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FINE CONVERGENCE AND PARABOLIC CONVERGENCE FOR
THE HELMHOLTZ EQUATION AND THE
HEAT EQUATION

BY
Apam Koranyt' anp J. C. TAYLOR?

Introduction

Consider, for a > 0 fixed, the Helmholtz equation Au — 2au = 0 on
R”. It is not hard to see that the corresponding Martin boundary is a sphere,
and that every positive solution has an integral representation

u(x) - Ln—l ex(x,b)u(db)

where A = (2a)'/? and u is a positive measure on the sphere. The rotationally
invariant function given by this formula where u is equal to Lebesque
measure o will be denoted by 4.

O. Linden [12] proved a Fatou-type theorem recovering the values of
du/do a.e. as limits at infinity of u/h along tubes of constant diameter.
The present article proves a stronger result. It gives convergence through
parabolic regions, which are in many ways more natural than tubes, and
it does not require u to be globally defined. In other words this is an
analogue of the well-known result of Privalov-Calderén-Carleson [2], [3]
about harmonic functions in a half space of R".

The method of proof is essentially that of Brelot and Doob [1], also used
in [10]; it consists in deriving a geometric convergence result from fine
convergence at the Martin boundary, which is guaranteed in a very general
situation by the Fatou-Naim-Doob theorem. There is however an essential
difficulty to be surmounted: the natural version of the Harnack inequalities
for the associated potential theory is not strong enough to permit the direct
translation of the argument of Brelot and Doob to the Helmholtz equation
(see remark following definition 2.1). In order to bypass this difficulty it
is first useful to make a not entirely trivial reduction of the problem (Theo-
rem 1.2) and then to use a strengthened one-sided Harnack type inequality
(Proposition 2.4) which is obtained from the theory of the heat equation.

In Section 1 the reduction theorem is proved and section two gives the
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proof of the parabolic convergence result mentioned above (Theorem 2.9).

If one is interested only in global solutions then Theorem 2.9 can be
strengthened in two ways, each one corresponding to a different method
of proof. The first one, suggested by Doob, consists of a reduction via the
Appell transform to a parabolic convergence result for the heat equation
[6]. This gives parabolic convergence for quotients of arbitrary positive
solutions to the Helmholtz equation. The second proof is based on the
classical idea (cf. [20, Ch. XVII]) of using a Hardy-Littlewood type max-
imal function. This method was used by Linden [12] for tubes and is here
shown to extend to parabolic regions. It has the advantage of working for
all complex « that are not real negative and an appropriate class of solutions.
These results are obtained in section three.

Finally, Section 4 is devoted to a discussion of the following problem
which arises naturally in connection with the methods in earlier sections.
Can Doob’s parabolic Fatou-type theorem for the heat equation [6] be
deduced using the theory of fine convergence? For positive solutions it is
shown that this is easy to do, but for arbitrary quotients it appears more
awkward.

The authors wish to thank J. L. Doob for suggesting they use the Appell
transform to prove Theorem 3.1.

Let f(s) and g(s) be two functions defined for s near s,. The notations
f(s) ~ g(s) and f(s) = g(s) indicate respectively that f(s)/g(s) has a non-
zero limit as s — s, and that there is a constant C with 1/C =
f(s)/g(s) < C for s close enough to s,.

1. Fine Versus Admissible Convergence: Reduction to a Special Case

With each of the two equations under consideration there is an associated
potential theory on a state space X, the harmonic functions being the
solutions. Furthermore, the positive globally harmonic functions # have a
unique integral representation A(x) = [ K,(x)u(db) where b runs through
a boundary B of the state space (for additional details in each case see
Sections 2 and 4 respectively).

In both cases the potential theory is coupled with a Hunt process (ex-
ponentially killed Brownian motion in the case of one, and the heat process
in the case of the other). Doob’s results in [4] on conditional Brownian
motion apply to both processes (this is explicitly worked out for processes
in duality by Follmer in [8] and stated by Doob in [5] for the heat process).
As a result, for u, v any two harmonic functions the theorem of Fatou-
Naim-Doob is valid: the quotient u/v has fine limit at v-a.e. (minimal)
boundary point b equal to (du/dv)(b) where u and v are the measures that
represent u and v respectively.

