SPLITTING THEOREMS FOR QUADRATIC RING EXTENSIONS

BY

M. HOCHSTER¹ AND J. E. MCLAUGHLIN

1. Introduction

Let R be a regular Noetherian ring (all rings are commutative, with identity) and let $S \supset R$ be a module-finite extension algebra. It is an open question whether $R \hookrightarrow S$ splits as a map of R-modules, i.e., whether the copy of R in S has an R-module complement E such that $S = R \bigoplus_R E$. This is known if R contains a field, and also if S_m has a big Cohen-Macaulay module for every maximal ideal m of S (see [2]). The question can be reduced to the case where S is a domain (see [2]).

We shall show here that when S is a domain such that the extension of fraction fields is quadratic the answer is affirmative: In fact, it suffices that R be supernormal and locally factorial, where "supernormal" means that the Serre conditions R_2 and S_3 hold (see [7, p. 124]). The main case is where R is of mixed characteristic 2.

Moreover, we give an interesting almost "generic" counterexample when the condition R_2 is weakened: In this example, the ring is a factorial *complete* local domain of mixed characteristic 2 which is a hypersurface. The most difficult feature of this example is to prove factoriality after completion: This is achieved by representing the hypersurface as a ring of invariants and calculating group cohomology (cf. [1], [2]).

It has recently been shown [6] that the direct summand conjecture has the same homological consequences (i.e., implies the same standard homological conjectures) as does the existence of big Cohen-Macaulay modules. This focuses increased attention on the direct summand conjecture. Further discussion of the conjectures may be found in [3], [4], [5], [6], [8], [9] and [11].

2. The Splitting Theorems

(2.1) THEOREM. Let R be a locally factorial Noetherian domain which satisfies R_2 and S_3 , e.g., a regular Noetherian domain, and let S be a

Received February 12, 1981.

¹ Supported in part by a grant from the National Science Foundation.

^{© 1983} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

module-finite extension algebra such that the degree of the fraction field L of S over the fraction field K of R is two. Then $R \rightarrow S$ splits.

Proof. Let

$$S^{**} = \{ f \in L: \text{ height} \{ r \in R: rf \in S \} \ge 2 \}$$

where, for this purpose, height $R = +\infty$. S^{**} , as an *R*-module, is in fact the double dual of *S* into *R*, so that it is a module-finite *R*-algebra, and since $R \subset S \subset S^{**}$ it suffices to show that S^{**} can be retracted to *R*. Henceforth, we may assume that *S* is reflexive as an *R*-module (replacing *S* by S^{**}). We next observe:

(2.2) LEMMA. Let R be a Noetherian domain which is R_2 and S_3 and let S be a R-reflexive module-finite extension algebra of R. Then S/R is a reflexive R-module.

Proof. If dim $R \leq 2$ then, passing to the case where R is local, we see that we may assume that R is a regular local ring of dimension less than or equal to 2. The fact that S is reflexive implies that S has depth min{dim R, 2} and so is free over R. Moreover, if m is the maximal ideal of R, $1 \notin mS$, which means that 1 is part of a minimal and, hence, free basis for S over R, so that S/R is R-free.

If dim $R \ge 3$ we may assume that R is local and it suffices to prove that every R-sequence of length 2 is an (S/R)-sequence. Let x, y be an Rsequence of length 2. Let an overbar denote reduction modulo R in S. If $x\overline{s} = 0$, $xs \in R$, whence the integral element s is in the fraction field of R. Since R is normal, $s \in R$, i.e., $\overline{s} = 0$.

Now suppose $y\overline{t} = x\overline{s}$. We must show that $\overline{t} \in x(S/R)$. We know that $yt - xs = r \in R$. We claim that $r \in (x, y)R$. For if $r \notin (x, y)R$ then since R is S_3 all associated primes of (x, y) have height 2, and we will still have $r \notin (x, y)R_P$ after localizing at a suitable prime P among these. But then R_P has dimension 2 and so R_P is a direct summand of S_P and $(x, y)R_P$ is contracted from $(x, y)S_P$. Since $r = yt - xs \in (x, y)S \subset (x, y)S_P$, this is a contradiction.

