ven by c 2’-’ can not be in H. So the (m 1 )-th
level has at most 2’ conjugates of S-(+).
Now each of the two sets of 2"-th roo at the (m 1 )-th level can ve at

most one 2’- power since othese H ll contain elements whose 2"-th
powers are the first ones equal. So there are at most two elements in the
set of 2’- powers of conjugates of S’-(+) from the (m + 1)-th level and
hence the set of 2’ powers of conjugates of S-(+) from the (m + 2)-th
level has at most two elements in it. Furthermore there are at most 2.
conjugates of S’-(+) in H. Repeat the above arment and continue in-
ductively to see that each level from m to contains at most 2’ conjugates
of powers of S where is the greatest integer less than or equal to
By Lemma 3.1, for r > t, the number of conjugates of S’-’ in H is at most
twice the number of conjugates of S-+ in H. So if is even,

/ 2 2/ 2 2(I)+ 2+-1W+2_ + : + -3;

if is odd,

W 1 + 2 t1)/2 2 + 2(-,>/ 2 2(,+>/s T 2"+-(’+)s 3.

Since in either case, t (n + 1) t (t T 1) > it > t (n 2),

W 2(+)/ + 2s’/+/ 3.

PROPOSiTiON 4.4. Suppose n > 6. Then g[ H n K:_ 2 or H
is conjugate to C, g (H) > 0.

Proof. ByLemma4.1, r <2"-1 If[HK,-1[ 2, W n by Lemma
4.3 and 3.2"- by Lemma 4.2 and so

g (H) 1 + (2’- (a. 2s’- + 2"-. 2"- + 3.2"-. 2"-2 T 2s’-n))/h
1 + 2’-(2-- 13- n)/h.

But 2"-1- 13- n > 0ifn 6. If H n K:_ is conjugate to C, W 2n
by Lemma 4.4 and 3.2"- by Proposition 4.2 and so

g(S) 1 W 2s’-(2"-- 13 2n)/h

and2"-- 13- 2n > 0ifn 6.

LEMMA 4.5. Suppose H K:_ B and n 5. Then r 2 with
21 2n- 6.

Proof. By Sylow, r i.s an even power of 2 so that r 22. Since any sub-
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group of order three has the form [U.R] where U is in K, r 2 _< 2
where H n K’ 2n-(’+) with s >_ t. Since H n K-I B and any ele-
ment in K’ has its 2’-%th power in K,"_I B, 1 and so 21 _< 2n 4.
Finally consider the case -}- s 4 and 21 2n 4. Then [U.R] is a
group of order three for any U in K’. So suppose

U +/- (u - 4, 4, 4, u 4)

is in K’ K’ and U.R has order 3. Now

u" --= 1 -F 16 (" -i- p) (mod 2)

and, since U- is in B, exactly two of , and p are odd. So -k p is odd
and 2111-- u. Since U.R has order 3 and so trace 1, 4(

1 u (rood2"). -- p- is even exactly two of them are odd and
so 2 divides (1 u). But 2il (1 u) since 2 divides l -F u and
2’ II (1 u) (1 -F u)(1 u). Therefore 2 II ( P -/). Now consider

U +/- (u -k S#u -I- 16(# -k ,p), 8uu, Sou, u 8uu - 16(# -{- p)).

U.R has order 3 so that

8u (u p # ) + 16 (u Jr up ) =- 1- u (mod2").

But 24 ]1 (1 u) and, since # -t- up is odd, 2 (u P #) and n _> 5, then
2 divides 8u(- p ) + 16( -{- p) which is a contradiction. So
2l 2n 4 which implies that 2l _< 2n 6.

PaoeosxwmN 4.5. Suppose H n K",_x is B and n >_ 5. Then g (H) > O.

Proof. Since HnK,"_ is B, W O. By Proposition 4.2, _< 3.2
and by Lemma 4.5, r _< 2"-. So

g(S) >_ 1 + (2an-- 3.2"-- 3.2"-.2"- 2"-.2"-)/h
1 + 2"-4(2"-- (3 + 6-t- 2"-))/h > 0

ifn > 5.

Paoosxmz 4.6.
iln> 8.

Suppose H n K_x is conjugate to D. Then g (H) > 0

Proof. By Lemm 4.1 and Corollary 4.1, r 0 and HI 2. By
Proposition 4.2, t _< 2"-’ -t- 2" (n s r - 1) and by Proposition 4.3,

W _< 2("+) + 2"’+"’ 3.

So g(H) >_ 1 -F 2’-’(2-’ (3 + 2 -F 4(n 2) -F W))/h. But if n _> 11,

2"- (5 -t- 4(n 2) -[- 2("+)/ -[- 2="/+/ 3) > 0

and so g (H) > 0. From the proof of Proposition 4.3, we see that for n 10,
W _< 269; for n 9, W _< 133; for n 8, W _< 69. Therefore for n 10,
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forn 9,

for n 8,

g(H) _> 1 + 216 (512 (37 + 269))/h;

g (H) _> 1 + 21 (256 (33 T 133))/h;

g(H) _> 1 - 21(128 (29 + 69))/h.

So forn 8,9and10, g (H) > 0.

The proof of Theorem I now follows from Propositions 4.1, 4.4, 4.5 and 4.6.
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