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The results contained here belong somewhere near the beginning of the
abstract study of flows on compact metric spaces. The theorems are general,
quite easy to prove, and help make up a setting for deeper results.

Specifically, given some connected compact metric space X we assign to
each flow on X the collection of closed invariant sets of the flow. This col-
lection is viewed as a subspace of the space of closed subsets of X with the
Hausdorff metric. The larger space shares with X the properties of connect-
edness and compactness, and the collection of invariant sets is likewise com-
pact. However, it needn’t be connected. The lack of connectivity corre-
sponds to the existence of "isolated" invariant sets and so inspires the defi-
nition of a second function which assigns to each flow the (closure of)the
collection of isolated invariant sets.
Two of the three theorems proved concern these set-valued functions; they

are shown to be continuous "almost everywhere" with respect to various
topologies on the various sub-sets of the sets of flows (Theorems 2.3 and 4.2).
The third theorem (3.5) relates the notions of isolated and quasi-isolated

invariant sets of a flow to connectivity properties of the sapce of closed in-
variant sets. Isolated invariant sets were defined by T. Urn in [1] and have
been discussed more recently in [2], [3] and [4]. In the latter references and
in [5] some "local" perturbation results for isolated invariant sets were de-
scribed. The emphasis in these theorems is on algebraic (cohomological)
properties of a single isolated invariant set which are preserved under per-
turbation. Thus they complement the more "global" and topological results
listed here.

In Section 1, results concerning the space of closed subsets of a compact
metric space are listed; included is the theorem about continuity points of
semi-continuous functions. These know results are included separately
for ready reference as well as to set the tone.

1. The space of closed subsets of X
Throughout the paper X denotes a connected compact metric space with

metric p. For S X, N(S) is the open set of points within of S. Most of
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the statements below can be found in references [6].
present setting are all elementary.

The proofs in the

1.1 DEFINITION. C(X) is the collection of non-empty closed subsets of X.
If A and B are in C(X), then

p*(A, B) inf{ N(A) B}, p(A, B) max[p*(A, B), p*(B, A)].
1.2 LEIIMA. The function p is a metric on C(X) and the resulting topo-

logical space is compact and connected (since X is).

1.3 DEFIIITIOI.
elements of S.

For S C(X) let r(S) X denote the union of

1.4 LEM. If S is open in C(X) then r(S) is open in X; if S is closed in
C(X), then r( S) is closed in X.

Also if U is open (closed) in X then the collection of closed subsets of X con-
tained in U is open (closed) in C(X).

1.5 DEFTXON. With E a topological space and Y a compact metric
space, a function a E --+ C(Y) is called upper semi-continuous (u.s.c.) at
e e E if given > 0 there is an open set W about e such that e’ W implies
p*(a(e), a(e’) < .

Similarly, a is lower semi-continuous (1.s.c.) at e if given > 0 there is an
open set W about e such that e’ W implies p*(a(e’), a(e)) < . a is
u.s.c. (1.s.c.) if it is at every point of E.

1.6 DEFINITION. E is called a Baire space if the intersection of a countable
number of dense open sets in E is dense. Such an intersection is called a dense
G of E.

1.7 LEMMA. If E is a Baire space and E’ c E is a dense G o] E then
E’ is a Baire Space (in the relative topology) and any dense G of E’ is a dense
G of E.

1.8 LEPTA. If a E ---+ C(Y) is u.s.c. (l.s.c.) and E is a Baire space,
then ( is continuous on a dense G of E.

2. The set of invariant sets of a flow
The collection of flows on X will be denoted F; it is a subset of the set of

continuous functions from X X R --* X where R denotes the real numbers.
With respect to the compact-open (c-o) topology on the latter space, F is a
closed subspace and a Bake-space (in fact a complete metric space).

Since we are concerned with different topologies on varying subsets of F, we
use E for a subset and E for the space consisting of E with topology r; if
E’ c E then E: is the subspace ofE corresponding to E’. The set F with the
relativized c-o topology is Fo.
With f e F understood, f(x, t) is denoted x. t; for A X and J R, A. J

is the set of points x. where x e A and e J.
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2.1 DEFINITION. Given / F, an invariant set, I, of f is a closed subset of
X (i.e. C(X)) such that I.R I. The collection of invariant sets of f is
(f) and is a subset of C(X).

2.2 LEMMA. (f) is closed in C(X) thus is afunctionfrom F to C(C(X) ).

Proof. Suppose limI I where Ie(f) for all n. Then
lim I. I. for all R and so I.R I and I (f).

2.3 TrEOEM. Fo C C X) is upper semi-continuous.

Proof. Suppose H C(X) is not an invariant set of f e F; thus there is a
point x H and a real number such that x. H. Consequently, there is a
compact neighborhood, C, of x and disioint open sets U H and U’ containing
x. such that C. U’. The compact set C {t} and open set U’ determine
a neighborhood V of f in F. Also, the open set U and neighborhood C de-
termine a neighborhood W of H e C(X), namely I’ e W if I’ C and
I’ U. It follows that f’ V, then W f] (f’) since any invariant set of
f’ which meets C cannot be contained in U.

Now suppose > 0 is given. The complement, K, of N((f)) in C(X) is
compact and for H e K there are open sets V and W such that f’ e V
implies W fl (]’) . A finite collection of the W cover K and the in-
tersection of the corresponding V is a neighborhood, V, of f such that f’ e V
implies (f’) fl K . In other words No (/) (f’) or p*((f), (f’)) <
e. This proves the theorem.

2.4 COrOLLary. Suppose E is a subset of F and r is a topology on E which
is stronger than the relativized c-o topology and with which E is a Baire space.