Thus, we can write r = ya - xb for suitable $a, b \in R$, and we then have yt - xs = r = ya - xb and so y(t - a) = x(s - b) in S. Hence, t - a = xs' (since S is reflexive) and $\overline{t} - \overline{t - a} = x\overline{s'}$, as required. This completes the proof of Lemma 2.2.

We can now complete the proof of Theorem (2.1) easily. Since we have reduced to the case where S is reflexive the lemma implies that S/R is reflexive. Since the field extension is quadratic, S has torsion-free rank two over R and so S/R has torsion-free rank one. Since R is locally factorial and factoriality is equivalent to the freeness of rank one reflexives (for a normal Noetherian domain), we have that S/R is a rank one projective, whence $0 \rightarrow R \rightarrow S \rightarrow S/R \rightarrow 0$ splits, Q.E.D. We obtain the following rather odd corollary:

(2.3) PROPOSITION. Let R be a locally factorial R_2 , S_3 Noetherian domain and suppose $w^2 \in (4, x^2)R$, where $x \in R$. Then $w \in (2, x)R$.

Proof. If char R = 2 this is immediate from the normality of R: the case x = 0 is trivial, while if $x \neq 0$, $(w/x)^2 \in R$ implies $w/x \in R$. Assume char $R \neq 2$ and $w^2 = 4u + x^2v$, $u, v \in R$. Let \sqrt{v} denote some square root of v in an extension domain of R. Then the elements $(w \pm x\sqrt{v})/2$ are in the fraction field of $R[\sqrt{v}]$ and are integral over R since their sum is w and their product is $(w^2 - x^2v)/4 = u$. By Theorem (2.1), there is an R-linear retraction

$$f: R[\sqrt{v}, (w + x\sqrt{v})/2] \to R,$$

and

$$w = f(w)$$

= $f(w + x\sqrt{v}) - f(x\sqrt{v})$
= $2f((w + x\sqrt{v})/2) - xf(v) \in (2, x)R$,

Q.E.D.

Of course, what we really used about R here is that it is a direct summand of every quadratic integral extension.

The conclusion of Proposition (2.3) does not seem obvious even when R is regular (of mixed characteristic 2) in the ramified case.

3. A Counterexample

Our objective here is to show that the condition R_2 in Theorem (2.1) cannot be relaxed: even if the local ring is complete and a hypersurface.

Let A be a regular Noetherian factorial domain in which 2A is a nonzero proper prime ideal (e.g. A might be Z, $Z_{(2)}$, or the completion of $Z_{(2)}$, the 2-adic numbers). Let S = A[X, W, U, V], and let R = S/FS, where X, W, U, V are indeterminates and $F = W^2 - 4U - X^2V$. Let x, w, u, v be the images of X, W, U, V in R. We note the following facts:

(1) R is a hypersurface (hence R is Gorenstein and, in particular, Cohen-Macaulay, which implies S_3).

(2) R is factorial. To see this, note that 2 is a prime element of R, for $R/2R \cong (A/2A)[X, W, U, V]/(W^2 - X^2V)$. Hence, localizing at the element 2 does not affect factoriality. But

$$R[1/2] \cong A[1/2][X, W, V],$$

since F = 0 may be solved for U when 1/2 is in the ring.

(3) By construction, $w^2 \in (2, x^2)R$. But $w \notin (2, x)R$. In fact

$$R/(2, x) \cong (A/2A)(W, U, V,]/(W^2).$$

(4) Hence, R admits a quadratic extension domain of which R is not a direct summand, by Proposition (2.3).

This example is also cited in [10].

We now want to modify the example so that R is a *complete* local domain. We henceforth assume that $A = \Delta$, a complete discrete valuation ring in which $2 \neq 0$ generates the maximal ideal (e.g., Δ might be the 2-adic integers).

