SPLITTING THEOREMS FOR QUADRATIC RING EXTENSIONS

BY
M. Hochster ${ }^{1}$ and J. E. McLaughlin

1. Introduction

Let R be a regular Noetherian ring (all rings are commutative, with identity) and let $S \supset R$ be a module-finite extension algebra. It is an open question whether $R \hookrightarrow S$ splits as a map of R-modules, i.e., whether the copy of R in S has an R-module complement E such that $S=R \oplus_{R} E$. This is known if R contains a field, and also if S_{m} has a big Cohen-Macaulay module for every maximal ideal m of S (see [2]). The question can be reduced to the case where S is a domain (see [2]).

We shall show here that when S is a domain such that the extension of fraction fields is quadratic the answer is affirmative: In fact, it suffices that R be supernormal and locally factorial, where "supernormal" means that the Serre conditions R_{2} and S_{3} hold (see [7, p. 124]). The main case is where R is of mixed characteristic 2.

Moreover, we give an interesting almost "generic" counterexample when the condition R_{2} is weakened: In this example, the ring is a factorial complete lucal domain of mixed characteristic 2 which is a hypersurface. The most difficult feature of this example is to prove factoriality after completion: This is achieved by representing the hypersurface as a ring of invariants and calculating group cohomology (cf. [1], [2]).

It has recently been shown [6] that the direct summand conjecture has the same homological consequences (i.e., implies the same standard homological conjectures) as does the existence of big Cohen-Macaulay modules. This focuses increased attention on the direct summand conjecture. Further discussion of the conjectures may be found in [3], [4], [5], [6], [8], [9] and [11].

2. The Splitting Theorems

(2.1) Theorem. Let R be a locally factorial Noetherian domain which satisfies R_{2} and S_{3}, e.g., a regular Noetherian domain, and let S be a

[^0]module-finite extension algebra such that the degree of the fraction field L of S over the fraction field K of R is two. Then $R \rightarrow S$ splits.

Proof. Let

$$
S^{* *}=\{f \in L: \text { height }\{r \in R: r f \in S\} \geqslant 2\}
$$

where, for this purpose, height $R=+\infty . S^{* *}$, as an R-module, is in fact the double dual of S into R, so that it is a module-finite R-algebra, and since $R \subset S \subset S^{* *}$ it suffices to show that $S^{* *}$ can be retracted to R. Henceforth, we may assume that S is reflexive as an R-module (replacing S by $S^{* *}$). We next observe:
(2.2) Lemma. Let R be a Noetherian domain which is R_{2} and S_{3} and let S be a R-reflexive module-finite extension algebra of R. Then S / R is a reflexive R-module.

Proof. If $\operatorname{dim} R \leqslant 2$ then, passing to the case where R is local, we see that we may assume that R is a regular local ring of dimension less than or equal to 2 . The fact that S is reflexive implies that S has depth $\min \{\operatorname{dim} R, 2\}$ and so is free over R. Moreover, if m is the maximal ideal of $R, 1 \notin m S$, which means that 1 is part of a minimal and, hence, free basis for S over R, so that S / R is R-free.

If $\operatorname{dim} R \geqslant 3$ we may assume that R is local and it suffices to prove that every R-sequence of length 2 is an (S / R)-sequence. Let x, y be an R sequence of length 2 . Let an overbar denote reduction modulo R in S. If $x \bar{s}=0, x s \in R$, whence the integral element s is in the fraction field of R. Since R is normal, $s \in R$, i.e., $\bar{s}=0$.
Now suppose $y \bar{t}=x \bar{s}$. We must show that $\bar{t} \in x(S / R)$. We know that $y t-x s=r \in R$. We claim that $r \in(x, y) R$. For if $r \notin(x, y) R$ then since R is S_{3} all associated primes of (x, y) have height 2 , and we will still have $r \notin(x, y) R_{P}$ after localizing at a suitable prime P among these. But then R_{P} has dimension 2 and so R_{P} is a direct summand of S_{P} and $(x, y) R_{P}$ is contracted from $(x, y) S_{P}$. Since $r=y t-x s \in(x, y) S \subset(x, y) S_{p}$, this is a contradiction.

