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DIOPHANTINE APPROXIMATION AND NORM DISTRIBUTION
IN GALOIS ORBITS

BY

C. J. BUSHNELL

This paper investigates another facet of a problem, introduced in [1] and
[2], concerning relations (or lack of them) between arithmetic properties
and Galois-module properties of algebraic numbers. We let K be an algebraic
number field, normal (and of finite degree) over the field Q of rational
numbers, and we write F Gal(K/Q). The natural action y:b -> by,
T F, b K, of the Galois group on K extends to a module structure
over the rational group algebra QF. Explicitly, if a K, and if

x x.fy, x/Q,

is a typical element of QF, the module action is given by the formula

a.x ’ aVxv.

One knows (Hilbert’s Normal Basis Theorem) that K is a free QF-module
of rank one. That is, there exists a K such that K a. QF, or,
equivalently, the conjugates a, y F, of a are linearly independent over
Q.

This module structure naturally leads to others. Most notably, the ring
OK of algebraic integers in K is a module over the integral group ring ZF.
If every prime of Q is at most tamely ramified in K, OK is "usually" a free
ZF-module: there exists a K such that oK a. ZF. (This holds if, for
example, F has no irreducible symplectic characters. See [4] for a complete
account.) It is the arithmetic properties of these elements a with a. ZF
oK which primarily interest us. Here we are concerned with their norms.

This is better considered in a more general context. We fix an element
a K such that a QF K. (These elements are, in some geometrical
sense, typical.) The linear isomorphism QF K given by x a x,
x QF, enables us to transfer arithmetical functions from K to QF. In
particular, we write

la(X NK/O(a x), x QF,
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where Nc/o denotes the field norm. We consider the distribution of the
numbers Va(X) as x ranges over the group ZF of invertible elements of the
integral group ring ZF. Observe that in the case oc a. ZF above, we
have o/c a’ ZF if and only if there exists x ZF such that a’
a x. In general, if we have a, b K with a QF b QF K, then the
equation a x b has a solution x ZF if and only if the free ZF-lattices
a ZF, b ZF, in K are equal. Thus we are concerned with an arithmetical
property (norm distribution) of elements specified by a Galois-module prop-
erty (generating a given ZF-lattice).
We arrange the investigation around the question of whether or not the

following statement holds"

Given M > O, and a K such that a QF K, the inequality IVa(X)I <
M has only finitely many solutions x ZF .
We give some quantitative results, for certain abelian groups F, which
compare Va(X) with the height of the algebraic number a x, and imply a
positive answer to this question for these F. Our principal tool is a theorem
of W. M. Schmidt (quoted in full in l) which describes completely the
behaviour of products of linear forms with algebraic coefficients. This en-
ables us to prove a startlingly precise result when F has prime order. The
method is not so easy to apply to general abelian F (and does not apply
to non-abelian F at all). Consequently, a rather curious argument is em-
ployed in 3 to deal with the case of F abelian of odd order. This leads to
a result which seems likely to be highly inaccurate, but is still adequate
to give a positive answer to the above question.
The results here are by no means convincing evidence for the truth of

the finiteness statement. However, a negative answer to the question would
be of some interest. For, suppose we had infinitely many x ZF such
that Iva(x)l < M. The numbers Va(X), X ZF, are non-zero rational numbers
with bounded denominators, so there must be a positive number M’ < M
such that Ira(y) M’ for infinitely many y ZF . There are only finitely
many possibilities for the principal fractional ideal (a. y)or of or of absolute
norm M’, whence we can produce infinitely many units of o/c of the form
(a" y)/(a" y’).

1. Diophantine Approximation

Let V be a finite-dimensional real vector space. A Euclidean norm on
V is a function o - Iio11, v V, taking non-negative real values, such that

IIv[I 0 if and only if v O;
IlXvll Ixl Iio11, for all X e R, v e V;
IIv / v=ll < IIvll / Ilv=ll, for all Vl, 02 V.

Any two such norms are bounded in terms of each other, and it will not
matter which we choose. We tend to change frequently, using whichever
seems most convenient at the time.
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Let l, /2, It be homogeneous linear forms on R with real algebraic
coefficients. (One can also work with complex coefficients, but the gain in
generality is minimal, for our purposes.) We say that a real subspace V of
R is defined over Q if it has a basis over R consisting of elements of Qn.
This is equivalent to V being spanned, over R, by V t3 Q.