Let $\hat{S} = \Delta[[X, W, U, V]]$ and $\hat{R} = \hat{S}/F$, where $F = W^2 - 4U - X^2V$, as before. Thus, \hat{R} is the *m*-adic completion of *R* in the case $A = \Delta$, with m = (2, x, w, u, v). Remarks (1), (3) and (4) above remain essentially unchanged (replacing "[]" by "[[]]") but the proof of factoriality (2) is no longer valid, because R[1/2] is smaller than $\Delta[1/2][[X, W, V]]$ (localization on Δ does not commute with adjunction of power series indeterminates). Nonetheless:

(3.1) THEOREM. \hat{R} is a complete local factorial hypersurface which admits a quadratic extension domain of which \hat{R} is not a direct summand.

The proof, by the remarks above, reduces to showing that \hat{R} is factorial. We conclude with a demonstration of this fact.

The key point is that \hat{R} may be viewed as the ring of invariants of an action of a cyclic group G of order 2 (with generator, say, σ) acting on a formal power series ring $T = \Delta[[x, y, z]]$: there is a unique continuous action such that $\sigma(x) = x$, $\sigma(y) = -y$ and $\sigma(z) = z + xy$. It is clear that $x, v = y^2, z + \sigma(z) = 2z + xy = w$ and $z\sigma(z) = z(z + xy) = u$ are fixed by G. Map $\Delta[[X, W, U, V]]$ continuously into T over Δ by sending X, W, U, V to x, w, u, v. Since $w^2 = 4u + x^2v$ in T, F is killed and we obtain a continuous Δ -homomorphism $\hat{R} \to T^G \hookrightarrow T$. Denote the image of \hat{R} by $\Delta[[x, w, u, v]]$. Then T is integral over Im \hat{R} , the degree of the extension of fraction fields is two, and the same is true for T^G and T. It follows that T^G is contained in the fraction field of Im \hat{R} and integral over it. Krull dim T = 4 implies Krull dim (Im \hat{R}) = 4. Since \hat{R} is itself a four-dimensional normal domain (for $R = \Delta[X, W, U, V]/F$ is a normal excellent domain), the surjection of $\hat{R} \to \text{Im } \hat{R}$ is an isomorphism. Thus, Im \hat{R} is normal and Im $\hat{R} = T^G$.

The map $\hat{R} \to T$ therefore permits us to identify \hat{R} with T^G , and it will suffice to show that T^G is factorial.

For any commutative ring with identity C let C^{*} denote the multiplicative group of units in C. Then $T^* = \Delta^*$. (1 + I), where I = (x, y, z)T, and T^* is in fact the direct sum (or product) of Δ^* and 1 + I.

Let $r \in T^G$ be a nonzero nonunit. rT factors uniquely, in T, into prime

principal ideals, say

$$rT = \prod_{j=1}^{k} (s_j T)^{m_j}$$

where the s_jT are distinct. Since G stabilizes rT, G permutes $\{s_1T, ..., s_kT\}$ and this set breaks up into G-orbits. If s_iT and s_jT are in the same orbit, $m_i = m_j$. If there are h G-orbits and I_{λ} denotes the product of the ideals in the λth orbit, then

 $rT = I_1 \cdots I_k$

is the unique (except for order) factorization of rT into G-stable principal ideals which cannot be so factored further. If it were the case that each I_{λ} is generated by an invariant we would be done: these invariants would give the factorization of r in T^{G} (up to an invariant unit). The situation, however, is not quite this simple.

Let $I_{\lambda} = t_{\lambda}T$. Then we shall show:

(3.2) For all but evenly many, say 2ν , values of λ , t_{λ} may be chosen to be G-invariant, while the remaining 2ν factors are all associates of y in T.

It then follows easily that if

$$L = \{\lambda \colon 1 \leq \lambda \leq h, t_{\lambda}T \neq yT\},\$$

then r has the unique factorization (in T^G) $r = \alpha(y^2)^{\nu} \prod_{\lambda \in L} t_{\lambda}$, where α is a unit of T^G . (Note: a unit of T which is in T^G is evidently a unit of T^G .)