Thus, we can write $r=y a-x b$ for suitable $a, b \in R$, and we then have $y t-x s=r=y a-x b$ and so $y(t-a)=x(s-b)$ in S. Hence, $t-a=x s^{\prime}$ (since S is reflexive) and $\bar{t}-\overline{t-a}=x \overline{s^{\prime}}$, as required. This completes the proof of Lemma 2.2.
We can now complete the proof of Theorem (2.1) easily. Since we have reduced to the case where S is reflexive the lemma implies that S / R is reflexive. Since the field extension is quadratic, S has torsion-free rank two over R and so S / R has torsion-free rank one. Since R is locally factorial and factoriality is equivalent to the freeness of rank one reflexives (for a normal Noetherian domain), we have that S / R is a rank one projective, whence $0 \rightarrow R \rightarrow S \rightarrow S / R \rightarrow 0$ splits, Q.E.D.

We obtain the following rather odd corollary:
(2.3) Proposition. Let R be a locally factorial R_{2}, S_{3} Noetherian domain and suppose $w^{2} \in\left(4, x^{2}\right) R$, where $x \in R$. Then $w \in(2, x) R$.

Proof. If char $R=2$ this is immediate from the normality of R : the case $x=0$ is trivial, while if $x \neq 0,(w / x)^{2} \in R$ implies $w / x \in R$. Assume char $R \neq 2$ and $w^{2}=4 u+x^{2} v, u, v \in R$. Let \sqrt{v} denote some square root of v in an extension domain of R. Then the elements $(w \pm x \sqrt{v}) / 2$ are in the fraction field of $R[\sqrt{v}]$ and are integral over R since their sum is w and their product is $\left(w^{2}-x^{2} v\right) / 4=u$. By Theorem (2.1), there is an R-linear retraction

$$
f: R[\sqrt{v},(w+x \sqrt{v}) / 2] \rightarrow R
$$

and

$$
\begin{aligned}
w & =f(w) \\
& =f(w+x \sqrt{v})-f(x \sqrt{v}) \\
& =2 f((w+x \sqrt{v}) / 2)-x f(v) \in(2, x) R
\end{aligned}
$$

Q.E.D.

Of course, what we really used about R here is that it is a direct summand of every quadratic integral extension.

The conclusion of Proposition (2.3) does not seem obvious even when R is regular (of mixed characteristic 2) in the ramified case.

3. A Counterexample

Our objective here is to show that the condition R_{2} in Theorem (2.1) cannot be relaxed: even if the local ring is complete and a hypersurface.

Let A be a regular Noetherian factorial domain in which $2 A$ is a nonzero proper prime ideal (e.g. A might be $\mathbf{Z}, \mathbf{Z}_{(2)}$, or the completion of $\mathbf{Z}_{(2)}$, the 2-adic numbers). Let $S=A[X, W, U, V]$, and let $R=S / F S$, where X, W, U, V are indeterminates and $F=W^{2}-4 U-X^{2} V$. Let x, w, u, v be the images of X, W, U, V in R. We note the following facts:
(1) R is a hypersurface (hence R is Gorenstein and, in particular, CohenMacaulay, which implies S_{3}).
(2) R is factorial. To see this, note that 2 is a prime element of R, for $R / 2 R \cong(A / 2 A)[X, W, U, V] /\left(W^{2}-X^{2} V\right)$. Hence, localizing at the element 2 does not affect factoriality. But

$$
R[1 / 2] \cong A[1 / 2][X, W, V]
$$

since $F=0$ may be solved for U when $1 / 2$ is in the ring.
(3) By construction, $w^{2} \in\left(2, x^{2}\right) R$. But $w \notin(2, x) R$. In fact

$$
R /(2, x) \cong(A / 2 A)(W, U, V,] /\left(W^{2}\right)
$$

(4) Hence, R admits a quadratic extension domain of which R is not a direct summand, by Proposition (2.3).

This example is also cited in [10].
We now want to modify the example so that R is a complete local domain. We henceforth assume that $A=\Delta$, a complete discrete valuation ring in which $2 \neq 0$ generates the maximal ideal (e.g., Δ might be the 2-adic integers).

Let $\widehat{S}=\Delta[[X, W, U, V]]$ and $\hat{R}=\widehat{S} / F$, where $F=W^{2}-4 U-X^{2} V$, as before. Thus, \hat{R} is the m-adic completion of R in the case $A=\Delta$, with $m=(2, x, w, u, v)$. Remarks (1), (3) and (4) above remain essentially unchanged (replacing "[]" by "[[]]"') but the proof of factoriality (2) is no longer valid, because $R[1 / 2]$ is smaller than $\Delta[1 / 2][[X, W, V]]$ (localization on Δ does not commute with adjunction of power series indeterminates). Nonetheless:
(3.1) Theorem. \hat{R} is a complete local factorial hypersurface which admits a quadratic extension domain of which \hat{R} is not a direct summand.