THEOREM A (W. M. Schmidt, [3]). Let q > O. The following are
equivalent:

(a) There is a constant c > 0 such that the inequality

-I li(x)
i=l

cllxll’-

has infinitely many solutions x Zn.
(b) There is a set ofindices < i < i2 < < im < t, and a d-dimensional

subspace V of Rn, defined over Q, such that the restrictions li V, 1 <
j < m, of the lij to Vform a system of rank r, where these constants satisfy
r < d, and r <. dm/q.

The rank condition in (b) means simply this. If we define a linear map
F:R R by

F(v) (li(v), lira(V)),

then dim(F(V)) r.
We shall also need, in 3, the following result:

THEOREM B [3]. Let E be an algebraic number field, and M a finitely
generated additive subgroup ofE. Then there exists a constant c such that
the equation NE/Q(m) c has infinitely many solutions m M if and only
if the Q-vector space QM spanned by M contains a set of the form
where a E and k is a subfield ofE which is neither Q nor an imaginary
quadratic field.

Before treating our norm distribution problem, we derive one fairly gen-
eral consequence of Theorem A. For this, we let E/Q be a totally real
algebraic number field, with E/Q Galois, and E # Q. Let K be another
real (but not necessarily totally real) number field, which is linearly disjoint
from E over Q. It is convenient to view E and K as subfields of R. We let
m"E K be an injective homomorphism of Q-vector spaces. We write oe
for the ring of algebraic integers in E, and we choose a Z-basis a, a
of oe, where n [E:Q]. We use this basis to identify oe with Z", E with
Qn, and E ()Q R with Rn, as vector spaces. Then m extends by linearity
to a homogeneous linear form on E () R R with real algebraic coef-
ficients, lying in K. These coefficients are linearly independent over Q, by
hypothesis, and indeed over E, by the linear disjointness condition.
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For a E, we have

N/o(a) fi cri(a),
i=1

where o- ranges over the distinct embeddings of E in R. Identifying
E ()o R with R", via our basis a, a, we may again view the o- as
linear forms on R with real algebraic coefficients, this time lying in E. Now
we have:

PROPOSITION 1. Use the above notation. Let [I’ll be a Euclidean norm
on E (Q R Rn. Then, given e > O, there exists c > 0 such that

Im(a)Ne/o(a)l > cll,ll- for all a oe.
In particular,

Im(,)l > cllcll ’- for all a o x
E.

Proof. The second statement follows immediately from the first. To
prove the first, we start by applying Theorem A to the linear forms o-,
1 < i< n, onR E()QR. We have

i=l

for all a oe, a # 0.

The unit group o is infinite, so equality holds here for infinitely many
a oe. Thus the maximum value of for which Theorem A(a) holds, for
this family of forms, is n [E:Q].
Now we consider the family S {m} t_J {o-,.: < < n}, and find the

maximum value r/0 of for which the statements of Theorem A hold. If
T is a non-empty subset of S, with t elements, and V is a d-dimensional
subspace of Rn, defined over Q, such that T has rank r on V, with r < d,
we let

Then

o(T, V) dt/r.

max (T, V).
T, V

We know that if rn T, we have r/(T, V) < n. We next take T {m}.
Then rn has no non-trivial zeros on E (i.e. Qn C Rn), SO we must have
r 1, whence

r/(T, V) d < n.

Now we take the general case T {m, trl, trs}, s > 1, after renumbering
the O" as convenient. Let r’ be the rank of the system {o- V trs V}.
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Thenr’ rorr 1. In the second case,

q(T, V)= d(s + 1)/(r’ + 1)< ds/r’,

since r’ < s, and we have q(T, V) < ds/r’ < n, by our earlier remark. In
the first case, when r’ r, we must have a linear dependence relation

m IV= hgtri[V,
i=1

with hg R, after renumbering o-, (r again. We can assume that the
trg[ V, < < e, are linearly independent. This forces e < r < d. The Q-
vector space W0 V cl E (i.e., V Q) has Q-dimension d, by hypothesis
on V. Therefore the E-vector space W E. W0 (where we now regard
E as a subfield of R, acting on R E @o R via the second tensor factor),
has E-dimension d also. We have seen that e < d, so the o-, 1 < e,
have a non-trivial common zero/3 on W. Then/3 X"_- /za, where the
/xi E, and we have m(fl) 0 Xi"-_ tzgm(a). We know that the coefficients
re(a3 of m are linearly dependent over E, and we have a contradiction.
Therefore only the case r’ r 1 can arise, and we have (T, V) < n.
We can achieve (T, V) n by taking V Rn, IT[ 1, and it follows
that r/0 n. The Proposition now follows from Theorem A.