In order to prove (3.2), let $t \in T$ be a nonzero nonunit which generates a *G*-stable ideal. Thus, if $G = \{1, \sigma\}, \sigma(t) = \alpha_{\sigma}t$, where α_{σ} is a unit of *T*, and $\sigma(\alpha_{\sigma}t) = \sigma(\alpha_{\sigma})\alpha_{\sigma}t = T$, i.e., $\sigma(\alpha_{\sigma}) = \alpha_{\sigma}^{-1}$. Under these circumstances we shall prove that one of two facts holds:

- (1) tT is of the form ryT, where $r \in T^G$. (Then $\sigma(ry) = -ry$.)
- (2) tT is of the form rT, where $r \in T^G$.

In fact, the element $\alpha_{\sigma} \in T^*$ represents an element of $H^1(G, T^*)$. As remarked earlier,

$$T^* = \Delta^* \times (1 + I)$$
, where $I = (x, y, z)T$.

Thus, $H^{1}(G, T^{*}) \cong H^{1}(G, \Delta^{*}) \times H^{1}(G, 1 + I)$. We shall show in the next section that $H^{1}(G, 1 + I) = 0$ (see Theorem (4.3)). Let us assume this for the moment. Then the only elements of $H^{1}(G, \Delta^{*})$, since G acts trivially on Δ , are given by the α_{σ} such that $(\alpha_{\sigma})^{2} = 1$, i.e., $\alpha_{\sigma} = \pm 1$. Thus $H^{1}(G, T^{*}) = \{\pm 1\}$, and this says that given α_{σ} we can find $\beta_{\sigma} \in T^{*}$ such that $\alpha_{\sigma} = \pm \sigma(\beta_{\sigma})^{-1}$. If we replace t by $\beta_{\sigma}t = t_{1}$ then $\sigma(t_{1}) = t_{1}$. If the sign is +, we are in Case (2). If the sign is – we shall show that $t_{1} = ry$, where r is invariant. In fact, it suffices to show that $t_{1} \in yT$, for if $t_{1} =$

98

yr, $r \in T$, then $\sigma(t_1) = -y$, and $\sigma(y) = -y$ imply $\sigma(r) = r$. But yT is a G-stable ideal of T and $T/yT \cong \Delta[[x, z]]$ is a trivial G-module ($\sigma(x) = x$, $\sigma(z) = z + xy \equiv z$ modulo yT), whence the image \overline{t}_1 of t_1 modulo yT is both fixed by and negated by σ . Thus, $\overline{t}_1 = 0$, and y divides t_1 .

We return now to the situation where $t = t_{\lambda}$ is one of the generators of *G*-stable ideals I_{λ} in the factorization of *rT*. We have shown that each t_{λ} is, up to a unit, either an invariant *r* or of the form *yr*, where *r* is an invariant. In the second case, *r* must be a unit of *T* (and hence of T^{G}), for *I* cannot be factored further in *T*.

As before, let $L = \{\lambda : 1 \le \lambda \le h, t_{\lambda}T \ne yT\}$, and let μ be the number of λ not in L. Assume $t \in T^{G}$ for $\lambda \in L$. Then

$$r \,=\, \alpha y^\mu \prod_{\lambda \in L} \, t_\lambda \,,$$

where α is a unit of *T*. If μ were odd, we would have $\sigma(\alpha) = -\alpha$ which implies $y \mid \alpha$ in *T*, a contradiction. Hence, μ is even, say $\mu = 2\nu$, and $r = \alpha(y^2)^{\nu} \prod_{I_{\lambda} \neq yT} t_{\lambda}$. $\alpha \in T^G$ (since $y^2 \in T^G$) and then α must be a unit of T^G . The factoriality of T^G is now clear: it remains only to prove that $H^1(G, 1 + I) = 0$, which we shall accomplish in Section 4 (Theorem (4.3)).