The proof, by the remarks above, reduces to showing that \hat{R} is factorial. We conclude with a demonstration of this fact.

The key point is that \hat{R} may be viewed as the ring of invariants of an action of a cyclic group G of order 2 (with generator, say, σ) acting on a formal power series ring $T=\Delta[[x, y, z]]$: there is a unique continuous action such that $\sigma(x)=x, \sigma(y)=-y$ and $\sigma(z)=z+x y$. It is clear that $x, v=y^{2}, z+\sigma(z)=2 z+x y=w$ and $z \sigma(z)=z(z+x y)=u$ are fixed by G. Map $\Delta[[X, W, U, V]]$ continuously into T over Δ by sending X, W, U, V to x, w, u, v. Since $w^{2}=4 u+x^{2} v$ in T, F is killed and we obtain a continuous Δ-homomorphism $\hat{R} \rightarrow T^{G} \hookrightarrow T$. Denote the image of \hat{R} by $\Delta[[x, w, u, v]]$. Then T is integral over $\operatorname{Im} \hat{R}$, the degree of the extension of fraction fields is two, and the same is true for T^{G} and T. It follows that T^{G} is contained in the fraction field of $\operatorname{Im} \hat{R}$ and integral over it. Krull dim $T=4$ implies Krull $\operatorname{dim}(\operatorname{Im} \widehat{R})=4$. Since \hat{R} is itself a four-dimensional normal domain (for $R=\Delta[X, W, U, V] / F$ is a normal excellent domain), the surjection of $\hat{R} \rightarrow \operatorname{Im} \hat{R}$ is an isomorphism. Thus, $\operatorname{Im} \hat{R}$ is normal and $\operatorname{Im} \hat{R}=T^{G}$.

The map $\hat{R} \rightarrow T$ therefore permits us to identify \hat{R} with T^{G}, and it will suffice to show that T^{G} is factorial.

For any commutative ring with identity C let C^{*} denote the multiplicative group of units in C. Then $T^{*}=\Delta^{*} .(1+I)$, where $I=(x, y, z) T$, and T^{*} is in fact the direct sum (or product) of Δ^{*} and $1+I$.

Let $r \in T^{G}$ be a nonzero nonunit. $r T$ factors uniquely, in T, into prime
principal ideals, say

$$
r T=\prod_{j=1}^{k}\left(s_{j} T\right)^{m_{j}}
$$

where the $s_{j} T$ are distinct. Since G stabilizes $r T, G$ permutes $\left\{s_{1} T, \ldots, s_{k} T\right\}$ and this set breaks up into G-orbits. If $s_{i} T$ and $s_{j} T$ are in the same orbit, $m_{i}=m_{j}$. If there are $h G$-orbits and I_{λ} denotes the product of the ideals in the $\lambda t h$ orbit, then

$$
r T=I_{1} \cdots I_{k}
$$

is the unique (except for order) factorization of $r T$ into G-stable principal ideals which cannot be so factored further. If it were the case that each I_{λ} is generated by an invariant we would be done: these invariants would give the factorization of r in T^{G} (up to an invariant unit). The situation, however, is not quite this simple.

Let $I_{\lambda}=t_{\lambda} T$. Then we shall show:
(3.2) For all but evenly many, say 2ν, values of λ, t_{λ} may be chosen to be G-invariant, while the remaining 2ν factors are all associates of y in T.

It then follows easily that if

$$
L=\left\{\lambda: 1 \leqslant \lambda \leqslant h, t_{\lambda} T \neq y T\right\}
$$

then r has the unique factorization (in T^{G}) $r=\alpha\left(y^{2}\right)^{\nu} \Pi_{\lambda \in L} t_{\lambda}$, where α is a unit of T^{G}. (Note: a unit of T which is in T^{G} is evidently a unit of T^{G}.)

