SUBFIELDS OF K (2") OF GENUS 0

BY
JosEpr B. DENNIN, JR.

1. Introduction
Let T' be the group of linear fractional transformations

w— (aw + b)/(cw + d)

of the upper half plane into itself with integer coefficients and determinant 1.
T is isomorphic to the 2 X 2 modular group, i.e. the group of 2 X 2 matrices
with integer entries and determinant 1 in which a matrix is identified with
its negative. Let I'(n), the principal congruence subgroup of level n, be the
subgroup of I' consisting of those elements for which ¢ = d = 1 (mod 7)
and b = ¢ = 0 (mod n). G is called a congruence subgroup of level n if G
containg I'(n) and n is the smallest such integer. G has a fundamental
domain in the upper half plane which can be compactified to a Riemann surface
and then the genus of G can be defined to be the genus of the Riemann
surface. H. Rademacher has conjectured that the number of congruence
subgroups of genus 0 is finite. The conjecture has been proven if n is prime
to 2-3-5 oris a power of 3 or 5 [5, 1]. In this paper we show that the conjecture
is true if n is a power of 2.

Consider M, , the Riemann surface associated with I'(n). The field of
meromorphic functions on Mr, is called the field of modular functions of
level n and is denoted by K (n). If jis the absolute Weierstrass invariant,
K (n) is a finite Galois extension of C (j) with I'/T (n) for Galois group. Let
SL (2, n) be the special linear group of degree two with coefficients in Z/nZ
andlet LF (2,n) = SL(2,n)/ &= Id. Then I'/T (n) is isomorphic to LF (2, n).
If '(n) € G C T and H is the corresponding subgroup of LF (2, n), then
by Galois theory, H corresponds to a subfield F of K (n) and the genus of
H equals the genus of F equals the genus of G.

The following notation will be standard. A matrix

= (G 5)
will be written £ (a, b, ¢, d).
I== (130’0’1); T= =+ (0,""1, 110);
S==+(1,10,1); BR= =% (0, —1,1,1).

T and S generate LF (2,2") and R = TS. H will be a subgroup of LF (2, 2");
g(H) = the genus of H and k or |H| = the order of H. [A]or [ (a, b, ¢, d)]
will denote the group generated by 4 or & (a, b, ¢, d) respectively. o, will
denote the natural homomorphism from LF (2, 2") to LF(2,27),1 < r < n,
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obtained by reducing all the entries in a matrix in LF (2, 2") mod 2". K7 is
the kernel of ¢, and 50 is a normal subgroup of LF (2, 2").
|LF(2,2") | = 3-2""and | K7 | = 22" if r % 1and 2" *if r = 1.

Our main result is

TreoreM 1. Let H be a subgroup of LF (2,2*) with | Hn Kn_y | < 4. If
g(H) =0, thenn < 8.

To compute g (H) we use the following formula derived from MecQuillan
[5]: Let r, t and s (2") be the number of distinct cyclic subgroups of H generated

by a conjugate in LF (2, 2") of R, T and S respectively where 1 < 2" < 2",
Then

(L.1) g(H)
T =14 (20— 6)-3-2"F — (8rp(2) + 6ir(2") + 6-2W)} /24
where W = D s(27), p(2") = 32" " and 7(2") = 2".
One consequence of this is that if two groups are conjugate they have the
same genus.
2. Some results on the structure of K7

We first analyze K, for n > 2 which has order 8 and in which every non-
identity element has order two. It contains the center of

LF2,2") = [+ (14+2"%,0,0,1 4 2"")]

which will be denoted by [Z,]. The other subgroups of 1K n—1 Of order two in
which we are interested are the three conjugates of [S* ], namely

[S2”—l], [:l: (1’ O, 2n—1’ 1)] and [:I: (1 + 2n——1’ 2n-—1, 2n—1’ 1 '+' 215-—1)].

The subgroups of K7, of order four are divided into three different_clonjugacy
classes: (1) three groups containing Z, and one conjugate of 8*  such as

D={I,Z,8", £ @+27 27,01+ 2")};
(2) three groups containing two conjugates of 8" " such as
C={I,8 ", £ @+2"0,27 1 4 2,
+ 1+ 207, 277 277 1 4+ 2"y,
B={I,+ (1+2"2"0,14+2""),+ 1+2"40,2"% 142",
(3) :’:(1, 27;-—-1, 27&—-1’ 1)}

which contains neither Z, nor any conjugate of §* and is normal in LF(2, 2").

We wish to prove for LF (2, 2") two results for subgroups of K1 , which
Gierster [2] has already done for LF (2, p"), p > 2. For p > 2, an element of
K, has the form

=+ (u + pr#’ prV: prp’ u — pr”)
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where 0 < p,»,p < 2" "and v’ = 1 + p” (4’ + vp) (mod p”) which has two
solutions for u. Gierster fixed the choice of u by further assuming v = 1
(mod p) so that u, v, p determine a unique element of Ky. For p = 2,

wW=1+4 2+ w) (mod?2")

has four solutions for n > 3. We can restrict the choices for u to two by
assuming % = 1 (mod 4) but the representation of an element of K, depends
on the choice of u as well as u, » and p. In fact,

{u, v, p,u} and {u+ 2" » p,u + 2"

determine the same element of K;. For an element of Ky, n > 3, we also
require that u* -+ »p be even since u’ = 1 + 4 (u* + vp) (mod 2") has a solu-
tion if and only if 1 4+ 4(u®* + »p) = 1 (mod 8). Further note that if U is
an element of K, then U?is in K/, and so an element in K — Kpy has
order exactly 2",

The proofs of the propositions require the following two lemmas.