4. Vanishing of Group Cohomology

Throughout this section, G is a multiplicative group of order 2 with generator σ . When G acts on a domain Λ we shall always mean that G acts by ring automorphisms. If $\lambda \in \Lambda$, $N(\lambda)$, the norm of λ , is $\lambda \sigma(\lambda)$. If V is a G-stable subgroup of Λ^* , $H^1(G, V)$ may be identified with

$$\{v \in V: N(v) = 1\}/\{v\sigma(v)^{-1}: v \in V\}$$

(4.1) LEMMA. Let Λ be a domain, I an ideal, and suppose G acts on Λ so that I is G-stable. Also, suppose that

$$W = \{ w \in \Lambda \colon w \equiv 1 \mod I \}$$

is a subgroup of Λ^* . Then if $\lambda \in 2I$ and $1 + \lambda$ has norm 1, then there exists $w \in W$ such that $1 + \lambda = w^{-1}\sigma(w)$.

Proof. If
$$2 = 0$$
 this is clear, so suppose $2 \neq 0$. Then

$$(1 + \lambda)\sigma(1 + \lambda) = 1$$

implies

 $\lambda + \sigma(\lambda) + \lambda \sigma(\lambda) = 0 \quad \text{or} \quad 2 + \lambda = 2 + 2\lambda + \sigma(\lambda) + \lambda \sigma(\lambda),$ i.e., $2 + \lambda = (2 + \sigma(\lambda))(1 + \lambda)$. But $\lambda = 2\mu$, $2 \neq 0$, whence $(1 + \mu) = (1 + \sigma(\mu))(1 + \lambda),$

and we may choose $w^{-1} = 1 + \mu$, Q.E.D.

(4.2) LEMMA. Let Δ be a domain such that 2Δ is a prime ideal. Let $\Lambda = \Delta[[s, t]]$, where s, t are formal power series indeterminates, and let G act continuously, fixing Δ , so that $\sigma(s) = -s$, $\sigma(t) = t$. Let $J = (s, t)\Lambda$ and $W = 1 + J \subset \Lambda^*$. Then $H^1(G, W) = 0$.

Proof. Suppose $\lambda \in J$ and $N(1 + \lambda) = 1$, i.e.,

$$\lambda + \sigma(\lambda) + \lambda \sigma(\lambda) = 0.$$

Write $\lambda = \sum_{i=0}^{\infty} \lambda_i s^i$, where $\lambda_i = \lambda_i(t) \in \Delta[[t]]$. Then we have

$$\sum_{i=0}^{\infty} \lambda_i s^i + \sum_{i=0}^{\infty} \lambda_i (-s)^i + \sum_{i,j} \lambda_i \lambda_j s^i (-s^j) = 0$$

whence $2\lambda_0 + \lambda_0^2 = 0$. Since $2 \in J$ implies 2 = 0, we must have $\lambda_0 = 0$. At degree (in s) 2k > 0 we get

$$2\lambda_{2k} + \sum_{i+j=2k} (-1)^j \lambda_i \lambda_j = 0$$

whence $\lambda_k^2 \in 2\Delta[[t]]$, a prime ideal of $\Delta[[t]]$. Thus, for all $k, \lambda_k \in 2\Delta[[t]]$, so that $\lambda \in 2J$, and $1 + \lambda$ is 0 in $H^1(G, W)$, by Lemma (4.1), Q.E.D.

We are now ready to prove the main result of this section.

(4.3) THEOREM. Let Δ be a domain in which 2Δ is a prime ideal. Let $T = \Delta[[x, y, z]]$ and I = (x, y, z)T. Let V = 1 + I, a subgroup of T^* . Let $G = \{1, \sigma\}$ act on T so that σ is the unique continuous (in the I-adic topology) Δ -automorphism of T such that

$$\sigma(x) = x, \ \sigma(y) = -y \quad and \quad \sigma(z) = z + xy.$$

Then $H^1(G, V) = 0$.

Proof. Let
$$U = 1 + xT \subset 1 + I = V$$
. We have a surjection

 $\pi \colon T \longrightarrow \Delta[[s, t]] = \Lambda$

by $\pi(f(x, y, z)) = f(0, s, t)$. Let G act on Λ as in Lemma (4.2) and let $W = 1 + (s, t)\Lambda$ as in Lemma (4.2). Then we have an exact sequence of G-modules

$$0 \to U \hookrightarrow V \xrightarrow{\pi} W \to 0.$$

Suppose we can show:

(*) if $u \in U$ and $u\sigma(u) = 1$, then there is a $v \in V$ such that $u = \sigma(v)v^{-1}$.