In order to prove (3.2), let $t \in T$ be a nonzero nonunit which generates a G-stable ideal. Thus, if $G=\{1, \sigma\}, \sigma(t)=\alpha_{\sigma} t$, where α_{σ} is a unit of T, and $\sigma\left(\alpha_{\sigma} t\right)=\sigma\left(\alpha_{\sigma}\right) \alpha_{\sigma} t=T$, i.e., $\sigma\left(\alpha_{\sigma}\right)=\alpha_{\sigma}^{-1}$. Under these circumstances we shall prove that one of two facts holds:
(1) $t T$ is of the form $r y T$, where $r \in T^{G}$. (Then $\sigma(r y)=-r y$.)
(2) $t T$ is of the form $r T$, where $r \in T^{G}$.

In fact, the element $\alpha_{\sigma} \in T^{*}$ represents an element of $H^{1}\left(G, T^{*}\right)$. As remarked earlier,

$$
T^{*}=\Delta^{*} \times(1+I), \quad \text { where } I=(x, y, z) T
$$

Thus, $H^{1}\left(G, T^{*}\right) \cong H^{1}\left(G, \Delta^{*}\right) \times H^{1}(G, 1+I)$. We shall show in the next section that $H^{1}(G, 1+I)=0$ (see Theorem (4.3)). Let us assume this for the moment. Then the only elements of $H^{1}\left(G, \Delta^{*}\right)$, since G acts trivially on Δ, are given by the α_{σ} such that $\left(\alpha_{\sigma}\right)^{2}=1$, i.e., $\alpha_{\sigma}= \pm 1$. Thus $H^{1}(G$, $\left.T^{*}\right)=\{ \pm 1\}$, and this says that given α_{σ} we can find $\beta_{\sigma} \in T^{*}$ such that $\alpha_{\sigma}= \pm \sigma\left(\beta_{\sigma}\right)^{-1}$. If we replace t by $\beta_{\sigma} t=t_{1}$ then $\sigma\left(t_{1}\right)=t_{1}$. If the sign is + , we are in Case (2). If the sign is - we shall show that $t_{1}=r y$, where r is invariant. In fact, it suffices to show that $t_{1} \in y T$, for if $t_{1}=$
$y r, r \in T$, then $\sigma\left(t_{1}\right)=-y$, and $\sigma(y)=-y$ imply $\sigma(r)=r$. But $y T$ is a G-stable ideal of T and $T / y T \cong \Delta[[x, z]]$ is a trivial G-module $(\sigma(x)=x$, $\sigma(z)=z+x y \equiv z$ modulo $y T)$, whence the image \bar{t}_{1} of t_{1} modulo $y T$ is both fixed by and negated by σ. Thus, $\bar{t}_{1}=0$, and y divides t_{1}.

We return now to the situation where $t=t_{\lambda}$ is one of the generators of G-stable ideals I_{λ} in the factorization of $r T$. We have shown that each t_{λ} is, up to a unit, either an invariant r or of the form $y r$, where r is an invariant. In the second case, r must be a unit of T (and hence of T^{G}), for I cannot be factored further in T.

As before, let $L=\left\{\lambda: 1 \leqslant \lambda \leqslant h, t_{\lambda} T \neq y T\right\}$, and let μ be the number of λ not in L. Assume $t \in T^{G}$ for $\lambda \in L$. Then

$$
r=\alpha y^{\mu} \prod_{\lambda \in L} t_{\lambda},
$$

where α is a unit of T. If μ were odd, we would have $\sigma(\alpha)=-\alpha$ which implies $y \mid \alpha$ in T, a contradiction. Hence, μ is even, say $\mu=2 \nu$, and r $=\alpha\left(y^{2}\right)^{\nu} \Pi_{I_{\lambda} \neq y T} t_{\lambda}, \alpha \in T^{G}$ (since $y^{2} \in T^{G}$) and then α must be a unit of T^{G}. The factoriality of T^{G} is now clear: it remains only to prove that $H^{1}(G, 1$ $+I)=0$, which we shall accomplish in Section 4 (Theorem (4.3)).

4. Vanishing of Group Cohomology

Throughout this section, G is a multiplicative group of order 2 with generator σ. When G acts on a domain Λ we shall always mean that G acts by ring automorphisms. If $\lambda \in \Lambda, N(\lambda)$, the norm of λ, is $\lambda \sigma(\lambda)$. If V is a G-stable subgroup of $\Lambda^{*}, H^{1}(G, V)$ may be identified with

$$
\{v \in V: N(v)=1\} /\left\{v \sigma(v)^{-1}: v \in V\right\}
$$

(4.1) Lemma. Let Λ be a domain, I an ideal, and suppose G acts on Λ so that I is G-stable. Also, suppose that

$$
W=\{w \in \Lambda: w \equiv 1 \bmod I\}
$$

is a subgroup of Λ^{*}. Then if $\lambda \in 2 I$ and $1+\lambda$ has norm 1 , then there exists $w \in W$ such that $1+\lambda=w^{-1} \sigma(w)$.