2. Cyclic Extensions of Prime Degree

We return to the notation of the introduction, with F GaI(K/Q), and
we fix an element a K such that a QF K. We set

Va(X) Nr/Q(a" x), x QF.

For each 7 F, we let

l,(x) a*x
F

so that

where x x,5QF,

lia(x) H 13t(X)"
yF

The functions lr, 3/ F, are linear forms on QF, and we may use the same
formula to view them as linear forms on RF. We also let [I’ll denote a
Euclidean norm on RF, as at the beginning of l.

THEOREM 1. Suppose that F is cyclic of prime order p. Then, given
e > O, there exists c > 0 such that Ilia(X)[ CIIX[Ip-e, for all x ZF .
Remark. With no hypothesis on F, elementary considerations show that

there is a constant c’ > 0 such that [lia(X)l < C’IIX[[ Irl, for all x QF. For,
Va(X) is a product of IF[ linear forms/(x), each of which satisfies an inequality



[/(x){ < c(l)llxll, for all x QF, and some constant c(1) > 0. Thus Theorem
1 is best possible, of its type.

Proof. It is enough to prove the assertion when x is only allowed to
range over a subgroup G of ZF of finite index. To prove this, we choose
a (finite) set of coset representatives x of ZF /G, and the theorem for G
then gives constants c > 0 such that

I,ax,(X)l IVa(XiX)I > cllxll-,
for all x G. Multiplication by x is a linear automorphism of RF, so there
exist constants b > 0 such that IIxxll < bllxll, for all x RF. Taking c to
be the minimum of the cib -p, the result follows for ZF .
A suitable subgroup G is defined as follows. Pick a generator : of F, and

a primitive p-th root of unity g. Then : (1, g) induces an isomorphism
QF Q Q(O of Q-algebras. Write 7r0, 7rl, for the projections QF Q,
QF Q(O, respectively. We let G be the group of all x ZF such that
fr0(x) 1, and zr(x) is a totally real unit in Q(O. The Dirichlet unit theorem
(in Q(O) confirms that the index (ZF :G) is finite. The fields K and
are linearly disjoint over Q, so we may apply Prop. 1 with rn Iv, E the
maximal totally real subfield of Q(O, to obtain

II(r(x))l > cllr(x)ll-,
for all y F and all x G. But Iv(x) 1v(Tro(x)) + Iv(Try(x)) Trr/o(a) +
lv(zr(x)), for all x G. Moreover, Ilzr(x)ll/llx[I "--’ 1 as Ilxl[ , x G,
It follows that there is a constant c > 0 such that

I/(x)l > cllxll -,
for all y F and all x G. Since Va II Iv, the result follows.

Remark. The theorem holds, with essentially the same proof, but with
p replaced by IFI in the statement, when F is cyclic of order 8 or 9, provided
one assumes that K is linearly disjoint from the field of II’l-th roots of unity.
It is also easy to extend this to the case of F cyclic of order 2p (p prime),
16, or 18, when K is totally imaginary. The same applies to the following
corollaries.

COROLLARY 1. Let M > O. Then, under the hypotheses of Theorem 1,
the inequality IVa(X)l < M has only finitely many solutions x ZF .

Proof. The theorem implies that there is a constant M’ > 0 such that
Ilxll < M’ for all x ZF satisfying IVa(X)I < M. There are only finitely
many y ZF such that IlYll < M’, and this proves the corollary.