Lemma 2.1. Suppose Uy and U, are elements of Kr. Then Uy = Us of
and only if Uy = Uy kn—y where kn_y s an element of K7_y .

Proof. Since K; = U, K;, U, = U; -k, for some k, in K . If k. is in
Kn_1, then, since K,_; is in the center of K1 [4],

Ui = UdUskr = UksUz = Us .
Conversely suppose Usk,Usk, = U; . Then Usk, = k;'Us. Let
Up= =% (W +2W,27V,20 ,u — 2W)
and
ke = == (u + 2%, 2%, 2%, u — 2°%).

We may assume not all of y, v and p are divisible by two since we could then
factor out two and change ¢ to t + 1. To show ¢ = n — 1, we assume
t < n — 1 and prove that then two divides each of u, » and p.

Since Uz-k, = k, '+ U, , we have by multiplying and comparing terms:

2.1) Qun + 2 + 2 = 2% — 2 — 2y
2.2) 2%'p = —2%/p (mod 2*)
2.3) Quly = =2

Congruences (2.2) and (2.3) imply that
2%'p = 0 (mod 2"™") and 2'» = 0 (mod 2"")

8o that 2 divides p and v since %' is odd and ¢t < » — 1. Replacing » and p
by 2v and 2p, in congruenee (2.1), we have

2% 4+ 2 + 2 + 27’ = 0 (mod 277)
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or =2 = 2u + 2% + 2% + 2" 'w for some w. Now the
right hand side of the equation is divisible by a power of two higher than ¢
80 that two divides u which gives our contradiction.

CoroLLARY 2.1. Each element in K, has 8 square roots if it has any and,
by induction, has at most 2** 2*-th roots.

Lemma 2.2, Suppose U and Uybelongto Kn_,. Thenfors <r — 1, U* =
Us' if and only if Uy = U-kn_, where kn—, is an element of Kn_, .

Proof. By mductlon on s with the case s = 1 being Lemma 2.1. Assume
fort <s U* = U} if and only if Us = Ukn—c. Let Uy = ku_U. Then
= (kaeU)*. Since Kn_, is a normal subgroup, k.U = Uk, for
some k,._, in K»_,. Since k., and k,_, are conjugate, they have the same
order, 2' < 2. Then

U_l (k _ )zl—l = (kl )21-1 (k )21—1

belongs to K., which isin the center of K_, [4] 50 that (kn—s)® = = (kn—s »
Hence by induction k., = Kn—oJin_s for some kn_ in K=_, where ¢ < 8. But
then

9l—1

Fon—skns = (kn—e) (ones) loncs = (kns)hnot = Kn—sia
where kn_41i8 in Kn_,41. Hence
U2 = (bnosU)” = U(lnskns U U™ = UllinonaUD* UL

But by induction (kn—saU?)*™" = (U™ = U¥. Soif Uy = k.U, Ui =
U¥. On the other hand, by Corollary 2.1, U* has at most 2* 2'-th roots
and there are 2% elements in U-K~_, ;s0if Ui’ = U*, Uy belongs to U-Kn_,

COoROLLARY 2.2. Suppose U is an element of H n K,_,. Then U, is an
element of H n Ko, and U* = UL, if and only of Uy = U kn_y where kn_,
is an element of H n K _,

ProrosiTion 2.1. If |H n Kn_y| = 2, then H n K; is cyclic of the form
(UYie = {£ (ui + 2&m, 2tw, 2tip, us — 2'Ein)}

wheres <n — 1, U = 4= (u+ 2, 2, 20, u — 2'u) and u; and §; are given
inductively by the formulas

Ui = Ui + £ (@ — 1) and & = Eiqu + win
both mod 2" with uy = u and & =

Proof. We prove H n K/ is cyclic by induction. Since H n Kn is cyeclic,
we suppose H n Ky, is cyclic and show H n K; is cyclic for s > r. Let
Hn K} = [Ud and let U be a fixed element of (HnK;) — (Hn Kin).
If there are no such elements we are done as then Hn K; = [U,]. Let U,
be any other element in (HnK") — (Hn KMi). Both U? and U\ belong
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to Hn Ky so [Ug] = [U'] = [Ui]l. So Ui = (U*)’ = (U’)® which, by
Corollary 2.2, implies that Uy = k,_1- U’ where k,—; belongs to Hn Kn_;.
Also U, = (U*)™ for some m. Therefore Uy = k,_y- U’ = UV’ = U™
U’. 8o U,isin [U]. Clearly any element of H n Ky, is in [U] since U, is.
So Hn K; = [U] which has order less than or equal to 2" .

Finally suppose we fix a representation of
U=+ (u+ 2y, 2% 2p,u — 27u)
and suppose U’ = = (u; + 27, 2'tw, 2'tip, u — 2'¢m). Then
UM = UU = = + &0 — 1) + 27w + w)w, 2 (s + ),
2p(us + Ew), wau + £ — 1) — 27 (Bu + wi)u)

and we are done.

ProposrrioN 2.2. If [HnKn_i| = 4, then Hn K} is generated by two
elements Uy and U, of orders 2"~" and 2" respectively wheres > t > r. Further

H n KZ—, = {Ul‘Uzj}, 1 _<— 3 S 2’»—-t, 1 SJ —<— 2”_3,
so that IH n Kz—rl = Qe < gn—2r

Proof. We first show that | Hn Ky | < 2. This is trueforr = n — 1
80 we agsume that, for x > r, | Hn K7 | < 2" and show that | H n Ko |
< 2"7** By Lemma 2.1 and the fact that | Hn K | = 4, if U is an ele-
ment of H n K_;, there are four elements in H n Ki—; which square to U”.
Since | H n K7 | < 27, there are at most 2 possibilities for U®. Hence
there are at most 4-2"% = 2" elements in H n K}, .

Let 2" be the maximum of the orders of elementsin H n K, let U; be
an element of order 2" in H n K and note that ¢ > r. Then H, = Hn K}
is contained in K7 andso | Hi| < 2. U " is an element of H n Kj_;.
Let V = {U'| U’ is in HnK; and U™ = 7" for some m}. Then
H, — V is non-empty since | H n K§_1| =4andso (Hi— V)n (HnK7_y)
has two elements in it. Let 2" " be the maximum of the orders of elements
in Hi — V, let U, be an element of order 2" in H; — V and note
thats > ¢t > 7. Since Ui = Usforl <4< 2" 1 <j < 2", the set { U1U3}
has 27""* elements in it and is contained in H;. On the other hand, Vu
(HnK?) is all of Hy. By the first part of the proof | HnK; | < 27,
But the set {UT*U3} where I = 2°%, 1 < 4,7 < 2", contains 2™ elements
all belonging to HnK;. So |HnK;| = 2"™. By Corollary 2.2 and
choice of s,

Van (K —K!) = U™ (HnK?)

which has order 2”7, So |HnKi,| = 2™ + 27, In general,
Vi (K — Kieqep) = U™ (Hn Kigp)
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which has order = | Hn K;—(;—y|. Hence
IHI = IK:I + ' Vn (K:b _ K:)l = 22n—2a + 22n—23(22:6-—1 2c) — 22u—a—t
which is the order of {UiU3}. So H = {UiUj}.

3. Conjugates of 8, T, and R

Unless otherwise indicated, by a conjugate of S, T', or R we mean aSa ™",
aTa™ or aRa™ where a is in LF (2, 2*). To calculate W for a given H, we
are interested in how many groups conjugate to S* belong to H. A conju-
gate of == (1, 27, 0, 1) has the form

+(a, b ¢ d)=@Q, 2, 0, 1)-=(d, —b —c, a)
= 4+ (1 — 2ac, 2°d’, =2'¢*, 1 + 2'ac).

Since ad — bc = 1 (mod 2") both @ and ¢ cannot be even. The group gener-
ated by &= (1 — 2ac, 2'd’, —2°¢%, 1 + 27ac) is

{+ 1 — 2tac, 2ta®, —2'tc®, 1 + 2'tac), 0 <t < 2" — 1.

Thus if @ is odd, any other conjugate of S* generating the same group also
has a odd. From [1], to obtain the number of subgroups of H conjugate
to 8 for which a is odd, it is sufficient to count the number of elements in
H of the form

+(1 —2¢ 2, =2¢, 1 + 2%),

i.e. we set @ = 1. For each r, there are 2" " such elements and so there are
dory 2" = 2" — 2 such elements in LF (2, 2*). Similarly if a is even,
¢ has to be odd and to count the number of groups conjugate to S* gener-
ated by such elements we can set ¢ = 1. For each r, there are 2" such
elements and 80 Y rm 2" = 2" — 1 such elements are in LF (2, 2"). So
for LF (2, 2"),

W=2""—242"—-1=32"-1).

Note that if U is conjugate to S¥, then U* is conjugate to i

Lemma 3.1. Suppose U is conjugate to 8*. Then Uy is conjugate to S*
and Ul = U*if and only if Uy = Z,-U.

Proof. Suppose U = =+ (1 — 27ac, 2'd’, —2'¢}, 1 4+ 2'ac). Then
U.Z” - d:(l - 2fac + 2')—'1’ 21‘a2’ _2"62’ 1 + 2fac + 2n—1)'

Ifaisodd,set « = aandy = ¢ + 2" ;if ais even, cis odd and set v = ¢
and a = a + 2""'. In either case we see that

UZ, =+ — 2oy, 2% =21 4+ 2ay)

and is conjugate to S¥. Further U* = U} since Z, is in the center of
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LF (2, 2"). On the other hand, if
A = 4 (1 — 2r+lac, 2i‘+la2’ _2r+lc2, 1 + 2r+lac)

is conjugate to 8%, then U = == (1 — 2'ac, 2'a®, —2¢%, 1 + 2'ac) is conju-
gate to 8 and U* = A. But then U-Z, isalso conjugate to S* and
(U-Z,)* = A. So each conjugate of $**, > 0, has at least two square
roots conjugate to S¥. Since K>_; has three conjugates of S* ', ifany
conjugate of S had more than two square roots conjugate to S*", W would
be greater than 3(2" — 1), a contradiction.

COROLLARY 3.1. §(2") = the number of groups conjugate to 8 = 3-2" ",

Next we calculate { = number of conjugates of T and r(n) for LF (2, 2")
and obtain some information about conjugates of 7. Let B = Ki-[T]
which is one of the three conjugate Sylow 2-groups in LF (2, 2"). So
t = 3t where ¢ is the number of conjugates of T in E'. Note that a con-
jugate of T has the form

=+ (ac + bd, — b* — da*, &’ + &°, — ac — bd)
and so has trace 0.
Lemma 3.2. InLF(2,2%),t = 3-2" " and r(2") = 2"
Proof. Since E’ contains K7 ,
0=g(E)=1+[2""@2" -86)
- {r(n) — 2@ @ — 1) + 2")]/4.2"°

so that 7(n) = 2%, By writing down the elements one sees that, in
LF (2, 4), E' has two conjugates of T. Let

¢: LF(2,2") — LF (2, 2" ")

be the natural homomorphism with kernel Kp_y. If T in LF (2, 2*") has
precisely four pre-images under ¢ which are conjugate to T in LF (2, 2"),
then any conjugate of T in LF (2, 2") has precisely four pre-images conjugate
to T in LF(2, 2"). Using the fact conjugates of T have the form

=+ (ac + bd, — b* — a*, & + &, — ac — bd),

we calculate that T in LF (2, 4) has precisely four pre-images in LF (2, 8) so
that ¢ = 8 = 2" for LF (2,8). In general, forn > 4, the kernel of

o={t 14+2"%,2"8,2"y,1+2"%),0 < a8, v < 1}.

Then the elements U in LF (2, 2") such that o(U) = T in LF (2, 2") are
given by
Koy T ={x @278 -1+ 2,1+ 2", 2" 'y)}.

Since conjugates of 7' have trace 0, for an element of K- T to be conjugate



SUBFIELDS OF K(2) or GENUS 0 509

to T, it is necessary that 8 = v. To see that the four elements of K»_;- T with
B = v are actually conjugate to T we need a, b, ¢ and d which simultaneously
satisfy

(3.1) c+d =1+ 2",
(3.2) d+b=1+4 2",
(3.3) ac + bd = 2",
(34) ad — bec =1,

all mod 2". Since n > 4, let u be a solution to
=1+ 2"" (mod?2").

Ifa=8=0letc=b=0anda=d=1;ifa=0,8=11leta =2"",
c=—-1b=1,d=0;ifa=1,8=0,letc=b=0,a =uandd = u+2"";
ifoa=g=11leth=0,¢c=2"",d=uanda = u -+ 2"". We then see that
T has four conjugates in LF (2, 2") which reduce to T in LF (2, 2"™"). Hence,
by induction, ¢ = 4.2°"P = 2" ipn LF(2, 2"). Sot = 3-f = 3.2"°
and r(n) = 2"/ = 2.

Lemma 3.3. Forn > 2, anelement of E or any of its conjugates has trace 0 if
and only if it vs conjugate to T.

Proof. We have seen that a conjugate of T has trace 0. An element of
K7 has trace 2u > 0 since % is odd. So the only elements with trace 0 in E’
are in the set

KiT={£ (=2vu+2u — (u—2u),2)

So an element in E’ has trace 0 if and only if » = p which implies there are
2"1.9" /2 = 2% guch elements. But E contains 2""° conjugates of 7' all
of which have trace 0 and hence these are the only elements of E with trace 0.
If A, an element of one of the conjugates of E’, has trace 0, then since conjuga-

tion preserves traces, A is conjugate to an element in E’ with trace 0 and
80 is conjugate to T'.
From the proof of this lemma, we see that, if

U=+ (u+ 2u,2v,2p,u — 2u),

then U-T has order two if and only if » = p. Furthermore, by multiplying
and comparing entries, we see first that if U has » = p so does U” and second
that if U has v = p so does d: U where d is in

(1,Zn,= (1,277,270, 1), = 1+ 277,277,277, 14+ 277)} = D

which is conjugate to D. Finally (d-U)* = U? so that, if an element of K{
has one square root with v = p, it has precisely four.

Finally we obtain some information about conjugates of R in LF (2, 2")
and calculate r = the number of conjugates of R and p(n) for LF (2, 2")
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Lemma 3.4. An element of LF (2, 2") s conjugate to R if and only if it has
order 3 if and only if it has trace 1.

Proof. R has order three and all elements of LF (2, 2") of order three are
conjugate by Sylow. Since R has trace 1 and conjugation preserves traces,
all conjugates of R have trace 1. On the other hand, if an element has trace
1, it has the form = (a, b, ¢, 1 — a) where a — o> — bc = 1 (mod 2") which
has order three and hence is conjugate to R.

LemMA 3.5. p(n) = 3-2"  andr = 2% for LF (2, 2").

Proof. Let H = Ky -[R] which is normal in LF (2, 2") and so contains all
the conjugates of R.

0=gH)=1+[3@2"—6)2""-9.2"*2"" - 1) — p(n)-r]/9-2""*
go that p(n)-r = 3-2"7°, Arguing as in Lemma 3.2, there are eight elements
of trace 1 in LF (2, 4) and R, in LF (2, 2°), s < m, has four pre-images in
LF(2, 2°™") which have trace 1 and which are given by B-R in LF (2, 2'*").

So we see that LF (2, 2") contains 2™ elements of trace 1 and therefore
r = 2% Thisimplies that p(n) = 3-2"",

4, Subgroups of genus 0
Since LF (2, 4) has genus 0 [3], we can restrict our attention to LF (2, 2")
forn > 3.
ProposiTioN 4.1. Suppose ] HnK,, | =1landn > 4. Theng(H) > 0.
Proof. Since | HnKi|=1,|H|<6and W =0. So

. g(H) Z 1 + (23”'—2 — 3.2271-1 — 21l+2 — 3_2n+1)/48 > 0
for n >4.

Lemma4.1. (8) If| HnKn| = 2, thenr < 27
®) If|HnKny| =4and Hn Ky 5 Bithenr = 0.

Proof. Suppose r % 0 and conjugate H so that R is an element of H'

(a) Any element of order three in LF (2, 2") is in K7 :[R]. Thus any ele-
ment of order threein Hisin (H n K7 )-[R).

Butj Hn K7 | < 2" and so the number of groups of order three is bounded
by 2"

(b) Let

S =8 S= Q42727 2% 1 4 2",
S = =+ (1,0,2"7, 1)

denote the three conjugates of 8 in K%,. Then $;:R = R-S:,
SR = R-S1and S;-R = R-S;. Since| HnKry| =4and Hn K, # B,
at least one of S;, S; and S; is in H. But then since R is in H, the above
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equalities show that S;, S; and S; all are in H and so H n K,_; = Kn_; which
is a contradiction. Therefore r» = 0.

CororLary 4.1. If|HnKny| =4and Hn Ky, % B, then | H| = 2'
for some l.

Proof. Since r = 0, there are no elements of order 3 in H and so 3 does not
divide | H|.

Suppose l H | = 3-2'and that Py , P; and P; are the three Sylow 2-groups of
LF(2,2"). If|HnK{| =2"" then |[HnP;|,i=1,2,3 = 2" Thiscan
be seen by observing that

H= (U nP))u (HnE)

where £ = Ki-[R] and then counting elements. So H has three Sylow
groups, H n P;, ¢ = 1,2, 3, which are conjugate in H. Each of these contains
the same number of conjugates in LF (2, 2") of T since T" = bTb™* for b in
LF (2, 2") if and only if trace 7' = 0. But conjugation, whether by elements
of H or LF (2, 2"), preserves traces. Soif 71, : -+, Tw are the conjugates in
LF (2,2") of T which arein Hn Py and a(H n P;)a ™' = H n Pywhere aisin
H, then aTa™" are precisely the elements of H n P, of trace 0, i.e. the con-
jugates in LF (2, 2") of T which arein H n P,. Similarly for H n P;.

LemMA 4.2. Suppose | Hn Kn_y| = 2. If 3 does not divide | H |, t < 2"
if 3 divides | H |, t < 3-2"7.

Proof. If t 5 0, conjugate H so that T is in H. Since |Hn Kn_;| = 2,
H n K7 is cyclic of order bounded by 2" and the set (H n Ki)-T also has
order bounded by 2"'. Now if | H| = 2, then H = (Hn Kt{)-[T] and
since no conjugate of 7T belongs to K7, all the conjugates of T in H are in
(HanK) T. Sot < 2% If IH ( = 3.2%, then H has three conjugate
subgroups oflorder 2* each containing the same number of conjugates of T
Sot < 3-2".

ProrosiTioN 4.2. Suppose T is an element of H and |H n Kl‘._ll = 4,
Suppose |H| = 2*. IfHnKn_y 5 D', thent < 2*';if Hn Kt = D', then
<2+ 2"m—s—r+1)
where | Hn K¢ | = 277, Suppose |H| = 3-2". Thent < 3:2°7 or
3- (2" +2*(n — s — r + 1)) depending on whether Hn Ky_y % D' or = D’.

Proof. 1If [ H| = 3-2% it contains three conjugate subgroups of order 2
all containing the same number of elements conjugate to 7. So we only
have to consider H with order 2* containing 7.

By the remark following Lemma 3.3, to compute ¢, it is sufficient to count
the number of elements U in Hn K7 with » = p. If Hn Ki # D’, then
H n K»_; has at most one non-identity element with » = p and so, again by
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the remarks after Lemma 3.3, H n K5, has at most 2" elements with » = p.
Sot < 2",

Suppose now that H n K51 = D’ and that r is the smallest number such
that H n K, contains an element with » = p. By Propositions 2.1 and 2.2,
H n K; has the form

{ULUS} = {= (uaus + 28 put; + 2% w'ws + 2778 £ (e’ + w0),
26 v'us + 2Evu; + 27T £ (W' — W),
2k pu; + 2% p'ui + 27E i (ow' — o'n),
wiuj — 28 pu; — 2% wus + 270 & (' + vp))}
where
U=+ @+ 2% 2% 2p u— 2u), Us = = + 2%,2%, 2%, v — 2'W),

§>711 <6<, 1< E <2 and 277 of the & and 2" of the
¢ are divisible by precisely 27 since the &; and ¢ determine which K7 Ui
and U; belong to. By the choice of r, to calculate ¢, it is sufficient to consider
H n K, rather than H n K7.

Suppose both U, and U, have » = p. We want the number of elements
in {U1U3} such that
2ivu; + 2% v'ui + 27 £ — Va)

= 2% v'us + 2kou; + 2775w — w'v)  (mod 2°)

which is satisfied if and only if & & (w') = & & (w')  (mod 2°7*!). Now
using the fact that p = » and o’ = »" and the observation that if u = 4/,

on—a=—

»y = and p = p’ all mod 2, then U™ """ = U3 '™, one calculates that
w' # w' (mod2). So
Lk’ — w/) =0 (mod 2" 7Y

ifand only if £ & = 0 (mod 2°7*7*). If 2" "% ¢ where0 <z < s — 1,
there are 2°* choices for £; if 2 > 0 and one choice if z = 0. Then £; can be
chosen arbitrarily so there are 2"° choices for . If 2" " | & where
s <z < n — r, there are 2° choices for & and 2" **" choices for £, since
2" has to divide ¢&;. So

t=2r o YT e T = " (n—r — s+ 1).

Suppose U, does not have v = p. We want the number of elements such
that

2 v'us + 278 k(W' — o) = 2% p'us + 277 £’ — p'p)  (mod 2°)
which holds if and only if

2%ui(y’ — o) + 27 (&) =0 (mod 2")
where { = u(' + p’) = 2u'». Let 2°||v' — p’. If z = 0, there are no
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solutions unless 2"* divides £; in which case there are at most 2" such ele-
ments; if z = 1, there are no solutions unless 2"~ divides ¢; in which case
there are at most 2" " such elements. Suppose 2 > 2. If v/, p’ and p
are even and p’ and v are odd, then 4 divides u (v' + p’) and 2 precisely divides
2wy’ 8o that 2| ¢. Considering the other possible combinations for u, »,
#', v and p’ in the same way we see thatif z > 2,2/ ¢. So,if z > 2, we want
the number of elements such that

4.1) 2Py + 2775 =0 (mod 2°)

where y, {’ are odd. Clearly # < n — s. We can assume that r + s<n
since otherwise the number of elements in {UiU3} is bounded by 2" so that
t <2 Ifz <r+4 1, then 2" has to divide £ and so one has less than
or equal to 2°-2"7" < 2" elements of the type desired. So we can assume
r+1<z<n—s Let2" |t where0<I<n—s Foreachl,0<I<
n — 8 — r — 1, there are at most 2" elements of the type desired since there
are at most 2" """ choices for £ and for each choice of ¢; there are

on—r= (n—r—e—i-1) __ 2c+l+1

choices for £; because in these cases congruence (4.1) becomes
Zz—r—-ly/ + f:i'” =0 (mod 2n—c—l—r—l)

Withy’a.ndg'” odd. Foreachl,n —s —r —1<1<n— s—1,there are
2" choices for £; and 2" choices for £; for each ;. Finally forl = n — s,
there is one choice for ¢ and 2" " choices for & . So the total number of
elements of the type desired is bounded by

(m—s—r—1)2" 420"+ 30 oot
=Mm—s—7r— 12"+ 2" 2% Y H o
=2"n—s—r-+1).
LemMa 4.3. If|HnKh | =2, W < n.

Proof. By Proposition 2.1, Hn K;,_, is cyclic. So for n — r # 0,
s(2"") < 1 and therefore W < n — 1 4+ s(1). If Z, is not an element of
H then, from Lemma 3.1 and the fact that H n Kt is cyclic, there can be at
most one group conjugate to Sin H. If Z,isin H, W = 0. 8o, in any case,
W < n.

Lemma 44. If H n Ky, is conjugate to C, then W < 2n.