Proof. If $2=0$ this is clear, so suppose $2 \neq 0$. Then

$$
(1+\lambda) \sigma(1+\lambda)=1
$$

implies

$$
\lambda+\sigma(\lambda)+\lambda \sigma(\lambda)=0 \quad \text { or } \quad 2+\lambda=2+2 \lambda+\sigma(\lambda)+\lambda \sigma(\lambda),
$$

i.e., $2+\lambda=(2+\sigma(\lambda))(1+\lambda)$. But $\lambda=2 \mu, 2 \neq 0$, whence

$$
(1+\mu)=(1+\sigma(\mu))(1+\lambda),
$$

and we may choose $w^{-1}=1+\mu$, Q.E.D.
(4.2) Lemma. Let Δ be a domain such that 2Δ is a prime ideal. Let Λ $=\Delta[[s, t]]$, where s, t are formal power series indeterminates, and let G act continuously, fixing Δ, so that $\sigma(s)=-s, \sigma(t)=t$. Let $J=(s, t) \Lambda$ and $W=1+J \subset \Lambda^{*}$. Then $H^{1}(G, W)=0$.

Proof. Suppose $\lambda \in J$ and $N(1+\lambda)=1$, i.e.,

$$
\lambda+\sigma(\lambda)+\lambda \sigma(\lambda)=0
$$

Write $\lambda=\sum_{i=0}^{\infty} \lambda_{i} s^{i}$, where $\lambda_{i}=\lambda_{i}(t) \in \Delta[[t]]$. Then we have

$$
\sum_{i=0}^{\infty} \lambda_{i} s^{i}+\sum_{i=0}^{\infty} \lambda_{i}(-s)^{i}+\sum_{i, j} \lambda_{i} \lambda_{j} s^{i}\left(-s^{j}\right)=0
$$

whence $2 \lambda_{0}+\lambda_{0}^{2}=0$. Since $2 \in J$ implies $2=0$, we must have $\lambda_{0}=0$.
At degree (in s) $2 k>0$ we get

$$
2 \lambda_{2 k}+\sum_{i+j=2 k}(-1)^{j} \lambda_{i} \lambda_{j}=0
$$

whence $\lambda_{k}^{2} \in 2 \Delta[[t]]$, a prime ideal of $\Delta[[t]]$. Thus, for all $k, \lambda_{k} \in 2 \Delta[[t]]$, so that $\lambda \in 2 J$, and $1+\lambda$ is 0 in $H^{1}(G, W)$, by Lemma (4.1), Q.E.D.

We are now ready to prove the main result of this section.
(4.3) Theorem. Let Δ be a domain in which 2Δ is a prime ideal. Let $T=\Delta[[x, y, z]]$ and $I=(x, y, z) T$. Let $V=1+I$, a subgroup of T^{*}. Let $G=\{1, \sigma\}$ act on T so that σ is the unique continuous (in the I-adic topology) Δ-automorphism of T such that

$$
\sigma(x)=x, \sigma(y)=-y \quad \text { and } \quad \sigma(z)=z+x y
$$

Then $H^{1}(G, V)=0$.
Proof. Let $U=1+x T \subset 1+I=V$. We have a surjection

$$
\pi: T \rightarrow \Delta[[s, t]]=\Lambda
$$

by $\pi(f(x, y, z))=f(0, s, t)$. Let G act on Λ as in Lemma (4.2) and let $W=1+(s, t) \Lambda$ as in Lemma (4.2). Then we have an exact sequence of G-modules

$$
0 \rightarrow U \hookrightarrow V \xrightarrow{\pi} W \rightarrow 0
$$

Suppose we can show:
$\left(^{*}\right) \quad$ if $u \in U$ and $u \sigma(u)=1$, then there is a $v \in V$ such that $u=\sigma(v) v^{-1}$.
Then it will follow that $H^{1}(G, V)=0$, for $\left({ }^{*}\right)$ simply says that in the piece

$$
H^{1}(G, U) \xrightarrow{\alpha} H^{1}(G, V) \rightarrow H^{1}(G, W)
$$

of the long exact sequence, the map α is 0 , while we already know from Lemma (4.2) that $H^{1}(G, W)=0$.

Before proving (*), we note that if $\theta \in I$ and $N(1+\theta)=1$ (i.e., $\theta+$ $\sigma(\theta)+\theta \sigma(\theta)=0)$ then $\theta \in y T$. To see this, let $\Gamma=\Delta[[x]]$ and write $\theta=\sum_{i=0}^{\infty} \theta_{i}(z) y^{i}$, where $\theta_{i}(z) \in \Gamma[[z]]$. Then

$$
\sum \theta_{i}(z) y^{i}+\sum \theta_{i}(z+y x)(-y)^{i}+\sum \theta_{i}(z) \theta_{j}(z+y x) y^{i}(-y)^{j}=0
$$

and substituting $y=0$ yields

$$
2 \theta_{0}(z)+\theta_{0}(z)^{2}=0 \Rightarrow \theta_{0}(z)=0
$$

$\left(\theta_{0}(z)=-2 \Rightarrow 2 \in I \Rightarrow 2=0 \Rightarrow \theta_{0}(z)=0\right.$, whence $\theta_{0}(z)=0$ in all cases). Thus, $\theta \in y T$, as claimed.

Now suppose $u \in U$ and $N(u)=1$. Thus, $u=1+\theta$, where $\theta \in x T$. Now, by the above remarks, $\theta \in y T \Rightarrow \theta \in x T \cap y T=x y T$, so that $\theta=y f$, where $f \in x T$. Since $N(1+y f)=1$, we have

$$
y f-y \sigma(f)-y^{2} f \sigma(f)=0
$$

or, equivalently,

$$
f-\sigma(f)=y f \sigma(f)
$$

To complete the proof it suffices to construct by recursion on $i \geqslant 1$, a sequence of elements $a_{1}, a_{2}, \ldots, a_{i}, \ldots \in \Sigma_{j+k=i} \Gamma y^{j} z^{k}, \ldots$ such that if $a=\sum_{i=1}^{\infty} a_{i}$, then

$$
(1+a)(1+y f)=1+\sigma(a)
$$

or, equivalently,

$$
(1+a) f y=\sigma(a)-a
$$

for then $u=1+y f=(1+a)^{-1} \sigma(1+a)$ and $1+a \in 1+(y, z) T \subset V$.
We can write, uniquely,

$$
f=\sum_{i=0}^{\infty} f_{i} \quad \text { where } \quad f_{i} \in \sum_{j+k=i} \Gamma y^{j} z^{k}=T_{i}
$$

Note that each T_{i} is G-stable.
Since $f \in x T, f_{i} \in x T_{i}$, all i. Let $f_{i}=x f_{i}^{*}$. We choose $a_{1}=f_{0}^{*} z$. Let $[t]_{i}$ denote the T_{i}-component of an element $t \in T$. Then

$$
\left[\left(1+a_{1}\right) f y\right]_{1}=\left[\sigma\left(a_{1}\right)-a_{1}\right]_{1}
$$

In fact

$$
\left[\left(1+a_{1}\right) f y\right]_{1}=[f y]_{1}=f_{0} y=f_{0}^{*} x y
$$

while

$$
\left[\sigma\left(a_{1}\right)-a_{1}\right]_{1}=\sigma\left(a_{1}\right)-a_{1}=\sigma\left(f_{0}^{*} z\right)-f_{0}^{*} z=f_{0}^{*}(z+x y)-f_{0}^{*} z=f_{0}^{*} x y .
$$

Now suppose $n>1$ and we have constructed $a_{1}, \ldots, a_{n-1}, a_{i} \in T_{i}$, such that if $A=a_{1}+\cdots+a_{n-1}$, then

$$
[(1+A) f y]_{d}=\left[\sigma\left(a_{d}\right)-a_{d}\right]_{d}=\sigma\left(a_{d}\right)-a_{d}, 1 \leqslant d \leqslant n-1
$$

Let $H=(1+A) f$. Then $[H]_{d-1} \in T^{G}, 1 \leqslant d \leqslant n-1$, for $[H]_{d-1} y=$ $[H y]_{d}=\sigma\left(a_{d}\right)-a_{d}$ implies $\sigma\left([H]_{d-1} y\right)=-[H]_{d-1} y$ which implies $\sigma\left([H]_{d-1}\right)=[H]_{d-1}$.

