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1. Introduction
A bounded operator T on a Hilbert space is said o be hyponormal if

(1.1) T*T- TT* D

_
O.

Let T have the Cartesian representation

(1.2) T H - iJ, H j dEx

and, for any open interval h and corresponding projection E (4), consider the
operator Ta E(A)TE (h) on the Hilbert space E(4). More generally,.
for any bounded operator A on , define
Since

(1.3) HJ JH -iC, D 2C,

then

(1.4) Ha Ja Ja Ha -iCa,

and hence Ta is hyponormal on E(h)0.
It was recently shown in Putnam [3] that

(1.5) sp (Ta) sp (T).

(Relation (1.5) was proved in the special case in which D is completely con-
tinuous by Clancey [1].) It will be shown below that the inclusion (1.5) can
be sharpened as follows:

To. If T is hyponormal and if is any open interval and Ta is defined
as above, then

(1.6) sp (T) n {z Re (z) 4} sp (T) n {z: Re (z) A}.

Thus, those parts of the spectra of T and of Ta which lie over the open
interval 5 must coincide. Relation (1.6) is of course a well-known property
of normal operators. Since the spectra of the real and imaginary parts of a
hyponormal operator T are the projections of the set sp (T) onto the coordinate
axes (see [2, p. 46]) it is clear that sp (Ta), Ta always regarded as an operator
on E(A), lies in the closure of the strip {z: Re (z) e h}.
An immediate consequence of the theorem is the following

Coronary. If T is hyponormal with the representation (1.2) and if is
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real and A is any open interval containing t, then

(1.7) Im[sp (T) n {z: Re (z) t}] a{sp (E(/)JE(h))}, te/.

2. Some lemmas

Lemma 1. Let T be hyponormal and let h (a, b) and define Ta as aboe.
Let a < Re (z) < b. If (T zI)x,, -- 0 holds for a sequence of unit vectors
x,, in then (Ta zI)y,, --. 0 holds for a sequence of unit vectors y,, in E(),
and conversely.

Proof. First, suppose that (T zI)x,, -- O, II x I1 1, x, in . If
z - is, then

(T- zI)*(T zI) (H tI)2- (J sI)2- C

and, since C => 0, one has

(H tI)x,, ---* 0 and (J sI)x,, -- O.

But (H- tI)x,--. 0 and a < Re (z) < b imply that x.- E(A)x.- 0.
Hence (Ta zI)y, - 0 clearly holds for y, E (a)x,/ll E (A)x, II.

Next, suppose that (Ta zI)y, 0 where y, E(A)y, and I! Y, [! 1.
Then (cf. above),
(H tI)y, (Ha tI)y, ---. 0 and E (h) (J sI)y, (Ja sI)y,, -- O.
Now (1.3) holds if H and J are replaced by H tI and J sI, so that

(2.1) (H tl)(J- sI) (J- sI)(H- tI) -iC.

On taking inner products in (2.1) and using (H tl)y, O, one obtains

[[ [I o,
hence Cy,, ---, O, and hence (H tI) (J sI)y, O. Since a < < b, this
fact and E (h) (J sI)y,, -- 0 yield (J s/)y, -- 0. Thus (T zI)y,, -- 0
and the proof is complete.
The above argument is essentially that used in the proof of Lemma 3 of [3]

LEMMX 2. Let T be an arbitrary non-singular bounded operator on . Then
T- is the uniform limit of a sequence of polynomials in T and T*.

Proof. Let T have the polar form T PU, where P is positive definite
and U is unitary. Then T- U*P- and TT* PU(U’P) P. Let P
have the spectral resolution P f dGx, where 0 < a < b, so that

P X dC and P- X- dC.

Shine 0 < a < b, it is clear from the Weierstrass approximation theorem
that - is the uniform limit on [a, b] of polynomials in ), and hence P- is the
uniform limit of polynomials in TT*, hence in T and T*: Since T* U’P,
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then U* T*P- nd so U* is lso the uniform limit of polynomials in T
and T*. The same must also hold for T-1 U*P- and the proof is complete.

LEMMA 3. Let T be hyponormal with the representation (1.1) and (1.2).
Let A (a, b) and (c, d) denote disjoint open intervals at a distance r
apart. Then

(2.2) E (A)JE( ) <- I[I J [I/r.
Proof. First it will be convenient to obtain an estimate for CE(A);

cf. [2, p. 20]. Multiplications of (1.3) on the left and fight by E (A) yield

f ( o) dE JE(h) --E(h)J f ( o) dE -iE(A)CE(/),

where o is an arbitrary constant. If 0 is chosen to be the midpoint of 4,
then, on taking inner products, one obtains

11C’E ()x I1 <__ 2 (1/2)l 1 I! E ()JE (4)x I111 x 11 =< 1 J ll x Ii
and hence

(2.3) il C"E ()II II E ()C’ <= I I’=lJ J ’.
Next, multiply (1.3) on the left by E (4) and on the right by E ().

for arbitrary constants kl and
Then,

(2.4)
-iE(A)CE() -k (X- M)E(A)JE().

If M and h are taken to be the midpoints of A, respectively, it is seen that the
norms of the two operators on the left of (2.4) are majoried by
1 E (A)JE( ) Ii and

it olows rom <2. hat II <)J< II II ()CE() ll/r d hence, by
(2.3) nd silr relation th replaced by , that

Ii ()x() !1 I’1 ’ 11 II/.
If A is expressed s the union of disot intervals (open or hlf-open) , ,.., nd if r denotes the distance from h to , one obts

II E (A)JE ( )x !i
and hence

(2.5)

where q denotes the distance from to a point of 5. Thus, if is to the right of
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, q x d and- ( a)- _
( )- ( d)- r-.

A similar result holds if Z is to the left of i and (2.2) now follows from (2.15).

3. Proof of the theorem
It is clear from (1.5) that the set on the left side of (1.6) is contained in

that on the right side. Thus it is necessary to prove the reverse inclusion.
Define T by

(3.1) T E((-c, t))TE((-cc, t)) onE((-,t)).

It is sufficient to show that for every real b, if z e sp (T) and if Re (z) < b
then z e sp (T). In fact, if this has been established, it will be clear from
the proof given below that a similar argument applied to

Ta E((a, )T,E((a, ))

then yields (1.6) for any open interval A (a, b). Consequently, suppose that

(3.2) zesp (T) and Re(z) < b.

The theorem will then be proved if it is shown that

(3.3) e sp (Ta).

Next, in case there exists a sequence {x,} of unit vectors in 0 satisfying
(T zI)x,, 0 then, by the second relation of (3.2) and Lemma 1, one has
(Ta zI)y, ---. 0 for a sequence {y,} of unit vectors in the Itilbert space
E (- ,b) ). Thus, in particular, (3.3) holds.

Hence, it remains to be shown that (3.2) implies (3.3) in case we assume
the following relation"

(3.4) there does not exist a sequence {x}, x. [1 1, for which
(T zI)x, -+0.

Suppose, if possible, that (3.3) is false, so that

(3.5) z sp (%).

It will be shown that (3.2), (3.4) and (3.5), which are now being assumed,
yield a contradiction.

In order to prove this, it will first be shown that (assuming (3.2), (3.4)
and (3.5)) there exists some >- b such that

(3.6) zesp (T,)forc> and zsp (T).

To see this, define by

(3.7) sup {t => b, z sp (T).
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In view of (3.5), the set {... of (3.7) is not empty and, in view of (3.2),
exists as a finite number, thus b

_
f < .

Since, by (1.5), sp (T) sp (T,) for < s, it is clear from (3.5) that

(3.8) z sp (T,) for

and from (3.7) that the first relation of (3.6) hol&s. Suppose, if possible, that
(3.6) fails to hold, so that, in addition to (3.8),
(3.9) z e sp (T).

Next, note that there do not exist positive numbers , with the property
that Re(z)+ <-and{w" Iw-zl
< B. For, otherwise,

II (T, zI)x i] - [! (T zI)*x ii >-- ll E((-
Use is made here of the basic property of hyponormal operators T:

(3.10) ]] Tx ]! - I] T*x I] - dist (0, sp (T)

On letting - 0, one obtains

so that z sp (T), in contradiction to (3.9).
Further, there cannot exist a pair of positive numbers , with the property

that

For, otherwise, z sp (T_), in violation of (3.8). Consequently, for every
satisfyin Re (z) - < , one can choose an arbitrarily small > 0 so that
Re(z) + < and {w’lw z < } nsp (T_,)isaproper, non-
empty subset of/w" w z[ < }.

Consequently, there exists a boundary point q of sp (Ta.,) in the disk
{w" w z < }. Hence there exists a sequence of unit vectors

y E((-,

for which (T.., qI)y,, 0 as n --* . Since Re (q) < f v, it follows from
Lemma 1 that there exists a sequence {X.} of unit vectors in satisfying
(T qI)X,, O. On choosing --, 0 one can obtain a sequence of
numbers {q} satisfying q --* z and corresponding sequences of unit vectors
{X} such that (T qI)X 0 as n --* for each fixed k. If k k.
is chosen so tha l[ (T qI)X[[ < 1/n and b -* oo then clearly
(T zI)x,, --, 0 for x, X" in contradiction to (3.4).
So far, it has been established that (3.2), (3.4) and (3.5) lead to (3.6).

In order to complete the proof of the Theorem it will be shown that (3.6) is
impossible.
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4. Impossibility of (3.6)
By considering translations of T, one can suppose that z 0 in (3.6) and

hence, in particular, > 0. Thus, relation (3.6) becomes

(4.1) 0esp(T)for0 < < c and 0sp (Ta).