COROLLARY 2. Under the hypotheses of Theorem 1, let (Un n > 1, be
a sequence of distinct units of the ring or. of algebraic integers in K. Then,
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with at most finitely many exceptions, the group index
is finite. Further, in

(OK’(Un ZF))

Proof. For b K, we have b. QF K if and only if b Q t3 Ker(TrK/Q).
The vector spaces Q, Ker(Tr//o) only contain finitely many units, by Theo-
rem B. For b or, the index (or:b ZF) is finite if and only if
b. QF K. This proves the first assertion. Let us assume that the second
assertion is false: there exists a sequence {u,} such that the index in is
bounded. Since the values of in are positive integers, we may pass to a
subsequence and assume that i, is constant. The lattice or has only finitely
many sublattices of given finite index, and it follows that there is a value
no such that Uno ZF Um ZF, for infinitely many m. Then the Galois
orbit Uno" ZF contains infinitely many units, which contradicts Corollary
1.

3. Abelian Extensions of Odd Degree

We continue with the notations introduced at the beginning of 2.

TI-IEOREM 2. Suppose that F is abelian of odd order n and exponent e.
Suppose also that K is linearly disjoint over Q from the field of e-th roots

of unity. Then, given e > O, there exists c > 0 such that

[/,)a(X)I C[]Xll2/n-l- for all x ZF .
Proof. This is an awkward combination of Theorems A and B. Observe

to start with that our number field K is totally real.
The rings RF, QF, ZF, all admit an involution "bar" which fixes coef-

ficients, and satisfies /-1, / F. We let (RF)0, (QF)0, (ZF)0 denote
the subrings of elements fixed by this involution. The ring QF is a product
of full cyclotomic fields Q(0, where is a root of unity of order dividing
e, and (QF)0 is the product of the maximal totally real subfields of these
cyclotomic factors. The Dirichlet unit theorem implies that (ZF) is of finite
index in ZF , and we need only prove our theorem for x ranging over
(ZF). We first need to establish:

MAIN LEMA. Let k be a subfield ofK, k Q. Then the Q-vector space
a (QF)0 c K contains no non-zero k-vector space.

Proof. We work by induction on the order n of F. If F has prime order,
the assertion is trivial, for reasons of dimension. So let us assume that F
has composite order, and that there exists ct K such that ak c a
(QF)0. We may replace k by a smaller field if possible, and assume that
[k: Q] p is prime. Let A be the subgroup of F fixing k. Now we choose
a maximal proper subfield L of K containing k. Let E be the subgroup of
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A which fixes L. Define

W {w a. (QF)0" wk C_ a (QF)0}.

This is the unique maximal k-subspace of a (QF)o. The element cr
of QF certainly lies in (QF)o, and it acts on K as the relative trace Trr/z.
Therefore the space a (QF)0 is invariant under the trace operator Trr/.
Now take w W, and set u Trr/(w) a (QF)o. We may view the
group algebra Q[F/] as an ideal of QF, and it is a direct factor of QF. We
have

Tr:/L(a" QF) Tric/L(a)" Q[F/],

where we view L as a F/E-module in the natural way. Moreover

Trr/.(a" (QF)0) Trr/(a). (Q[F/E])0.

This gives us

uk C Trr/z(a). (Q[F/E])o.

But Trr/z(a) Q[F/E] L, and if u # 0, the inductive hypothesis gives
a contradiction. Therefore we must have

W C_ Ker(Trr/z).
The set W is a k-vector space, by its definition, and it is also a (QA)0-
module. For, (QA)o has a Q-basis consisting of elements + -1, 8 A.
If A, fl k, w W, wehave

(w + w-l) (wfl) ( + -) a (QF)0" ( + i-) C a" (QF)0.

This shows moreover that W is a module over the algebra k @o (QA)0. Let
K(F) denote the twisted group algebra of F over K. This is the left K-vector
space with basis {y" 3’ F}, and multiplication

7, aK,TF.
Both k and (QA)o are subalgebras of K(F) in a natural way. Together, they
generate a subalgebra k. (QA)0 which is isomorphic to k o (QA)o. The
action of k ()o (QA)o on W coincides with the action of k (QA)0 induced
by the natural action of K(F) on K. Assuming W : {0}, it has a simple k
(QA)o-submodule U, say. The linear disjointness condition on K then implies
that, as (QA)o-module, U is isomorphic to a direct sum of p [k" Q] copies
of a simple (QA)o-module.
Now consider the QF-module Ker(Trr/D. Under the isomorphism K

QF, Ker(Trr/D corresponds to the kernel of the canonical projection r"
QF Q[F/E]. This is a direct sum of pairwise non-isomorphic simple QF-
modules. On the other hand, it is the QF-module induced from the kernel
of the canonical projection of QA onto Q[A/E]. For any simple QA-module
M, we have M (oa QF Mp as QA-module. Therefore, as QA-module,
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we have Ker(Tr/) M’, where each M is a simple QA-module,
and M # M if # j. The terms M’ are the simple QF-components of
Ker(Tr:/,).
Now we restrict scalars to (QF)o, (QA)0, and consider Ker(Tr:/,)

a (QF)o. It is easy to see that we have the same structure. As (QA)o-
module,

Ker(Tr:/,) a. (QF)o N’,
i=1

where each Ni is a simple (QA)o-module, and Ni # N if # j. The terms
N’ are the simple (QF)o-components of

Ker(Trx/D a. (QF)0.

Our simple k (QA)o-submodule U of W (C_ Ker(Trt:/,) f3 a (QF)o) is of
the form N, for some simple (QA)o-module N. Therefore N Nf, for
some i, and U is therefore a simple (QF)o-component. In particular, U is
a (QF)o-module, and therefore a module over the subalgebra B of K(F)
generated by k. (QA)o and (QF)o. Let y F, y A, and let b k be some
element which is not fixed by T2. Then

b(y + /t-l) ybv + y-bV- B,

and of course (3’ + Y-l)bv-’ B also. Therefore y(b b-’) B, and
hence y B. The elements y F, Y q A, generate F, and therefore F
C B, QF _c B. Thus U is a QF-module contained in Ker(Trr/) 71 a (QF)0.
Passing to QF, we have constructed a non-trivial QF-module contained in
Ker(rx) f3 (QF)0. However, since F has odd order, the only QF-module
contained in (QF)0 is the direct factor Q, corresponding to the trivial rep-
resentation of F. This is certainly not contained in Ker(crx). This contra-
diction proves the lemma.
Now we can apply Theorem B. We see that any equation

I a X)l C,

for c constant, has only finitely many solutions x (ZF)0. In our standard
notation, we have

v,(x) 1--[ Iv(x),

and we regard the Iv as linear forms on RF. We apply Theorem A to the
forms Iv (RF)o, y F. Let 0 be the maximum value of /for which the
statements of Theorem A hold for this family. We have just seen that we
must have /0 < n ]FI. But /0 is the supremum of a set of rational numbers
whose denominators r satisfy

r< dim(RF)0 (n + 1)/2 or r< (n 1)/2.

Therefore "rio < n 2/(n 1), and the result follows from Theorem A.
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Remark. We have actually proved that IVa(X)l > cllxll2/tn-)-, for all
x (ZF)0, so the discrepancy between Theorems and 2 is only to be
expected. It seems reasonable to expect that Theorem 2 can be greatly
improved.

COROLLARY. Under the hypotheses of Theorem 2, the inequality
< M has only finitely many solutions x ZF, for any given M > O.

To give a better picture of how the values v(x), x ZF, are spread
out, we include the following simple result, which shows that they are very
thinly distributed indeed.

PROPOSITION 2. Let F be a finite abelian group, and II’ll a Euclidean
norm on RF. Then, if s is a complex variable, the series Exzr Ilxll
converges for Re(s)> 0.

Proof. Let M be the unique maximal order in QF. It is enough to show
that Zu Ilxll- converges for real s > 0. We may identify QF with a finite
direct product of algebraic number fields, when M becomes identified with
the product of the rings of integers of these fields. Therefore it is certainly
enough to prove convergence when M is replaced by any finite direct
product:

M II Oi,
i=1

where Oi is the ring of integers in a number field Ki, < < n. The choice
of Euclidean norm II’ll on (rI’ K,) (R) R is clearly immaterial, so we take
the following one. We let

II(x, x,)ll max Itxll, x K (R) R,

where the norm on K ( R is defined by identifying K ()o R with the
product of the Archimedean completions of K, and taking [Ixl[ to be the
absolutely largest coordinate. Thus, if x Ki, we have Ilxll max
where tr ranges over the embeddings of K in C, and I’1 is the ordinary
absolute value on C.
Let us first consider the case n 1. The product formula for valuations

of K K gives

l-] Io’(x)l 1 for all x O

where o- ranges over all distinct embeddings of K in C, and O O. It
follows that

min Itr(x)l > Ilxll -d for all x O,
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where d [K’Q]. Now we define the usual logarithmic mapping