Then it will follow that $H^{1}(G, V) = 0$, for (*) simply says that in the piece

$$H^1(G, U) \xrightarrow{\sim} H^1(G, V) \to H^1(G, W)$$

of the long exact sequence, the map α is 0, while we already know from Lemma (4.2) that $H^{1}(G, W) = 0$.

Before proving (*), we note that if $\theta \in I$ and $N(1 + \theta) = 1$ (i.e., $\theta + \sigma(\theta) + \theta\sigma(\theta) = 0$) then $\theta \in yT$. To see this, let $\Gamma = \Delta[[x]]$ and write $\theta = \sum_{i=0}^{\infty} \theta_i(z)y^i$, where $\theta_i(z) \in \Gamma[[z]]$. Then

$$\sum \theta_i(z)y^i + \sum \theta_i(z + yx)(-y)^i + \sum \theta_i(z)\theta_j(z + yx)y^i(-y)^j = 0,$$

and substituting y = 0 yields

$$2\theta_0(z) + \theta_0(z)^2 = 0 \Rightarrow \theta_0(z) = 0$$

 $(\theta_0(z) = -2 \Rightarrow 2 \in I \Rightarrow 2 = 0 \Rightarrow \theta_0(z) = 0$, whence $\theta_0(z) = 0$ in all cases). Thus, $\theta \in yT$, as claimed.

Now suppose $u \in U$ and N(u) = 1. Thus, $u = 1 + \theta$, where $\theta \in xT$. Now, by the above remarks, $\theta \in yT \Rightarrow \theta \in xT \cap yT = xy T$, so that $\theta = yf$, where $f \in xT$. Since N(1 + yf) = 1, we have

$$yf - y\sigma(f) - y^2f\sigma(f) = 0$$

or, equivalently,

(†)
$$f - \sigma(f) = yf\sigma(f).$$

To complete the proof it suffices to construct by recursion on $i \ge 1$, a sequence of elements $a_1, a_2, ..., a_i, ... \in \sum_{j+k=i} \Gamma y^j z^k$, ... such that if $a = \sum_{i=1}^{\infty} a_i$, then

 $(1 + a)(1 + yf) = 1 + \sigma(a)$

or, equivalently,

$$(\#) \qquad (1+a)fy = \sigma(a) - a,$$

for then $u = 1 + yf = (1 + a)^{-1}\sigma(1 + a)$ and $1 + a \in 1 + (y, z)T \subset V$. We can write, uniquely,

$$f = \sum_{i=0}^{\infty} f_i$$
 where $f_i \in \sum_{j+k=i} \Gamma y^j z^k = T_i$.

Note that each T_i is G-stable.

Since $f \in xT$, $f_i \in xT_i$, all *i*. Let $f_i = xf_i^*$. We choose $a_1 = f_0^*z$. Let $[t]_i$ denote the T_i -component of an element $t \in T$. Then

$$[(1 + a_1)fy]_1 = [\sigma(a_1) - a_1]_1.$$

In fact

$$[(1 + a_1)fy]_1 = [fy]_1 = f_0y = f_0^*xy$$

while

$$[\sigma(a_1) - a_1]_1 = \sigma(a_1) - a_1 = \sigma(f_0^*z) - f_0^*z = f_0^*(z + xy) - f_0^*z = f_0^*xy.$$

Now suppose n > 1 and we have constructed $a_1, ..., a_{n-1}, a_i \in T_i$, such that if $A = a_1 + \cdots + a_{n-1}$, then

$$[(1 + A)fy]_d = [\sigma(a_d) - a_d]_d = \sigma(a_d) - a_d, 1 \le d \le n - 1.$$

Let H = (1 + A)f. Then $[H]_{d-1} \in T^G$, $1 \le d \le n - 1$, for $[H]_{d-1}y = [Hy]_d = \sigma(a_d) - a_d$ implies $\sigma([H]_{d-1}y) = -[H]_{d-1}y$ which implies $\sigma([H]_{d-1}) = [H]_{d-1}$.