We claim that $[H]_{n-1} \in T^{G}$ as well. To see this, note that

$$
\begin{aligned}
H-\sigma(H) & =(1+A) f-(1+\sigma(A)) \sigma(f) \\
& =f-\sigma(f)+(A-\sigma(A)) f+\sigma(A)(f-\sigma(f)) \\
& =(1+\sigma(A))(f-\sigma(f))+(A-\sigma(A)) f \\
& =(1+\sigma(A)) f \sigma(f) y+(A-\sigma(A)) f \quad(\mathrm{by} \dagger) \\
& =f \sigma(B) \quad \text { where } B=-(1+A) f y+\sigma(A)-A .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
H_{n-1}-\sigma\left(H_{n-1}\right) & =[H-\sigma(H)]_{n-1} \\
& =[f \sigma(B)]_{n-1} \\
& =f_{0} \sigma(B)_{n-1}+f_{1} \sigma(B)_{n-2}+\cdots+f_{n-2} \sigma(B)_{1}
\end{aligned}
$$

(for $B_{0}=0$). But our induction hypothesis was precisely that $B_{d}=0$, $1 \leqslant d \leqslant n-1$, and $\sigma(B)_{i}=\sigma\left(B_{i}\right)$. Thus, $H_{n-1}=\sigma\left(H_{n-1}\right)$. Moreover, since $f \in x T, H \in x T$, and $H_{n-1} \in x T_{n-1}$, say $H_{n-1}=x g_{n-1}$. We also have then that $\sigma\left(g_{n-1}\right)=g_{n-1}$. Now let $a_{n}=g_{n-1} z \in T_{n}$.

Then

$$
\begin{aligned}
{\left[\left(1+a_{1}+\cdots+a_{n}\right) f y\right]_{n} } & =\left[\left(1+A+a_{n}\right) f y\right]_{n} \\
& =[(1+A) f y]_{n}+\left[a_{n} f y\right]_{n} \\
& =[(1+A) f y]_{n} \\
& =[(1+A) f]_{n-1} y \\
& =H_{n-1} y \\
& =g_{n-1} x y \\
& =g_{n-1}(z+x y)-g_{n-1} z \\
& =\sigma\left(a_{n}\right)-a_{n}
\end{aligned}
$$

since $\sigma\left(g_{n-1}\right)=g_{n-1}$. Now, letting $a=\sum_{i=1}^{\infty} a_{i}$, we clearly have

$$
(1+a) f y=\sigma(a)-a
$$

since this holds for each graded component, Q.E.D.
Theorem (4.3) more than suffices to complete the proof of Theorem (3.1).

References

1. R. Fossum and P. Griffith, Complete local factorial rings which are not Cohen-Macaulay in characteristic p, Ann. Sci. École Norm. Sup. 4^{e} ser., t. 8 (1975), pp. 189-200.
2. M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J., vol. 51 (1973), pp. 25-43.
3. - Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conference Series in Math. No. 24, Amer. Math. Soc., Providence, 1975.
4. ——, Some applications of the Frobenius in characteristic 0, Bull. Amer. Math. Soc., vol. 84 (1978), pp. 886-912.
5. ——, Cohen-Macaulay rings and modules, Proc. of the International Congress of Math. Vol. I, Helsinki 1978, Academia Scientiarum, 1980, pp. 291-298.
6. -, The direct summand conjecture and canonical elements in local cohomology modules, J. Algebra, to appear.
7. H. Matsumura, Commutative algebra, Benjamin, New York, 1970.
8. C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S., Paris, No. 42, 1973, pp. 323-395.
9. P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4), vol. 9 (1976), pp. 103-106.
10. -, Abelian extensions of regular local rings, Proc. Amer. Math. Soc., vol. 78 (1980), pp. 307-310.
11. -, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture, J. Algebra, vol. 66 (1980), pp. 220-225.
12. P. Samuel (Notes by M. P. Murthy), Lectures on Unique Factorization Domains, Tata Institute Lectures on Mathematics and Physics No. 31, Bombay, 1964.

University of Michigan
Ann Arbor, Michigan

[^0]: Received February 12, 1981.
 ${ }^{1}$ Supported in part by a grant from the National Science Foundation.