It will be shown that (4.1) leads to a contradiction. In view of the first part
of (4.1), for every c > there exists a sequence of unit vectors {y,}, where
where y. E ( (- oo, c) )y., satisfying

Ty, E(( c, c)) *T y --, 0;

cf. (3.10). By choosing a sequence c. --/ -k 0 it is clear that one can find
unit vectors x E ((- , c.))x satisfying

E((-oo, c,,))T*E((-oo, c,,))x,--.O as c. --+ -t- 0.

Leth (-oo,)and. [,c). Then one has

(4.2) E (h u .)T*E (h u )x,, O,

where

(4.3) x, S (h u ,)x, II x, II 1.

A multiplication of (4.2) on the left by E (h) yields

(4.4) E (a T*E (a )x,, + E (a T*E(, )x,, ---, O.

Since E (A)T*E (,,) -iE(a)JE(,) and -I -+0, it follows from Lemma
3 that for any fixed e ) 0 one has

e))JE(,)[I-+0 asn--+ oo

and hence (note that h (--oo, ))

(4.5) (H I)y, -- O, y,, E (h T*E(, )x,,

Since T T, E(A)TE (h) is, by the second relation of (4.1), non-singular
(on E (a)9 ), then (4.4) becomes

(4.6) E (A)x. + (T*)-y, --, 0.

Next, it will be shown that

(4.7) (H )(a)x. - 0,

where x is given by (4.3). In order to see this, let T* and E (A)O be iden-
tified with T and of Lemma 2. Then, for any e > 0, there exists a poly-
nomial in Ta and T*, hence also a polynomial in Ha and Ja (where
H,, E (A )H f, X dE and J, E (A)JE (5 ), sy p (H, J,, ), such that

(4.8) (T*)- p (H, J) il < e.
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In view of (4.5) it follows from the relation (1.4) that if q (Ja) denotes any
polynomial in Ja then (H flI)q (Ja)y. (Ha flI)q (Ja)y --, 0. (Cf.
[2, p. 46] for a similar argument.) Consequently,

(H I)p (H, J, )y, 0 as n -*

and relation (4.7) now follows from (4.6) and (4.8).
On forming the inner product of the vector in (4.2) with x and taking the

real part, one obtains

(Hx, x, ) (HE (,h )x,, E (,h )x, ) -t-" (HE (, )x,, E (, )x,, -- O.

Hence, on using (4.7) and noting that h (-, ) and . [fl, c) with
c. - -t- 0, one obtains

Since > 0, then x. 0, in contradiction to x. I 1 of (4.3). As noted
above, this shows that (4.1) is impossible and the proof of the theorem is
now complete.

5. Remarks
The relation (1.5) holds if A is any Borel set of the real line. To see this,

note that the same proof of (1.5) in [3], for the case in which A is an open
interval, also holds when A is any open set. Further, if A is an arbitrary
Borel set it is sufficient to prove (1.5) for the case in which T is completely
hyponormal, that is, T has no non-trivial reducing subspaces on which it is
normal. (In fact, if is a normal reducing subspace of T then, since (1.5)
surely holds for normal T and for any Borel set A, clearly

sp (Ta/E(A)) sp (T/);

cf. [3, beginning of Section 3].) In this case, H Re (T) is absolutely con-
tinuous; see [2, p. 42]. Next, still assuming that A is any Borel set, choose
open sets A. A satisfying meas (A. A)-* 0, where meas denotes ordinary
Lebesgue measure on the real line.

Next, suppose that z e sp (Ta). It will be shown that z e sp (T). First,
note that there exist z. e sp (T.), where T= Ta., for which z. --, z. In
fact, otherwise, there would exist a > 0 and a sequence of positive integers
n < n < such that

sp (T)n{w" lw- z < } for/ 1,2, ....
Hence

11 (T, zI)E (,,)x ![ >= 11 (T, zI)*E (A,)x >= iil]E (h,,)x JJ.
Since Ex is absolutely continuous, E (a.) E (h) (strongly) as k --+ oo, and
hence
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so that z sp (T), a contradiction. Thus, there exist z e sp (T) satisfying
z --, z. As noted above, (1.5) certainly holds with A replaced by any of the
(open) sets A, so that sp (T) c sp (T). Thus, z sp (T), hence z sp (T),
as was to be shown.

It is clear from the proof given in the present paper that (1.6) holds if A is
any open set. On the other hand, it is easily shown that relation (1.6) need
not hold if A is an arbitrary Borel set, in fact, not even if A is a closed interval
and T is normal. To see this, let T be any normal operator for which

sp (T) a u {z’l

_
IRe(z)

_
2 and Ira (z)

_
2},

where a {z "1 Re (z)[
_

1 and 1

_
[Ira (z)

_
2, and with the further

property that =i=l are not in the point spectrum of H Re (T). Then if
A [-1, 1], the left side of (1.6) is the set a, while the right side consists of
a together with the segments {z "1 Re (z) 1 and Im (z) - 1}.
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