We claim that $[H]_{n-1} \in T^G$ as well. To see this, note that

$$H - \sigma(H) = (1 + A)f - (1 + \sigma(A))\sigma(f)$$

= $f - \sigma(f) + (A - \sigma(A))f + \sigma(A)(f - \sigma(f))$
= $(1 + \sigma(A))(f - \sigma(f)) + (A - \sigma(A))f$
= $(1 + \sigma(A))f\sigma(f)y + (A - \sigma(A))f$ (by †)
= $f\sigma(B)$ where $B = -(1 + A)fy + \sigma(A) - A$.

Thus,

$$H_{n-1} - \sigma(H_{n-1}) = [H - \sigma(H)]_{n-1}$$

= $[f\sigma(B)]_{n-1}$
= $f_0 \sigma(B)_{n-1} + f_1 \sigma(B)_{n-2} + \dots + f_{n-2} \sigma(B)_1$

(for $B_0 = 0$). But our induction hypothesis was precisely that $B_d = 0$, $1 \le d \le n - 1$, and $\sigma(B)_i = \sigma(B_i)$. Thus, $H_{n-1} = \sigma(H_{n-1})$. Moreover, since $f \in xT$, $H \in xT$, and $H_{n-1} \in xT_{n-1}$, say $H_{n-1} = xg_{n-1}$. We also have then that $\sigma(g_{n-1}) = g_{n-1}$. Now let $a_n = g_{n-1}z \in T_n$.

Then

$$[(1 + a_1 + \dots + a_n)fy]_n = [(1 + A + a_n)fy]_n$$

= $[(1 + A)fy]_n + [a_nfy]_n$
= $[(1 + A)fy]_n$
= $[(1 + A)fy]_n$
= $[(1 + A)f]_{n-1}y$
= $H_{n-1}y$
= $g_{n-1}xy$
= $g_{n-1}(z + xy) - g_{n-1}z$
= $\sigma(a_n) - a_n$,

since $\sigma(g_{n-1}) = g_{n-1}$. Now, letting $a = \sum_{i=1}^{\infty} a_i$, we clearly have

$$(1 + a)fy = \sigma(a) - a,$$

since this holds for each graded component, Q.E.D.

Theorem (4.3) more than suffices to complete the proof of Theorem (3.1).

References

- M. HOCHSTER, Contracted ideals from integral extensions of regular rings, Nagoya Math. J., vol. 51 (1973), pp. 25-43.
- 3. ——, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conference Series in Math. No. 24, Amer. Math. Soc., Providence, 1975.

^{1.} R. FOSSUM and P. GRIFFITH, Complete local factorial rings which are not Cohen-Macaulay in characteristic p, Ann. Sci. École Norm. Sup. 4^e ser., t. 8 (1975), pp. 189–200.

- 4. ——, Some applications of the Frobenius in characteristic 0, Bull. Amer. Math. Soc., vol. 84 (1978), pp. 886–912.
- Cohen-Macaulay rings and modules, Proc. of the International Congress of Math. Vol. I, Helsinki 1978, Academia Scientiarum, 1980, pp. 291–298.
- 6. ——, The direct summand conjecture and canonical elements in local cohomology modules, J. Algebra, to appear.
- 7. H. MATSUMURA, Commutative algebra, Benjamin, New York, 1970.
- 8. C. PESKINE and L. SZPIRO, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S., Paris, No. 42, 1973, pp. 323–395.
- P. ROBERTS, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4), vol. 9 (1976), pp. 103-106.
- 10. ——, Abelian extensions of regular local rings, Proc. Amer. Math. Soc., vol. 78 (1980), pp. 307–310.
- 11. ——, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture, J. Algebra, vol. 66 (1980), pp. 220–225.
- 12. P. SAMUEL (Notes by M. P. Murthy), Lectures on Unique Factorization Domains, Tata Institute Lectures on Mathematics and Physics No. 31, Bombay, 1964.

UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN