ON A CLASS OF DOUBLY TRANSITIVE GROUPS

BY ERNEST SHULT

The purpose of this paper is to prove the following theorem:

Theorem. Let G be a transitive group of permutations on the (finite) set of letters Ω . Let G_{α} be the subgroup of G fixing the letter α in Ω . Suppose G_{α} contains a normal subgroup Q of even order, which is regular on $\Omega - (\alpha)$. Then either

- (a) G is a subgroup of the group of semi-linear transformations over a near field of odd characteristic or
- (b) G is an extension of one of the groups SL(2, q), Sz(q) or U(3, q) by a subgroup of its outer automorphism group. $(|\Omega| = 1 + q, 1 + q^2)$ or $1 + q^3$ in these three respective cases $(q = 2^n)$.)

Essentially "half" of this theorem was proved by Suzuki [8], under the assumption that the quotient group G_{α}/Q had odd order. We therefore consider only the case that G_{α}/Q has even order.

Since Q is regular on $\Omega - (\alpha)$, we may express G_{α} as a semidirect product $G_{\alpha\beta} Q$ where $G_{\alpha\beta} = G_{\alpha} \cap G_{\beta}$, the subgroup of permutations fixing both α and β .

For the rest of this paper, all groups considered are finite. We write |X| for the cardinality of set X. If X is a subset of a group G, we write $X \subseteq G$, and if X is a subgroup of G, we write $X \leq G$. If $X \subseteq G$, $\langle X \rangle$ will denote the subgroup of G generated by X. If X is a subset of G, X^G denotes the set of all conjugate sets $\{g^1Xg \mid g \in G\}$. We will frequently write $\langle X^G \rangle$ instead of the more cumbersome $\langle \bigcup_{T \in X^G} Y \rangle$. This is the normal closure of X in G and represents the smallest normal subgroup of G containing X. If M is a group of (right) operators of a group G it will frequently be convenient to proceed with computations in the semi-direct product GM and also to view GM as a group of right operators of G, the elements of G acting by conjugation. Action of these operators is indicated by exponential notation. Thus if $X \in G$, $g^{-1}xg$ may be written X^G and if G is an automorphism of G, we may write

$$(x^g)^{\sigma} = x^{g\sigma} = x^{\sigma \cdot g^{\sigma}}.$$

The commutator $x^{-1}y^{-1}xy$ is written [x, y]. If σ is an automorphism of G and if $x \in G$, then the commutator $[x, \sigma]$ is assumed to be computed in the semidirect product $G(\sigma)$, so $[x, \sigma] = x^{-1} \cdot x^{\sigma}$. If π is a set of primes, a π -group is a group whose order involves only primes in π . As usual, π' denotes the complement of π in the set of all primes. If π consists of a single prime p, the symbol p (rather than $\{p\}$) may replace the symbol π in the notation of

Received March 30, 1970.

the previous two sentences. Finally, Z(G) denotes the center of G, $O_2(G)$ the maximal normal 2-subgroup of G, and $O_{2'}(G)$, the maximal normal 2'-subgroup of G.

The author gratefully acknowledges Professor Mark Hale, Jr. for a number of valuable discussions and wishes to thank Professor Jonathon Alperin for permission to refer to an unpublished result of his which appears as Proposition 2 in the next section. The author also wishes to express his thanks to Professor M. Aschbacher for a number of suggestions which significantly shortened the proof of the theorem.

1. Some preliminary propositions

The proof of the theorem requires the use of the following propositions.

Proposition 1. Let G be a transitive permutation group on a set of letters Ω . Let G_{α} be the subgroup of G fixing the letter α in Ω . Suppose G_{α} contains a normal 2-subgroup A such that A is semi-regular on $\Omega - (\alpha)$. Then G contains a normal subgroup N such that either

- (i) N is a Frobenius group with Frobenius complement A and Frobenius kernel N_1 which is abelian and regular on Ω , or
- (ii) $N \simeq SL(2, q)$, Sz(q) or U(3, q), N is 2-transitive on Ω and $|\Omega| = 1 + q$, $1 + q^2$ or $1 + q^3$ respectively, where q is an appropriate power of 2.

This is corollary 3 of [7].

The following proposition is only slightly more general than the corollary appearing in [6], but this generality is required, and the proof of it given in [1] is far more natural than the version in [6].

Proposition 2 (Alperin). If V is an elementary subgroup of order 4 in a group G and if V \cap $O_2(G) = 1$, then there is an involution t of G conjugate to an element of V which commutes with no element of V^{\sharp} .

We conclude this section with

Proposition 3. Let G be a group admitting an automorphism τ of order 2. Suppose the subgroup $C_G(\tau)$ contains a unique involution t. Then either $\langle t^G \rangle$ is elementary abelian or else $tO_{2^{\tau}}(G)$ is the unique involution in $G/O_{2^{\tau}}(G)$.

Proof. Let S be a 2 Sylow subgroup of $C_G(\tau)$. Then by hypothesis t is the unique involution in S. If S were a full 2-Sylow subgroup of G, then, by a theorem of Brauer and Suzuki [3], $tO_{2'}(G)$ would be the unique involution in $G/O_{2'}(G)$ and we would be done. Thus we may assume that S is not a 2-Sylow subgroup of G. Then there exists a τ -invariant 2-subgroup $S_1 = \langle x, S \rangle$ containing S as a subgroup of index 2. Then $[x, \tau]$ is a non-identity element of S. Since $\tau^2 = 1$,

$$x = x^{\tau^2} = (x[x, \tau])^{\tau} = x[x, \tau]^2.$$

Thus $[x, \tau] = t$, the unique involution in S. Thus $\tau t = t\tau = x^{-1}\tau x$. Note that since x normalizes S, x centralizes t. Thus τ is conjugate to τt in $C_{\mathcal{G}}(t)$.

Now the class t^{G} is a τ -invariant set with t as the unique element in the class fixed by τ . Thus we may write

$$t^{G} = \{t, t_{1}, t_{1}^{\tau}, t_{2}, t_{2}^{\tau}, \cdots, t_{m}, t_{m}^{\tau}\}$$

where $m = (|t^{o}| - 1)/2$. Set $u_i = t_i t_i^{\tau}$, $i = 1, \dots, m$. The groups $\langle t_i, t_i^{\tau} \rangle$ are τ -invariant dihedral groups and the elements u_i are inverted by τ . Suppose some u_i has odd order. Then there are an odd number of conjugates of t in $\langle t_i, t_i^{\tau} \rangle$, and since this set of involutions is invariant under τ , one of them is fixed by τ and hence is t. Thus $t \in \langle t_i, t_i^{\tau} \rangle$ and t inverts u_i . Then τt centralizes u_i . Since $\tau t = x^{-1}\tau x$, we see that $u_i^{x-1} \in C_G(\tau)$ which contains t in its center. Thus t centralizes u_i^{x-1} . On the other hand t centralizes x and inverts u_i ; consequently t also inverts u_i^{x-1} . Since t now both centralizes and inverts u_i^{x-1} it follows that the latter has order 1 or 2, contrary to our initial assumption that u_i had odd order and $u_i \neq 1$ (since $t_i \neq t_i^{\tau}$).

Hence we must suppose that each u_i has even order. Since τ inverts u_i , some power of u_i is an involution fixed by τ , as well as by t_i and t_i^{τ} . Clearly this involution is t, the unique involution in $C_{\sigma}(\tau)$. Thus t commutes with t_i and t_i^{τ} , $i = 1, \dots, m$. It follows that all members of t^{σ} commute with one another and so $\langle t^{\sigma} \rangle$ is a normal elementary 2-subgroup of G. This completes the proof of proposition 3.

2. Proof of the theorem

Let G be a transitive group of permutations on the set of letters Ω . Fix a letter α in Ω , and let G_{α} be the subgroup of G fixing α . By assumption, G_{α} contains a normal subgroup Q which is regular on $\Omega - (\alpha)$. We may then write $G_{\alpha} = G_{\alpha\beta} Q$ where $G_{\alpha\beta} \cap Q = 1$. Also by assumption, Q has even order, and so the number of letters $|\Omega|$ is odd. For the sake of consistency with the notation of [8] we write $K = G_{\alpha\beta}$. Also by the result in [8], we shall assume that K has even order. The proof of the theorem now proceeds by a series of short steps, (A) through (P) below. Induction on $|\Omega|$ and |G| is utilized at steps (G), (H) and (J).

(A).
$$O_2(Q) = 1$$
.

Set $A = O_2(Q)$. By way of contradiction assume |A| > 1. Then A is normal in G_{α} and is semi regular on $\Omega - (\alpha)$. Then G and A satisfy the hypothesis of Proposition 1, and so either (i) or (ii) or Proposition 1 must hold. If (ii) holds, $N = \langle A^{\circ} \rangle$ is 2-transitive on Ω and so no permutation on Ω can centralize the group of permutations N. Thus G/N is faithfully represented on the automorphism group of N modulo the inner automorphism group of N and conclusion (b) of our theorem holds. If (i) holds, then QN_1 is a 2-transitive Frobenius group which is normal in G. Then there is a near-field corresponding to QN_1 and $G_{\alpha\beta}$ is a complement in G to QN_1 and faith-

fully acts on QN_1 so as to induce automorphisms on the corresponding near-field. The conclusion of (a) thus holds.

Thus if A is non-trivial we are done. Without loss of generality, then, we may assume A = 1, which is (A).

(B) For each element $x \in K$ such that x has prime order, $C_{\mathcal{Q}}(x)$ is non-trivial.

If $C_Q(x) = 1$, when x has prime order, then Q is nilpotent by a fundamental theorem of Thompson [9]. In that case, since Q has even order, $O_2(Q) \neq 1$, and this contradicts (A).

At this point we introduce a "glossary" of subgroups. For each element x in K set

 $\Omega_x = points in \Omega fixed by x (thus <math>\Omega_x \supseteq \{\alpha, \beta\})$

 $L_x = \operatorname{Stab}_{G}(\Omega_x) \ (clearly \ C_{G}(x) \le N_{G}(\langle x \rangle) \le L_x$

 $N_x = \langle C_Q(x)^{L_x} \rangle \ (clearly \ N_x \triangleleft_= L_x)$

 $K_x = point$ -wise stabilizer of Ω_x (clearly $K_x \triangleleft L_x$, $K_x \leq K$).

(C) $\Omega_x = \{\alpha\} \cup \{\beta^{C_Q(x)}\} \text{ for all } x \in K.$

First, by our hypothesis on Q, $\Omega = \{\alpha\} \cup \{\beta^Q\}$ and $\{\alpha, \beta\} \subseteq \Omega_x$. If

$$\beta^a \in \Omega_x$$
 $\beta^{ax} = \beta^{xa^x} = \beta^{a^x}$

so $a = a^x$ from the regularity of Q. This asserts, $a \in C_Q(x)$. Thus

$$\Omega_x \subseteq \{\alpha\} \cup \{eta^{C_Q(x)}\}.$$

The reverse inclusion is trivial.

- (D) If $x \in K$ either
- (i) $|\Omega_x| = 2$ and $|C_Q(x)| = 1$ or
- (ii) $|\Omega_x| > 2$, N_x is 2-transitive on Ω_x and $N_x \leq C_G(K_x)$. Moreover, $L_x = (K \cap L_x)N_x$.

If $|\Omega_x| = 2$, then by (C), $|C_Q(x)| = 1$ and (i) holds.

If $|\Omega_x| > 2$, then also by (C), $|C_Q(x)| > 1$. Then $C_Q(x)$ fixes α and is regular on $\Omega_x - (\alpha)$. Since $x \in G_\beta$, x also normalizes Q_1 , the unique conjugate of Q lying in G_β . Again by (C),

$$\Omega_x = \{\beta\} \cup \{\alpha^{C_{Q_1}(x)}\}$$

and $C_{Q_1}(x)$ lies in L_x , fixes β , and is transitive on $\Omega_x - (\beta)$. It follows that $\langle C_Q(x), C_{Q_1}(x) \rangle$ is 2-transitive on Ω_x and so contains every conjugate of $C_Q(x)$ lying in L_x (there is exactly one conjugate for each point in Ω_x). Thus $\langle C_Q(x), C_{Q_1}(x) \rangle = N_x$ which is 2-transitive. Since $K_x \triangleleft_x L_x$, $[K_x, C_Q(x)] \leq K_x \cap Q = 1$. Similarly $[K_x, C_{Q_1}(x)] = 1$ and so $N_x \leq C_G(K_x)$. Since N_x is a normal 2-transitive subgroup of L_x it follows that the section L_x/N_x is covered

by K, the subgroup fixing 2 letters. Thus $L_x = (L_x \cap K)N_x$. All conclusions in (ii) are now proved.

(E) G has no non-trivial normal solvable subgroups.

If N is a minimal normal solvable subgroup of the primitive group G, it easily follows that N is elementary abelian and is regular on Ω . Then QN is a normal 2-transitive Frobenius subgroup, and so Q has a central involution inverting N. Then $O_2(Q)$ is non-trivial against (A).

(F) A 2-Sylow subgroup of Q contains more than one involution.

Let Q_2 denote a 2-Sylow subgroup of Q and suppose s were the unique involution in Q_2 . Suppose a conjugate s' of s commutes with s. Then s' fixes α , the unique letter left fixed by s, and g also fixes α . By the Brauer-Suzuki theorem [3], $sO_{2'}(Q)$ is the unique involution in $Q/O_{2'}(Q)$. Thus, since $g \in G_{\alpha} \leq N(Q)$, g leaves the coset $sO_{2'}(Q)$ invariant, and so s'' = sn where $n \in O_{2'}(Q)$. Since s'' commutes with s, n also commutes with s. On the other hand $sns = n^{-1}$ since sn = s'' is an involution. Since n has odd order this forces n = 1 and so s'' = s. We have just proved that s is not fused in G to any further involution in $C_G(s)$. Thus Glauberman's Z^* theorem [5] may be applied, and so $C_G(s)O_{2'}(G) = G$. By the Feit Thompson theorem [4], $O_{2'}(G)$ is solvable and so by (E), $O_{2'}(G) = 1$. Then $G = C_G(s) \leq G_{\alpha}$, which contradicts the assumption that G is transitive on Ω and $|\Omega| \geq 3$ (since Q is assumed to be non-trivial).

(G) A 2 Sylow subgroup of K is not cyclic.

Let S denote a 2-Sylow subgroup of K. Then SQ has odd index in G. Assume for the remainder of this paragraph that S is cyclic. If $y \in S^0 \cap Q$ for any $g \in G$, then y fixes $\{\alpha^g, \beta^g\}$ since $y \in S^g \cap K^g$. On the other hand, as a member of Q, y is either the identity element or fixes exactly one letter, because of the regularity of Q on $\Omega - (\alpha)$. Thus y = 1 and so $S^{\theta} \cap Q = 1$ for all $g \in G$. Now we represent G as a permutation group on the cosets of Q. A generator of the cyclic group S is then represented as [G:SQ] cycles of length |S| since $S^{\theta} \cap Q = 1$ for all $g \in G$. This is an odd permutation. Now observe that $Q^x \cap G_\alpha = Q^x \cap N_G(Q) \neq 1$ implies $x \in G_\alpha$ and $Q^x = Q$. Thus Qacts on its own cosets by fixing all cosets of Q in $N_g(Q)$ and acting semiregularly on the remaining cosets in $[N_q(Q):Q]$ orbits of length |Q|. $[N_{\sigma}(Q):Q] \equiv 0 \mod |S|$ and S is non-trivial by assumption, every 2-element in Q is represented by an even permutation in this representation. Thus we see that G contains a normal subgroup G_1 of index 2 in G, namely the elements represented by even permutations in the representation of G on the cosets of Q. Thus $SG_1 = G$ and $Q \leq G_1$. Since $[G:G_1] = 2$ and $|\Omega|$ is odd, G_1 is transitive on Ω . Since $Q \leq G_1$ it follows that G_1 is a 2-transitive group obeying the same hypotheses as G. By induction, either G_1 contains a normal abelian

transitive subgroup (as in conclusion (a)) or G_1 contains a normal simple 2-transitive subgroup N_1 of "Bender type". The former case contradicts step (E). In the latter case, since G_1/N_1 is solvable, $N_1 \triangleleft_{=} G$. Then $G_{\alpha\beta}N_1 = G$ and it is clear that $G_{\alpha\beta}/(G_{\alpha\beta} \cap N_1)$ must be isomorphic to a subgroup of the outer automorphism group of N_1 . In this way case (b) of the conclusion of the theorem is obtained.

We may thus assume S is non-cyclic.

(H) Let τ be any involution in K. Then $|\Omega_{\tau}|$ is 1+q, $1+q^2$ or $1+q^3$ where $q=2^n>2$ and

$$\bar{N}_{\tau} = N_{\tau}/(N_{\tau} \cap K_{\tau}) \simeq SL(2,q), Sz(q) \text{ or } U(3,q),$$

respectively.

We will let "bar" denote application of the homomorphism $L_{\tau} \to L_{\tau}/K_{\tau} = \bar{L}_{\tau}$, the group of permutations of Ω_{τ} induced by L_{τ} , and by restriction apply this mapping to subgroups of L_{τ} .

By (B), since τ is an involution in K, $|C_Q(\tau)| > 1$ and so case (ii) of (D) holds. Thus \bar{N}_{τ} is a 2-transitive group of permutations on Ω_{τ} . Since τ normalizes a 2-Sylow subgroup of Q, necessarily $C_Q(\tau)$ has even order. Since $C_Q(\tau)$ is regular on $\Omega_{\tau} - (\alpha)$, $|\Omega_{\tau}|$ is odd. Indeed $C_Q(\tau) = Q \cap N_{\tau} C_Q(\tau)^- \simeq C_Q(\tau)$ so that a point stabilizer $(G_{\alpha} \cap N_{\tau})^-$ in \bar{N}_{τ} restricted to Ω_{τ} contains a normal subgroup $C_Q(\tau)^-$ of even order which is regular on $\Omega_{\tau} - (\alpha)$. Thus the hypotheses of the theorem are satisfied with \bar{N}_{τ} , $C_Q(\tau)^-$ and Ω_{τ} in the roles of G, Q and Ω respectively. Since $\tau \neq 1$ implies $|\Omega_{\tau}| < |\Omega|$, we may apply induction to assert that either (a) \bar{N}_{τ} is a group of semilinear transformations over a near field, or (b) \bar{N}_{τ} is an extension of SL(2, q), Sz(q) or U(3, q) by its outer automorphism group.

Consider the former case (a). The subgroup of translations \bar{M} is normalized by $C_{\mathcal{Q}}(\tau)^-$ and is therefore transitive and regular on Ω_{τ} and so $C_{\mathcal{Q}}(\tau)^ \bar{M}$ is a Frobenius group. It follows that $C_{\mathcal{Q}}(\tau)^- \simeq C_{\mathcal{Q}}(\tau)$ contains a unique involution s.

At this point we can apply Proposition 3, for Q is a group admitting τ as an automorphism of order 2, and such that $C_Q(\tau)$ has a unique involution s. Thus by Proposition 3, either $\langle s^Q \rangle$ is a normal 2-subgroup of Q, or else $sO_{2'}(Q)$ is the unique involution in $G/O_{2'}(Q)$. In the former case, $|O_2(Q)| > 1$ and this contradicts (A). In the latter case, a 2-Sylow subgroup of Q contains a unique involution, and this contradicts (F).

Thus we must assume case (b) holds for \bar{N}_{τ} and Ω_{τ} . Thus \bar{N}_{τ} contains a normal 2-transitive subgroup \bar{M}_{τ} isomorphic to SL(2, q), Sz(q) or U(3, q). Thus $(M_{\tau} \cap Q)^{-}$ is regular on $\Omega_{\tau} - (\alpha)$ and so coincides with $C_{Q}(\tau)$. Thus, since M_{τ} is transitive, $M_{\tau} \geq \langle C_{Q}(\tau)^{L_{\tau}} = N_{\tau}$ whence $\bar{M}_{\tau} = \bar{N}_{\tau}$ is itself simple. The conclusion of (H) now holds.

- (I) Fix τ as in (H). Choose an involution $t = (\alpha\beta) \cdots$ in N_{τ} transposing α and β . Set $V = K \cap N_{\tau}$, the subgroup of N_{τ} fixing α and β . The following hold:
 - (i) V is abelian, and is normalized by t.
 - (ii) $V = U \times C_V(t)$, where $U \simeq Z_{g-1}$, U is inverted by t.
 - (iii) U is normal in $L_{\tau} \cap K$.

Since $t = (\alpha \beta) \cdots$ normalizes $G_{\alpha \beta} = K$ and lies in N_{τ} , t normalizes $V = N_{\tau} \cap K$. Then $V/(K_{\tau} \cap N_{\tau})$ corresponds to the subgroup fixing 2 letters in

$$N_{\tau}/(K_{\tau} \cap N_{\tau}) = \bar{N}_{\tau} \simeq SL(2,q), Sz(q) \text{ or } U(3,q).$$

Thus $[t, V](K_{\tau} \cap N_{\tau})/(K_{\tau} \cap N_{\tau})$ is cyclic of order q-1, and $V/(K_{\tau} \cap N_{\tau})$ is also cyclic of order q-1 or $(q^2-1)/(3, q+1)$. By (D)(ii), $N_{\tau} \leq C(K_{\tau})$ and so $K_{\tau} \cap N_{\tau}$ is central in N_{τ} . Thus V is a cyclic extension of $K_{\tau} \cap N_{\tau}$, which lies in its center. It follows that V is abelian. Let W be the 2'-Hall subgroup of V. Then W covers $V/(K_{\tau} \cap N_{\tau})$ and

$$W = [t, W] \times C_W(t).$$

Set U = [t, W]. Since t centralizes $K_{\tau} \cap N_{\tau}$ and $V = W(K_{\tau} \cap N_{\tau})$ it follows that [t, V] = [t, U] = U, and that $U \cap (K_{\tau} \cap N_{\tau}) = 1$. Thus

$$U \simeq [t, V](K_{\tau} \cap N_{\tau})/(K_{\tau} \cap N_{\tau}) \simeq Z_{g-1}$$
.

Now

$$V = W(K_{\tau} \cap N_{\tau}) = (U \times C_{W}(t))(K_{\tau} \cap N_{\tau}).$$

Since $U(K_{\tau} \cap N_{\tau})/(K_{\tau} \cap N_{\tau})$ is a direct factor of $V/(K_{\tau} \cap N_{\tau})$ with $C_{V/(K_{\tau} \cap N_{\tau})}(t)$ as a complement (the section $V/(K_{\tau} \cap N_{\tau})$ is t-isomorphic to $W/(W \cap K_{\tau})$), it follows that

$$U \cap C_W(t)(K_{\tau} \cap N_{\tau}) \leq K_{\tau} \cap N_{\tau}$$
.

But $U \cap (K_{\tau} \cap N_{\tau}) = 1$, thus $C_{W}(t)(K_{\tau} \cap N_{\tau})$ is a t-invariant direct complement of U in V and it easily follows that $C_{V}(t) = C_{W}(t)(K_{\tau} \cap N_{\tau})$ and so $V = U \times C_{V}(t)$. Thus (i) and (ii) are established.

Now $[t, L_{\tau} \cap K] \leq N_{\tau} \cap K$ since t normalizes K and since $t \in N_{\tau} \subset L_{\tau}$. If $x \in L_{\tau} \cap K$, then $x^t = xk$ where $k \in N_{\tau} \cap K = V$. Since V is normal in $L_{\tau} \cap K$, and W is characteristic in V, W is normal in $L_{\tau} \cap K$. Thus U^x is a subgroup of the abelian group W, and thus is centralized by $k = [x, t] \in V$. Thus for each element u in U,

$$(u^x)^t = (u^t)^{xk} = (u^{-1})^{xk} = ((u^x)^{-1})^k = (u^x)^{-1}$$

since k centralizes U^x . Thus U^x is a subgroup of W which is inverted by t. It follows that $U^x = [t, W] = U$. Since x was an arbitrary element in $L_\tau \cap K$ we see that U is normal in $L_\tau \cap K$ and (iii) is proved.

(J) Let u_0 represent any element of prime order in U. Let x be any element

of $L_{\tau} \cap K$ such that $C_{\mathcal{Q}}(x)$ contains an elementary subgroup of order 4. Then:

- (i) $C_{Q}(x)$ is a 2-group
- (ii) x fixes precisely 2 elements in Ω_{u_0} , namely $\{\alpha, \beta\}$.
- (iii) x has fixed point free action on the group $C_{\mathbb{Q}}(u_0)$ which is abelian.
- (iv) $|\Omega_{u_0}|$ is even.

Suppose x is an element of $L_{\tau} \cap K$ such that $C_{\mathcal{Q}}(x)$ contains an elementary subgroup of order four. Then $|\Omega_x|$ is odd, and by (D)(ii), \bar{N}_x is doubly transitive on Ω_x , its subgroup $C_{\mathcal{Q}}(x)$ being a normal subgroup of $(N_x \cap G_{\alpha})^-$ having even order and regular on $\Omega - (\alpha)$. By induction and the definition of N_x , either \bar{N}_x is a Frobenius group $C_{\mathcal{Q}}(x)^-\bar{N}_x'$ with Frobenius kernel \bar{N}_x' regular on Ω_x or $\bar{N}_x \simeq SL(2, q_x)$, $Sz(q_x)$, or $U(3, q_x)$. The former case is excluded since $C_{\mathcal{Q}}(a)$ contains an elementary subgroup of order four. Thus $C_{\mathcal{Q}}(x)$ is a 2-Sylow subgroup of the simple group \bar{N}_x . (i) follows at once.

Next observe that since x is in $L_{\tau} \cap K$, that x normalizes U by (I). Since U is cyclic, x also normalizes $\langle u_0 \rangle$ and thus stabilizes Ωu_0 . That is, $L_{\tau} \cap K \leq L_{u_0} \cap K$.

Next we argue that $C_Q(u_0)$ has odd order. First, $UC_Q(\tau)$ is a Frobenius group, and so U fixes α and β and is semiregular on Ω , $-\{\alpha, \beta\}$. From this it follows that $\Omega_\tau \cap \Omega_{u_0} = \{\alpha, \beta\}$. Thus τ fixes none of the letters $\{\beta^a \mid a \in C_Q(u_0)\}$ which make up $\Omega_{u_0} - \{\alpha, \beta\}$. Thus τ (being an element of L_{u_0}) normalizes $Q \cap N_{u_0} = C_Q(u_0)$ and acts without fixed points on $C_Q(u_0)$. Thus $C_Q(u_0)$ is abelian and has odd order. Thus (iv) holds.

Similarly, for each $x \in K \cap L_{\tau}$, x normalizes $Q \cap N_{u_0} = C_Q(u_0)$. Since $C_Q(x)$ is a 2-group by (i) and since $C_Q(u_0)$ has odd order it follows that x has fixed point free action on $C_Q(u_0)$. Thus (iii) holds.

Statement (ii) follows immediately from the fact that x fixes β^a , $a \in C_Q(u_0)$ if and only if x centralizes a. In that case a = 1 from (iii) and so $\Omega_{u_0} \cap \Omega_x = \{\alpha, \beta\}$, proving (ii).

(K) A 2-Sylow subgroup of K is a generalized quaternion group.

Assume S is not quaternion. Since, by step (G) S is also not cyclic, we may find involutions $\tau_1 \neq \tau_2$ in S with τ_1 central in S. Setting $\tau = \tau_1$, the groups L_{τ} , N_{τ} , K_{τ} , V, U and $\langle u_0 \rangle$ of steps (H), (I) and (J) are then defined in terms of the involution τ , central in S. Then

$$S \leq C(\tau) \cap K_{\tau} \leq L_{\tau} \cap K \leq L_{u_0} \cap K$$
.

This last containment follows from $\langle u_0 \rangle$ being characteristic in U and step (I) (iii). Now any non-identity element in the fours group $\langle \tau_1, \tau_2 \rangle$ satisfies the hypotheses of the element x in step (J). By (J) (iii) it follows that $\langle \tau_1, \tau_2 \rangle C_Q(u_0)$ is a Frobenius group with Frobenius complement $\langle \tau_1, \tau_2 \rangle$. This is clearly impossible since $\langle \tau_1, \tau_2 \rangle$ is a fours-group.

(L) For each element u_0 of prime order in U, there exists an element $v = v(u_0)$ in K which inverts u_0 , that is $v^{-1}u_0 v = u_0^{-1}$.

By step (B), $C_{\mathcal{Q}}(u_0) > \{1\}$. Then by (D)(ii) N_{u_0} is 2-transitive on Ω_{u_0} and N_{u_0} centralizes K_{u_0} which contains u_0 . Thus $C_{\mathcal{G}}(u_0)$ is 2-transitive on Ω_{u_0} . In particular we know that $C_{\mathcal{G}}(u_0)$ is not contained in G_{α} . Now

$$G = G_{\alpha} \cup QKtQ$$

where $t = (\alpha\beta)\cdots$ is the involution of step (I) lying in N_{τ} and normalizing K. From the regularity of Q, elements in QKtQ have a unique expression in the form xvty, $x \in Q$, $v \in K$, $y \in Q$. Since $C_{\sigma}(u_0)$ is not contained in G_{α} , we can find such an element xvty in $C_{\sigma}(u_0)$. Then xvty can be written as

$$(xvty)^{u_0} = x^{u_0}v^{u_0}(u_0^{-1}tu_0)y^{u_0} = x^{u_0}v^{u_0}u_0^{-2}ty^{u_0}$$

and the uniqueness of the expression implies $v = v^{u_0}u_0^{-2} = u_0^{-1}vu_0^{-1}$. Then $v^{-1}u_0 v = u_0^{-1}$ so v inverts u_0 as promised. (This step was lifted from Suzuki [8].)

(M)
$$N_{\tau}/(K_{\tau} \cap N_{\tau}) \simeq SL(2,4)$$
 or $U(3,4)$.

For each prime p dividing |U| = q - 1, we will write u_p for an element of order p in U, and let U_p be an S_p subgroup of U. The element v in K which inverts $u_0 = u_p$ in step (L) can be assumed to be a 2-element by raising v to an appropriate odd power. We will write v_p for v to indicate that this element depends on u_p .

Now since U is cyclic, $\langle u_p \rangle$ is characteristic in U which is normal in $L_\tau \cap K$ by (I)(iii). Since $S \leq C(\tau) \cap K \leq L_\tau \cap K$, it follows that S normalizes $\langle u_p \rangle$, for each choice of p, as well as normalizing U. Clearly S is a 2-Sylow subgroup of $N_K(\langle u_p \rangle)$, and v_p is a 2-element in $N_K(\langle u_p \rangle)$ which inverts u_p . Thus every element of U is inverted by an element in S. Conjugation by elements of S induce automorphisms of

$$\bar{N}_{\tau} = N_{\tau}/(N_{\tau} \cap K_{\tau}) \simeq SL(2, q), Sz(q) \text{ or } U(3, q),$$

which may invert any of the non-identity p-elements of its subgroup

$$ar{U} = (U imes (K_{ au} \cap N_{ au}))/(K_{ au} \cap N_{ au}) \simeq Z_{q-1}$$
 .

Since these automorphisms correspond to field automorphisms of GF(q) we see that $S/C_s(U)$ is cyclic. By step (K), S is generalized quaternion, and so S/[S,S] has exponent 2. Thus $S/C_s(U) \simeq Z_2$, and the involution in this section must invert every element of prime order in U. It follows that this involution must invert every p-Sylow subgroup of U, and hence must invert U itself. On the other hand the involution in $S/C_s(U)$ must act now as a field automorphism of GF(q) which inverts every non identity element of the multiplicative group $GF(q)^* = GF(q) - (0)$. It follows from this that q = 4. Thus

$$N_{\tau}/(N_{\tau} \cap K_{\tau}) \simeq SL(2,4) \text{ or } U(3,4).$$

(N) A 2-Sylow subgroup of $C_Q(\tau)$ is a 2-Sylow subgroup of Q.

Now $C_{\mathcal{Q}}(\tau)$ is a 2-Sylow subgroup of either SL(2,4) or U(3,4). Thus $C_{\mathcal{Q}}(\tau)$ has order 4 or 4^3 . In either case, all involutions in $C_{\mathcal{Q}}(\tau)$ belong to its center $T = Z(C_{\mathcal{Q}}(\tau))$ which is a four-group.

Suppose $C_Q(\tau)$ is not a full 2-Sylow subgroup of Q. Then Q contains a τ -invariant 2-group S_0 containing $C_Q(\tau)$ as a subgroup of index 2, and $S_0 = \langle x, C_Q(\tau) \rangle$. Then $x^{\tau} = xc$ where $c \neq 1$, and $c \in C_Q(\tau)$. From $\tau^2 = 1$, it easily follows that c is an involution and therefore lies in T^* . Now conjugation by x induces an automorphism on $T \times \langle \tau \rangle$, which is elementary of order 8. Since $x^2 \in C_Q(\tau)$, x^2 centralizes $T \times \langle \tau \rangle$ and so this automorphism has order 2. Consequently x centralizes $c = [x, \tau]$. This fact is critical in what follows.

Let t_0 be any involution in $T^{\#}$ and consider the class t_0^{Q} , which is τ -invariant. This class decomposes as

$$t_0^Q = (t_0^Q \cap T^\#) + \{t_1, t_1^r\} + \{t_2, t_2^r\} + \cdots + \{t_m, t_m^r\},$$

where t_1, \dots, t_m are representatives in t_0^Q of the τ -orbits of length 2. Setting $u_i = t_i t_i^{\tau}$, $i = 1, 2, \dots, m$, we see that both t_i and τ invert u_i .

Now suppose some u_j has odd order, $1 \le j \le m$. Then $\langle t_j, t_j^r \rangle$ is a τ -invariant dihedral group containing an odd number of members of t_0^q . Thus τ centralizes one of these involutions, and this involution, then, is an element c_j in T^{\sharp} . Thus c_j inverts u_j and so τc_j centralizes u_j . Since U transitively permutes the three elements of T^{\sharp} , we can find an element u in U such that $c^u = c_j$. Then, since U is centralized by τ , we see that $x_1 = x^u = u^{-1}xu$ also normalizes $C_q(\tau)$, that

$$[x_1, \tau] = [x^u, \tau] = [x, \tau]^u = c^u = c_i$$
 and $[x_1, c_i] = [x, c]^u = 1^u = 1$.

Since $\tau c_j = \tau^{x_1}$ centralizes u_j , τ centralizes $x_1 u_j x_i^{-1}$. Then

$$x_1 u_j x_1^{-1} \epsilon C_Q(\tau)$$

which contains c_j as a central element. Thus, since c_j commutes with $x_1 u_j x_1^{-1}$ as well as x_1 , we see that c_j also commutes with u_j . This contradicts the fact c_j inverts u_j (since u_j has odd order by assumption, and is non-trivial because $t_j \neq t_j^r$).

Thus we must assume that u_i has even order for $i = 1, \dots, m$. Since u_i is always a non-identity element, some power of u_i is an involution z_i fixed by τ . Then $z_i \in T^{\#}$. In addition, t_i and t_i^r both commute with z_i . Thus we see that every element t_0^q commutes with at least one element of $T^{\#}$. Since this conclusion holds for each involution t_0 chosen in $T^{\#}$ we see from Proposition 2, that $T \cap O_2(Q) > \{1\}$. But this contradicts step (A).

Thus we must have that $C_{\mathcal{Q}}(\tau)$ is a full 2-Sylow subgroup of \mathcal{Q} .

(O) $C_{\mathcal{Q}}(\tau)$ is not a full 2-Sylow subgroup of Q.

We prove this by showing that the assumption that it is a full S_2 -subgroup of Q leads to an impossible situation concerning the fusion of involutions in a 2-Sylow subgroup of G.

Assume, as in (N), that $C_Q(\tau)$ is a full 2-Sylow subgroup of Q and as before set $T = Z(C_Q(\tau))$, an elementary group of order 4 containing all of the involutions in $C_Q(\tau)$. Let S be a 2-Sylow subgroup of K lying in $C(\tau)$. Then S normalizes $C_Q(\tau)$ and it is easy to see that the semidirect product $S^* = SC_Q(\tau)$ is a full 2-Sylow subgroup of G.

Suppose w is an involution in S^* . Then w lies in $\langle \tau \rangle \times C_Q(\tau)$, since $S^*/C_Q(\tau) \simeq S$ is generalized quaternion. Then clearly $w \in \langle \tau \rangle \times T$. Thus $\langle \tau \rangle \times T = \Omega_1(S^*)$. Now S induces an automorphism of order 2 on T fixing the involution z_1 , say, in T. Then clearly

$$\langle \tau \rangle \times \langle z_1 \rangle \simeq z_2 \times z_2$$

comprises the center of S^* . By the Burnside theorem on fusion, all elements of this group which are conjugate in G are conjugate in $N_G(S^*)$. But since $S^* \leq G_\alpha$ and $C_Q(\tau)$ is semiregular on $\Omega - (\alpha)$, α is the unique letter in Ω left fixed by S^* . Thus $N_G(S^*) \leq G_\alpha$ and so $N_G(S^*)$ normalizes Q and hence normalizes $Q \cap Z(S^*) = \langle z_1 \rangle$. Thus z_1 is not fused to τ or τz_1 in G, and so, conjugating by U, we see that τ is not fused to any element of T in G.

If τ were not fused to any further involutions in S^* , then by the Z^* -theorem of Glauberman [5], $G = C_{\sigma}(\tau)O_{2'}(G)$. But $O_{2'}(G) = 1$ by the Feit Thompson theorem [4] and step (E). Then $G = C_{\sigma}(\tau)$. But this is absurd since $\tau \neq 1$, τ fixes α and β , and G is transitive on Ω .

Thus τ must be fused to some further involution in $\Omega_1(S^*) = \langle \tau \rangle \times T$, but is not fused to involutions in T. Thus τ is fused in G to an element τz_1 lying in the coset τT . From the action of U on $\Omega_1(S^*)$, it follows that τ is conjugate to τz_1 . Since both of these elements lie in $Z(S^*)$, it follows that τ is conjugate to τz_1 . Since both of these elements lie in $Z(S^*)$, the theorem of Burnside tells us that an element in $N_G(S^*)$ induces, by conjugation, an automorphism of $Z(S^*)$ which transposes τ and τz_1 , but fixes z_1 . Such an automorphism clearly has order 2 and this statement contradicts the fact that S^* has odd index in $N(S^*)$ (since S^* is a 2-Sylow subgroup of G).

This contradiction proves the step, and in fact proves

(P) The theorem holds.

This follows at once from the incompatibility of steps (N) and (O).

REFERENCES

- 1. J. Alperin, On fours groups, Illinois J. Math., vol. 16 (1972), pp. 349-351.
- 2. H. Bender, Endliche zweifach transitive Permutationsgruppen deren Involutionen keine Fixpunkte haben. Math Zeitschr., vol. 104 (1968), pp. 175-204.
- 3. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 1757-1759.
- 4. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math., vol. 13 (1963), pp. 775-1029.
- G. GLAUBERMAN, Central elements in core free groups, J. Algebra, vol. 4 (1966), pp. 403-420.

- 6. E. Shult, A characterization theorem for the groups Sp(2n, 2), J. Algebra, vol. 15 (1970), pp. 543-553.
- 7. ——, On the fusion of an involution in its centralizer, to appear.
- M. Suzuki, On a class of doubly transitive groups II, Ann. of Math., vol. 75 (1962), pp. 105-145.
- 9. J. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 578-581.

SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, ILLINOIS