Proof Note that Z, does not belong to H. Hence given U in H conjugate
to 8", Lemma 8.1 implies that at most one of its square roots which are
conJugate to S " belongs to H. So, arguing by mductlon, we see that, in
passing from conjugates of [Sz" 1 to conjugates of [S* '] we add at most
two conjugates of [S* ). So W < 2n.
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Prorosrrion 4.3. If H n K, s conjugate to D,
w < 2(n+1)/3 + 22nl8+5[8 — 3.
Proof. Recall that a conjugate of 8* has the form
+(1 — 2ac, 2d*, —2°¢%, 1 + 27ac)

and that for computing s(2") the relevant conjugates of S* are the ones with
a = 1; so we restrict our attention to these conjugates of S*. By conju-
gating H, assume that H n K,_; = D and that H n K7 has as many conjugates
of 8,1 < r < n — 1, with zero in the lower left corner as possible. If H
can be conjugated so that all the conjugates of 8,1 < r < n — 1, have this
form, then if = is even,

wW<1+4+ QD+ + 2 52{2)*1 9l = 9w+ _ 3;
if n is odd, .
w <14+ 2(n+l)l2 + 2 21{:;1)12 2 = 3‘2(7,4.1)/2 —3

Since n 2 2, w < 2(n+l)l3 + 22nl3+5/8 - 3.
If not, let m be the smallest integer such that 2" "c; # 0 (mod 2") for
some ¢o and suppose m < 2n/3 — 1/3. Since m has the property that

2" " £ 0 (mod 2") and 2™ V¢t = 0 (mod 2"),

c6 =0 (mod 2™") and ¢ # 0 (mod 2™) so that 2™ || ¢ implying that m
is odd. Now

+ (1 + 2n—mco, 2n—m’ ___2n—mcg, 1 — 2n-—-mco)2'”"-—l
= (1 — 2", 2" — 2", 2", 1 4 2" o)
= g

isin H. By the second statement of the proof, we may assume that H con-
tains 8 ". So H contains

SI_SZ”""' = 4+ (1 _ 2n—mc0 , _22n—2m00 + 27»—1’ 2n—mc%, 1+ 22n—2mc(2) + 2n—mco)
=1 —2""%,2" 2", 1 + 2"%)
wherezisoddand 1 < s = (m + 1)/2 < n/3 4+ 1/3. The last equality is
obtained by factoring the highest power of two out of ¢, and ¢5 and observing
that m < 2n/3 — 1/)3 implies that 2n — 2m + (m — 1)/2 > n. Taking
powers of
£ — 2", 2" 277 1 4 2"),

weget U/ = =(1 — 2", 2", 2", 1+ 2")is in H.

Now suppose U and V are conjugates of 8 ' such that U* = V* and
s is the smallest integer for which this is true. Then

U==+0+42"7¢ 2", —2"7"¢, 1 — 2"7"¢)
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and
V=gl +4+2"Ty2"", 2"y 1—2""y)
withy = ¢ — 27°. Let
m—%32>2r>2m+1> m+1)/2=s

If U and V belong to H, so does
UVE=+@4+2""(c+ky)+22ky(c—7v),2" (b + 1) + 22" %k (c — v),

—2"7 (¢ + ky") — 2" "kev(c — ),

1—2""(c+ ky) — 2™ ke(c — v)).

Further note that 2" = 2 divides ¢ since if not, let 2°| ¢ with
t < (m—1)/2andletz = r — (m — 1). Since U is conjugate to S5,
U™ is conjugate to 8* ' and the lower left corner of

Uzw = _2n-—-(m—1)c2 = 2n—(m—1)+22y 7—é 0 (mod 2n)

where y is odd. But this contradicts the choice of m. Set k = 2™ — 1.
Then

2" (¢ + ky) + 2" kv (c — )
=2""c+ 2 —c+ 2T+ 2TQ T - 1)(c— 272
=2"" (mod2")
since r < 4n — %, s < r/2 and 2 divides c.
—2"7 (¢ + kv*) — 2" Mkey(c — v)
= 2"+ @ = 1) —27)) — 22T - 1) - 27%)2°
=0 (mod?2")
since r < gn — 3, s < r/2 and 2°" divides c.
"k + 1) + 22 "k(c — ) = 2" (mod 2").
SoU-V* = (1 +2"2"%,0,1 — 2"™). But then
U-U-V*=+(@1,0,2""1)

is in H contradicting the fact that Hn K a1 = D. So any two conjugates
of 8" where gn — % > r > m whose 2’-th powers are the smallest powers
which are equal can not both belong to H.

For the rest of the proof, the phrase “at the r-th level” will mean in
K., — K'_,_p. At the (m — 1)-th level, all conjugates of 8™ ™" have
zero in the lower left corner so that there are at most 2° conjugates of
SV in H. At the m-th level, there are at most 2 conjugates of S "
since each conjugate of S ™" has at most two square roots which are con-
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jugate to 8” . For each of these 2" divides ¢ and all 2° powers are equal.
At the (m + 1)-th level, there are at most 2-2* conjugates of S "*", 2
divides ¢ and all 2*"" powers are equal. So there are at most two elements
in the set of 2° powers and each has at most 2° 2°-th roots from the (m 4+ 1) th
level. From each of these two dlS]OIIlt collections of 2°-th roots, whose union
is all the conjugates of 8 "™, at most 2'™ 2'-th roots can be in H since,
if U given by cisin H, U’ givenby ¢ — 2" cannot bein H. So the (m + 1)-th
level has at most 2° conjugates of 8 """,

