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1. Introduction
The solution to the Dirichlet poblem on the unit disk, that is, the problem

of finding a harmonic function f(r, 0) in the interior of the disk corresponding
to a given function f(0) on the boundary, has become part of the folk knowl-
edge of mathematics. It is common knowledge also that limrl f(r, 0) f(0)
at each point of continuity of f. The solution to the converse problem, that
of finding a boundary function (or some generalization of function) corre-
sponding to a given harmonic function in the interior, is not so well known,
but nevertheless has been extensively studied in the last decade. A solution
always exists in the space of hyperfunctions H’ on the boundary. In fact,
these hyperfunctions are exactly the objects giving a solution to the converse
problem. Moreover, the original Dirichlet problem has a unique solution
when f is a hyperfunction instead of a point function. However, the state-
ment about limits at points of continuity has no meaning for f in H’. It is
the purpose of this report to give it meaning and to prove this theorem for
f in H’.

Hyperfunctions have been characterized in a number of different ways.
Two of them are as equivalence classes of pairs of holomorphic functions and
as continuous linear functionals on a space of holomorphic test functions.
See e.g. Sato [1], KSthe [2], [3], Lions and Magenes [4], and Schapira [5]. The
former characterization enables one to consider them as types of generalized
boundary values of harmonic functions and the latter as generalized functions
in the sense of Gelfand-Shilov [6]. On the boundary F of the unit disk hyper-
functions correspond to exponential trigonometric series CneE whose
coefficients satisfy

lim sup ]C jl/I,,I _.< 1.

Thus the space H’ contains all distributions on r (whose coefficients satisfy
C O(In 1)) and is contained in the space g’ of ultradistributions (since
every trigonometric series, no matter what its coefficients are, converges in
Z’). See [11].

In the ease of distributions, there is an already available concept which
corresponds to continuity at a point of a continuous function. It is the con-
cept of point value introduced by Lojasiewiez [9]. A recent characterization
of the elements of H’ by Johnson [7] as series of distributions allows this con-
cept to be extended in a natural way to hyperfunetions. It is then possible
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to ask whether f(r, 0) converges to f(0) at points at which f has a value.
shall answer this by using Johnson’s characterization:

To each hyperfunction f e H’, there corresponds a sequence {g} of functions
continuous on F which satisfy the condition

(1.1) lim,.= (n! g. [[)l/n 0

and such that the series of distributions g(,,") converges to f in the sense of H’.
Any such series whose terms satisfy (1.1) converges in H’ to some hyperfunction.

We shall also need certain non standard properties of the Poisson kernel.
These are derived in the Appendix.

Unfortunately there doesn’t seem to be a universally used notation for the
space of hyperfunctions. Since we use Johnson’s characterization we shall
also use his notation. In particular we will continue to denote by H’ the
space of hyperfunctions on the boundary of the unit disk. This is consistent
with Schapira [5] since the only hyperfunctions on I’ are analytic functionals.

2. Point Values
Lojasiewicz [9] has shown the following definitions of value of a distribution

at a point to be equivalent"

Let f be a distribution on R1. Then f has a value at Xo if and only if either

(i) lim_.0 f kx -4- Xo exists in the sense of distributions, or
(ii) for each continuous function g such that f g(") locally, there exists a

polynomial P of degree < n such that the point limit

lim n! (g(x) P(x))
exists. The value . at xo off is the common value of these two limits.

Of course this definition refers to distributions on R and we are interested
in the boundary I’ of the unit disk. However it is well known (and easy to
show) that the distributions on I’ are algebraically and topologically iso-
morphic to periodic distributions on R1. As is customary we shall make no
distinction between the two.

Johnson’s characterization of a hyperfunction as a series of distributions
enables us, in a natural way, to extend the definition of value at a point to
hyperfunctions.

DEFINITION. The hyperfunction f on F has a value at x0 if there exists a
representation g(’) of f satisfying (1.1), a sequence of polynomials {P.}
with P of degree <n, and a sequence of complex numbers {,,}, such that for
each c > 0, tlere exists a it such that

g,(x)- P,,(x) " < for O< Ix--Xol < n 1,2
(x- xo)" n! --flY.

and go(xo) ’0. The value off at x0 is given by -07,.
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Briefly, this definition says that each distribution g(’) has a value
under Lojasiewicz’s definition (ii) and that the limits in this definition con-
verge to . faster for larger n.

In order to assure that this definition makes sense we must check that the
series .. converges and that the limit is independent of the representation

g() of f.
PROVOSTION 1. Let {,,] be t seqce of complex nuers in the finition.
Th , crges.

Since , is the value of the distribution g’) at x0, it follows from Lojasie-
wicz’s deflation (i) that limx0 g’) ( + x0) in the sense of stdbu-
tions, i.e. that limx0 (, g’)( + x0)) ,(, 1) for each (R). Since
g is periodic and hence bounded, g’) is in S’ (the space of tempered distribu-
tions) and since (R) is dense in S, we have this convergence holding for
each S as well. In particular it holds for (x) e(-x/2), for which we
get

Now i! on! where C is a constant, whence by using (1.1) we see
that coesponding to each sequence {e,} of positive numbers and e > 0,
there is a sequence {X.}, X 1, such that

where K (, 1)]-. Therefore if for example, e, 1/n, the series
easily converges absolutely.

PUOVOSTO 2. Let f have two representions g) and
which satisfy the cditions of the definiti. T t value off lcud with
either is the sa.

Since both representation converge to f the difference of the two, say

’ h( converges to 0 in H’. Since the test function space H, composed of
holomorphic functions on F, is dense in (r), h( converges to 0 in

’(r) as well. Also each h( has a value, say ., at x0 and hence

(xx + x0) --,

in the sense of 2)’ (R1) as --. 0. Since h( converges to 0 in )’(F), there
exists an m such that h(-m) is a continuous function and
converges to 0 uniformly (see [8, p. 87]). Thus h(-m)(x -t- x0) con-
verges to 0 uniformly for all x and and

converges to 0 uniformly in h for any e iD(R1). Hence
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converges to 0 uniformly in X. Corresponding to any e > 0, one can choose
an N first and then a X such that

Z:-0 ’II <, 1 >I
N

z (n) (n)-o I<, (x + o) >I + I-0 <, ( + o) >I
< /2 + /2

From this it follows that -o 0, and hence that the wlue of f t x0 is
well defined.
Now we re t the stage where we cn derive some of the properties of

these w]ues. The first is given by

POOSWON 3. Let f have value at xo Then

n () P()
-o ( o)

converges o a ctinuous uncti F(x) in so deleted neighborhood o o and

If g) hs vlue t Xo, so does g-) j I, 2, ..., n (see [9, p. 15]).
Moreover, denoting by the wlue of g- t 0, we on show that
stisfies n inequMity similar to the one bove for. In fct we have

(2.)
K((n -j)/n) B().

Now the po]ynomiM P must be given by

P() ::-((2.2)

whence - B(e)e"K(2.3) P,,(x) n’. ,-o -(i-lx-xol)
for Ix x0l < 1. Since g satisfies the same sort of inequality, the series
defining F(x) converges uniformly on

[Xo I/2, Xo 261 u [xo -t- 2a, xo + 1/21.

Since iS is arbitrary the function F(x) is continuous on [xo 1/2,
xo + 1/2] [xo]. However, we see immediately that

IF(x) "1
._0 (x x0)- .,0- *" < .-0X: "+

Finally, we have the relation between the value of f at x0 and the radial
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limit of the harmonic function corresponding to f inside the unit disk. (See
[10] for a similar result for distributions.)

THEOREM. Let f have a value , at Xo Then

limrl (Pr f)(x0) %

Here P denotes the Poisson kernel as usual and the limit is the pointwise
limig. We have

2r(P, f)(xo) , 2r(Pr * g(:))(Xo)

2v(P) * g)(xo)

--P()(xo t)g,(t) dt

(2.4) + P)(Xo t)g(t) dt
nO O+

+ [,o+, -,P(’)(xo --n!t)(t Xo)" n! g(t)(t --Xo)EP(t) dt
nO dxO--

fxo+
nO xO--

O O --O

We shall show that the first and last series approach zero as r --, 1.
Let us first examine qa. After n integrations by parts the integral becomes

o+qa(n, r, ) {P(-’)(Xo- t)P(t) -4-P,(xo- t)P(’-’)(t)}
since P. is a polynomial degree < n. Here we have assumed that x0 is in
the interior of (-v, ). If it were not we would merely take a different
interval of length 2r.
Now by differentiating (2.2) we find that

j! (x x0)p(k) (x)
.-k (j- k) j!

x0)

whence

--’ (j + k)l 7" }x Xo}< K "B()

n(1 Ix-- Xo
for IX--Xo[ < 1.
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Thus we see that

< (-r)

by Theorem a6 of the appendix and therefore that

Zo P"--)()P)(Xo .4- )(--1)’+l

KB()y. (1
1

<(1- r)KB(y)f12’ 12 12(1 })
n \] ( ) 2 3

n 1,2,

whence it follows that

(2.6)
qa(n,r,) (1 r)KB(y)288

(12- 13)(6- 127)
(1 r)Cs(, ),

0 < t < 1/2,0 < y < 6/12.
We now turn to the first series of integrals

o-
P(") (Xo t)g(t) dtE:-o q,(n, r, ) E:-o "t- --o+

which similarly can be shown by Theorem a6 (iv) again, to be dominated
by a constant silar to that on the fight side of (2.6). We denote by
( 1 r)C(6, ) this cotant.
We need now show that the remaining series of integrals q(n, r, ) con-

verges to 2. We write the integrM as

fo+’--PC")(x t)(t-

Let us look at 12 first; we find that

fo+ P(")(xo t) dt(t 0)

(2.7)

P,(t) dt

< (1 r)KB(y) j-,. k,! 1
nl (n-k-1)!12-(1 t)+
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by Theorem a6 of the appendix. Thus

I 2,0,. . + P

As for I, given any e such that 0 < e < 1/3, we choose such that

n! g,,(t) P,,(t)
(t o) " < e+, It x0[ < $.(2.8)

Then we have, if < r/4, by Theorem a6,

(2.9) _< 2 fo
"/

n
P<) (t)t’*

_< 4(3e)n+l.
Now we are able to estimate the difference and obtain

q(n, r, $) 2r,n I2 2rf + It

(2.10) -< [’" + -4- 4(3e)"+1

By combining M1 the inequalities we have made so far, we finally get

I(n..])(0) >i (/2.) E:-0q(n, r, ) + E:-0q(n, r, )

+ E:-0 {,(n, r, ) 2.}

(2.1) (/2.)( r)C,(, )

+ (1/2.)( r)C,(, ,)

+ (1 r)(7/) -0 [T ]+ 2/(1 3c).

Thus if we first choose < 1/2 such that (2.8) is stisfied, then choose
/20, and finMly choose r sciently close to 1, we can make the left side

of (2.11) less than some mtiple of e. This proves the theorem.
This threm of course includes the cse when f is a distribution with

vMue st xo, since then the series representing f has only a finite number of
terms. However it does include other hyperfunctions. In particar, if
f is a herfunction th point support, it is easy to show that f hs the form-,a() where ]n !a [*/ 0 and hence that it has s wlue everywhere
except t 0.
The converse to the theorem is clearly not true. Any function th

lump discontinuity hs a Fourier Series which is Abel-summsble to the
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average of the left and right hand values at that point. (See [12].) How-
ever it doesn’t have a value at that point in the sense of distributions.
We could have assumed that all the values of g(,’) at x0 except go were equal

to 0. Indeed we could have subtracted , from g and then in-
corporated this in go.
Other properties of values are similar to the corresponding properties for

distributions. We summarize in

PROPOSITION 4. (i) If fl and f have values / and . at Xo respectively,
then afl af has value a’y1 - a.. at Xo

(ii) If f is equal to a continuous function g in some neighborhood of xo,
then f has a value at Xo equal to g(xo).

(iii) If f’ has a value at xo so does f.
The proofs of these assertions follow easily from similar statements for

distributions and will be omitted.

3. Appendix
We collect here some of the properties of the Poisson kernel Pr(x) and its

derivatives which we have used above. It is given by the formula

l_r
(al) P(x)

1-- 2rcosx+ r’ xF,r(0,1).

By the Cauchy formula we have

n! fc P,(z)
(a2) P(/) (x)

(z x)’+
dz,

where C is any contour enclosing x and not enclosing the points at which cos
z 1/2r - r/2. Taking C to be a circular contour of radius p and center x,
we obtain

n! .f, Pr x + pe )
(a3) P’)(x)

(pe")"
dO.

In order to obtain the necessary bounds on P() we shall need the following"

LEMMA al. The set

{(x, y) ]l Y[ < x/2, x e (0, /2, x e (0, /2)}

is a subset of (x, y) sinh Y < sinx, x e (0, /2)}.

The curve sinh y sin x is monotonically increasing and convex from
x 0 to x /2 and agrees with y x/2 at x 0 and is above y x/2
at x /2.

LEMMA a2. The set of complex numbers z cos z < 1} contains the set

{zlz x + (x/3)e, x e (0, r/2), e [0, 2r)}.
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Let z satisfy z x x/3e. Then we have

Im z (x/3) sin 0] < 1/2 Ix + (x/3) cos

since sin0 1/2 cos 01 _< . But byLemmaal, sinhImz < sinRez,
which implies that

1 1 sinRez+sinhImz
cos Re z cosh Im z + sin Re z sinh" Im z

LEMMA a3. For z x + (x/3)ei, cos z[ _< cos (x x/3), x e (0, r/4),
0 [0, 2r).

We may calculate that

cos z 12 cos (Re z) + sinh (Imz)

cos (x + (x/3) cos 0) + sinh ((x/3) sin 0)

f(O).
Taking the derivative with respect to 0 we obtain

(x/3) 2 cos (x + (x/3) cos 0) sin (x + (x/3) cos

+ (x/3) 2 sinh ((x/3) sin 0) cosh ((x/3) sin

(x/3) {sin (2x + (2x/3) cos 0) sin 0 T sinh ((2x/3) sin

f’(0).
This expression is non-negative for 0 e [0, r/2]; for 0 e (/2, v) we use the
fact that sinh 9 _< (6/5) for 9 e [0, /3] to obtain

f’ (0) >_ (x/3) sin (2x + (2x/3) cos 0) sin_
(x/3) sin 0 sin 4x/3 4x/5}

_> (x/3) sin O{(2/r)(4x/3) 4x/5} > 0.

Thus f(0) is increasing in (0, r) and since f(O) f(-O) it must have its
maximum at 0 r.

LEMMA an. Let x e (0, r/4); then

2-- P, x + e de <_ P x

Let z x + (x/3) e; then by Lemma a2, and Lemma a3

IP,(z) (1 r*)/(1 2r cos z +
<_ (1- r*)/(1- 2rlcoszl +r)

Pr(2x/3).
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For x (0, r/4) our calculation is much easier. Indeed we have

LEMMA aS. Let x [r/4, r], 0 < p _< r/12; then

2-" P;(x "l- pe’) d8 < P,

We observe that

1/I P(z) [ (1 + :) 2r(1 q- r)(2 Re cos z) q- 4r cos z

(1 q- r) 4r(1 -F r) cos (x -t- p cos a) eosh (p sin

q- 4r {cos (x q- p cos 8) q- sinh (p sin @.
The deriwtive with respect to is non-negative whence the function is

non-deereasing in x in the interval It/4, 11r/12]. The values it attains in
(1Dr/12, r] also are attained in this interval. Therefore its minimum is
x r/4 and the maximum of P,(z + )[ is t the same point. Then
by Lemma a4 we reach our conclusion.
We now hve all the inequalities we need to derive the properties of

which we summarize in

THEOREM a6.
for1/2 <_r<l.

(i)

(ii)

(iii)

The function x-n"(’O-, (X)/n satisfies the following conditions

(iv) i-"<’)(x)/ntlx-r <_ an. 12(1 r)/x
, (x)lntl r) !4

To prove (i) and (iii) we use forma (a3) and Lemms (4) und (5).
In formul (a3) we first tke p x/3. Then we find

nt
de dx

14

3" P(2x/a)
d0

3n+

< .8+ < 6.12.
aNng o /12 we find
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_< 12Pr(r/6) dx
/4

_< 3.12Pr(r/6)
But as is well known (see [12, p. 96]),

P,(x) < (v/2)(1 r)/(x + (1 r))
(a4)

for 0 <x < , 1/2_< r < 1,
so that P,(r/6) < 18 whence we obtain

folx"P")(x)/n![dx <_ (6 + 54)12.
To prove (ii) we integrate by parts n times. All the integrated terms are 0
since xP(-l)(x) in an odd function for all positives integers k. What
remains is

/:’, 1.

Parts (iv) and (v) are straightforward calculations applying Lemmas (a4)
and (a5) together with formula (a4) to the expression for P,()given by
formula (a3).
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