.’(x) (loglo’(x)l*), x O,
where tr now ranges over a set of representatives of the complex conjugacy
classes of embeddings of K in C, and n(tr) 1 if o-(K) C R, n(tr) 2
otherwise. Then identifies O (mod roots of unity) with a lattice spanning
a hyperplane in R, r being the number of classes of embeddings or. Taking
the usual "absolutely largest coordinate" norm on R, we have

II(x)ll max {n(cr)lloglo’(x)ll}

max {max{n(r)loglr(x)l}, min{n(cr)loglcr(x)l}}.

However, max{loglcr(x)l} < logllxl[, and min{loglo-(x)l} > (1
x O x, SO

Therefore

d)logllxl[,

II=(x)ll 2(d 1)logllxll, x O.
Ilxll exp(llo(x)ll/2(d 1)), x O.

With our choice of norm on K @ R, we have Ilxll IIxll, for any root
of unity . Thus we need only show that Xy:eo) exp(-sllyll/2(d 1))
converges for real s > 0. But (O) Zq, for some q, and this reduces
us to showing that XzZ, exp(-sllzll) converges for s > 0, when I1"11 is any
Euclidean norm on Rq. The general case n > 1 reduces to exactly the same
problem, by the same methods. Now we take I1"11 to be the absolutely largest
coordinate norm on Rq. The last series can be rearranged to Xv=0 -(N) e -N,
where z(N) is the number of points z Zq with [Izll N. Thus ’(N)
(2N + 1)q (2N 1)q, which is O(Nq-l) as N ---> . Convergence is now
immediate.

Remark. The convergence of the series Xxzr Ilxll is not so spectac-
ular when the finite group F is non-abelian. For quite trivial reasons, the
abscissa of convergence is always less than or equal to II’l 1. The first
non-abelian example (with Ir’l 6) has abscissa of convergence equal to
2.

4. The Universal Upper Bound

We continue to use the notations of the beginning of 2. We have already
remarked that there is a constant c such that IVa(X)I < C[]xll Irl, for all x
QF. We conclude with a simple general result which shows that this bound
cannot be reduced by restricting x to ZF .
THEOREM 3. Let F be a finite group, abelian or non-abelian, such that

ZF is infinite. Then there is a constant c > 0 such that Iv(x)l > cllxll Irl,
for infinitely many x ZF
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Remark.
6].

The finite groups F for which ZF is finite are listed in [2,

Proof. Let QF I1._-1 Ai, where each Ai is a simple Q-algebra. Write
7r for the canonical projection QF Ag. Let us assume first that one of
the Ag, say A, is isomorphic to an algebra MAD) of k x k matrices over
some division algebra D, with k > 2. Then there exists an integer no > 1
such that, for all m Z, the element x(m) QF determined by

7rl(x(m))

1 mn0 0 0

0

zt’i(x(m)) 1 for2 < < r,

actually lies in ZF. Then x(m) ZF. For fixed 3/ F, the map x /v(x),
x QF, is injective, by the choice of a. Therefore l(x(m)) is a non-constant
linear polynomial in m, and lr(x(m))/m tends to a finite non-zero limit as
rn --> . On the other hand, there are constants cl, c2 > 0 such that

cllx(m)ll m < c211x(m)ll,

for all m. It follows that there is a constant c’ > 0 such that Ilv(x(m))l >
c’llx(m)ll, for all large m. Taking the product over y F, we get the result
in this case.
We are left with the case in which all the simple components A of QF

are division rings. Then, as in [2, p. 97], there is a simple component A,
say, of QF whose centre contains a totally real number field E with [E:Q] >
2. Let try, o’ be the distinct embeddings of E in R. Then there is a unit
u in E such that

This property is shared by any positive power of u, so we may choose u
so that the element x of QF defined by r(x) u, Try(x) 1, 2 < < r,
lies in ZF. Then x ZF Then lr(xm) is a linear polynomial in the con-
jugates trj(um) of u", and so

IIv(Xm)] > ClO’(u)ml,
with c > 0, for large m. Then, exactly as before, we get IVa(xm)l > C[Ixmll Irl,
and the result.
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