Now each of the two sets of 2°-th roots at the (m -+ 1)-th level can give at
most one 2° power since otherwise H will contain elements whose 2'-th
powers are the first ones equal. So there are at most two elements in the
set of 2" powers of conjugates of ST from the (m + 1)-th level and
hence the set of 2° powers of con;uga.tes of 877" from the (m + 2)-th
level has at most two elements in it. Furthermore there are at most 2.2°
conjugates of S in H. Repeat the above argument and continue in-
ductively to see that each level from m to ¢ contains at most 2° conjugates
of powers of S where ¢ is the greatest integer less than or equal to $n — 4.
By Lemma 3.1, for r > ¢, the number of con;uga,tes of 8" in H is at most
twice the number of conjugates of S™""in H. Soif tis even,

W< 142D 080 4 otf2 Y nztof o gD+ 4 gnit—tiz _ g,
if ¢ is odd,
W<1+2 th_—l-l)m 2° + 2(:—1)/2 E‘p:lz 9 = 2(:’+1)/2 + 2n+1—-(t+1)]2 — 3.
Since in either case, 3(n + 1) > 3¢ + 1) > 3t > 3(n — 2),
W < 9t1)/3 + Qnlstsis _ a

PrOPOSITION 4.4. Suppose n > 6. Thenif |HnKny| = 20r HnKny
is conjugate to C, g(H) > 0.

Proof. By Lemma4.l,r < 2", If|HnKr,| =2, W < n by Lemma
43 and ¢t < 3-2"' by Lemma 4.2 and so

g(H) Z 1 + (28n—5 - (3_22n—4 + 271—1.21;—1 + 3'2n—1_2n—2 + 22n—4n))/h
>1+2"*@Q"" - 13 — n)/h.

But 2" — 13 —n > 0if n > 6. If Hn K,_, is conjugate to C, W < 2n
by Lemma 4.4 and ¢t < 3-2"" by Proposition 4.2 and so

g(H) > 14 2@ — 13 — 2n)/h
and 2" — 13 — 2n > 0if n > 6.

LemMa 4.5. Suppose Hn K*_, = Band n > 5. Then r = 2% with
21 < 2n — 6.

Proof. By Sylow, r is an even power of 2 so that r = 2%, Since any sub-
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group of order three has the form [U-R] where U is in K, r = 2% < 2™ ¢+
where | Hn Kt | = 2*“* with s > ¢. Since Hn Knr_, = B and any ele-
ment in K7 has its 2" *th power in Kn_y — B, ¢t = 1 and so 2] < 2n — 4.
Finally consider the case t + s = 4 and 2 = 2n — 4. Then [U-R] is a
group of order three for any U in K. So suppose

U= %+ 4p, 4,40, u — 4p)
isin K; — K35 and U-R has order 3. Now
w=1+ 16’ + »p) (mod?2")

and, since U™ is in B, exactly two of u, » and p are odd. So u* + »p is odd
and 2'||1 — 4’ Since U-R has order 3 and so trace 1, 4(v — p — u)
=1-—wu (mod2"). » — p — uis even exactly two of them are odd and
so 2° divides (1 — u). But 2°[ (1 — u) since 2 divides 1 + % and
2 @ —u*)= (1+u)(l —u). Therefore2|| (» — p — u). Now consider

U = =’ + 8uu + 16(s* + »p), 8vu, 8ou, w’ — 8uu + 16(s° + »p)).
U?-R has order 3 so that
8u(w —p—u)+ 16 +w)=1—14 (mod2").

But 2' || (1 — %*) and, since 4’ + vpisodd, 2| (# — p — u) and n > 5, then
2* divides 8u(v — p — u) + 16(4* + »p) which is a contradiction. So
2l # 2n — 4 which implies that 2 < 2n — 6.

ProrosiTiON 4.5. Suppose H n Kn_y s Bandn > 5. Then g(H) > 0.

Proof. Since HnKn_; is B, W = 0. By Proposition 4.2, ¢ < 3-2""
and by Lemma 4.5, r < 2%, So

g(H) > 14 (2 — 3.2"* — g.ov1.om 2 _ gnl.ghty
=14+2"*@ "~ 3+64+2")/h>0
ifn > 5.

ProrosiTiON 4.6. Suppose Hn K;,_; is conjugate to D. Then g(H) > 0
ifn > 8.

Proof. By Lemma 4.1 and Corollary 4.1, r = 0 and |H| = 2'. By
Proposition 4.2, ¢t < 2" + 2"(n — s — r + 1) and by Proposition 4.3,

W < 2(1l+1)/3 + 22”[8-]-5[8 —_ 3.
Sog(H)>1+2"@ "' - B+2+4(n—2) + W))/h. Butifn > 11,
2”—1 - (5 + 4(n — 2) + 2(n+1)18 + 22”/8-{-5/8 — 3) > 0

and so g(H) > 0. From the proof of Proposition 4.3, we see that for n = 10,
W < 269;forn = 9, W < 133; forn = 8, W < 69. Therefore for n = 10,
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g(H) > 1+ 2°(512 — (37 + 269))/h;
forn =9,

g(H) > 1+ 24(256 — (33 + 133))/h;
forn = 8,

g(H) > 1+ 2”128 — (29 + 69))/h.

Soforn = 8,9and 10,¢g (H) > 0.
The proof of Theorem 1 now follows from Propositions 4.1, 4.4, 4.5 and 4.6.
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