Then the set E’ of points of continuity of is a dense G in E
Note that with different topologies r, E’ may wryfor example, if r is the

discrete topology, E E’.

3. Isolated and quasi-isolated invariant sets

3.1 DEFINITIOI. A set I e g(f) is isolated if there is a neighborhood U of I
(in X) such that if I’ U then I’ I.
If an invariant set I is the intersection of isolated invariant sets it is called

quasi-isolated.

It is clear that the existence of isolated invariant sets is related to the con-
necivity of (]) the precise result is given after the following lemmas.

3.2 LE. LetK (f) be compact and connected and suppose I’ e y(f).
Let K U I’ {I [J I’1I K}. Then K (J I’ is contained in (f) and is con-
nected.

Since (:f) is dosed under finite unions, K (J I (f). Also, for any
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A, B, C e C(X), p(A [J C, B [J C)

_
p(A, B); thus K [J I’ is the continuous

image of K under the map sending I -o I (J I’.

3.3 LEptA. If K is a component of (f) then r(K) (see 1.3) is the unique
maximal element of K.

Proof. Since K is compact, it admits some maximal element H. lamely
since K is partially ordered under the inclusion relation, there is a maximal
well-ordered chain {I} in K. If e(a, ) is the distance from I, to Is, then by
compactness, given e > 0, at most countably many of the numbers e(a, ) >_
e. It follows that only countably many of the numbers s(a, t) are positive
and in particular that I C1 ((J, I,) is in K. Since {I,} was a maximal
chain, I is itself a maximal element of K. Suppose I’ K; then K [J I’ is
Connected and meets K in I’. Thus K [J I’ c K and so H (J I’ K. But
then H [J I’ H implies H (J I’ H. Since I’ was arbitrary, H (K).

A similar property of (f) is the following.

3.4 LEMx. Suppose K is a component of (f) and that I and Ipp are in K.
If I’ (f) and I c I’ I then I’ K.

Proof. K U I is again connected and meets K in I’ [J I’ I’.
K (J I’ K. AlsoI’ I (J I’ e K [J I’; thus I’ K.

Thus

3.5 TEORE. A set I e (f) is isolated if and only if I is the maximal
element in some closed and open subset of (f).
A set I (f) is quasi-isolated if and only if I is the maximal element of some

component K (f).

Proof. Suppose I e (f) is isolated and let U be a neighborhood of I in X
such that I’ U and I’ (f) implies I’ I. Let U* be the subset of C(X)
consisting of closed sets contained in U, and let H* be that subset of C(X)
consisting of closed sets contained in I. Then U* is open and H* is closed and
so U* [’l (f) H* [’l (j) H is open and closed in (f). Also I v(H).

Now suppose tI (f) is both open and closed and let > 0 be such that,
in C(X), N (H) [’1 (f) H. Let I be maximal in H and let U N (I).
Then I’ U implies I [J I’ e N (H) thus I [J I’ H, and by maximality of
I, I (J I’ I. This proves I is isolated.
Now if K is a component of (f) then K is the intersection of closed and

open sets Ha. But then (K) is the intersection of the isolated invariant
sets corresponding to the maximal elements of H, containing (K) (cf. 3.3).
On the other hand suppose I is quasi-isolated and let K be the component

of (f) containing I. If (K) I, let U be an open set about I which does
not contain (K). Since I is quasi-isolated, there is an isolated invariant set
I’ in U. Now C(I) (f) is a closed and open subset of (f) which contains
I and so the component K of (f) which contains I. On the other hand,
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C(I’) does not contain (K) K. This contradiction finishes the proof of
3.5.

4. The closure of the set of isolated invariant sets
The last theorem concerns the object of the following definition.

4.1 DEFXTXO. For each f e F, let s (f) be the closure in C(X) of the
set of quasi-isolated invariant sets.

Also (f) is characterized as the closure of the isolated invariant sets since
they are dense in the quasi-isolated ones.

It is easy to see by example that s Foo is neither upper nor lower semi-
continuous; however, it is lower semi-continuous at points where is con-
tinuous and so we have

4.2 THEOREm. Le$ E F be a Baire-Space with respec o a topology r
which is a leas as srong as he c-o topology (relativized). Le$ E: be the set of
points of continuity of E.

Then the se$ E of points o] continuity o] both E and E: is a dense
G in E.

Proo]. By 2.3, 1.8 and 1.7 it suffices to show that slE: is 1.s.c. Thus,
let f e E’. Let > 0 be given and choose isolated invariant sets I, I
such that I e (]) implies min-..... {p(I, I)} < /2. Now for each i, let
H be a closed and open subset of (f) such that r(H) I. By continuity
of at f, choose a neighborhood U E: of f such that if f’ e U then for each
i 1, n, (]’) admits a closed and open subset H* within /2 of H.
Then H’ contains a maximal element, hence an isolated inwriant set, within
e/2 of I. It follows that p* (s (f’), (])) < and, since and f were
arbitrary, that is 1.s.c. In view of the initial remarks, Theorem 3.4 is
proved.

Conclusion

The statement that and are continuous almost everywhere is not very
strong; for example, any closed subset of C(X) can be approximated by one
consisting of a finite set of points. The only "algebraic" consequence of the
theorems proved here is that usually the number of components of an isolated
invariant set doesn’t decrease. Somewhat stronger algebraic results can be
proven [2]-[5] but in the c-o topology the results are necessarily weak. With
more restricted classes of flows and stronger topologies one might hope to
considerably strengthen such theorems as are proved here and in the references
cited above.
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