The reader unfamiliar with either the probabilistic proof of this theorem
[4], [8] or the potential theoretic proof of [14], [15] may find it useful to
consult [17] for an elementary exposition of [15]. Here X is a measurable
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space and a cone & of ‘‘superharmonic’’ functions is given on X for which
certain hypotheses are verified. In particular each s € S has a Riesz De-
composition s = p + h with p a “‘potential’’ and 4 ‘‘harmonic’’. Further
there is a measurable boundary space such that each ‘‘harmonic’’ function
h € & has a unique integral representation as

h(x) = I Ky (x)u(db),

i a positive measure on B and K, a minimal ‘‘harmonic’’ function for each
b € B.

Assume that X = X U B is a topological space.

DerFINITION 1.1.  An admissible system A is a function on X\ X = B
with A(b) C X and b a limit point of A(b), for all b € B. A function f
converges A-admissibly to \ at b if for all ¢ > 0 there exists a neighbourhood
U of b such that |f(x) — A\| < e, forall x € U N A(b). This will be indicated
by writing

A = (A-lim N)(b).

THEOREM 1.2. Let A be an admissible system and let h be a positive
harmonic function with representing measure . Assume that for any pos-
itive harmonic function u,

[(fine limit u/h)(b) = 0] = [(A-lim u/h)(b) = 0] pu-a.e.,

(where the exceptional set depends on u and A).
Then,

dv

A-lim u/h = da u-a.e. ifvrepresents u.

Proof. Let M denote the set of positive measures u on (B, %) such that

j Ky(x)u(db) < forall x € X.

Then A is a convex subcone of the set of positive Borel measures on (B, %)
which is closed under the lattice operations \/ and /\. These operations are
defined as follows:

pVy=1/2{u+v+u-2} and w/Av=1/2{u+v - |u -}

where |a| denotes the total variation of a signed measure a. The following
lemma is easily established (cf. [17]).

LemMa. Let w = 0. Then




80 ADAM KORANYI AND J. C. TAYLOR

dn dv dn dv
(n V= (du) v (du> and (n A= (du> 4 (df»)'

Let u be a positive harmonic function with representing measure ». Since
u/h converges finely to dv/du p-a.e. it suffices to consider what happens
for b € {dv/du > 0}. Let g, p be positive rationals and r = p + q. It
follows from the lemma that the function u ~ (fine limit u/A)(b) preserves
the lattice operations /\, \/ in the cone of positive harmonic functions (cf.
(B) in [17] for the definitions of /\, \/).

Assume that g < (dv/du)(b) < r. Then [gh — u /\ (gh)]/h and

[rh — u\/ (rh)]/h converge finely to 0 at b.
By hypothesis this implies

(*)  (A-lim[u /\ (gh))/h)®) = q and (A-limu\/ (rh)1/h)(b) = r

except for b € E,,, where w(E,,) = 0.
Since for u, v, w any three harmonic functions

Hence,

min{u, v + w} < min{u, v} + min{u, w}
it follows that u A\ (v + w) < u ANv + u A\ w(cf. (3) in [17]). Consequently,
Os[uN@wh) —u/lN(@h)l/h<p

Combining this with the identity u = u \/ (rh) + u /\ (qgh) + {u /\ (rh) —
u N\ (gh)} — rh it follows from (*) that

< (A-lim u/h)(b) < (A-Tim u/h)b) <r

(where these limits are defined in the obvious way) unless b € E, ,.
It therefore follows, for any positive rational number p, that there is a
set E, with w(E,) = 0 such that, for all b & E,,

|(dv/dp)(b) — (A-lim u/h)(b)| < p and
|@v/du)(b) — (A-lim u/h)(b)| < p
An obvious countability argument completes the proof.

Remark. The above argument holds with ‘‘fine limit’’ replaced by some
other limit notion providing that for this limit notion u/h — dv/du u-a.e.
For example, when considering classical harmonic functions on R* X R™
that are Poisson integrals of positive functions in L°(R"), | < p < o it is
relatively easy to establish the existence of normal limits (cf. [16]). The
above arguement shows that in order to establish the existence of non-
tangential limits it suffices to verify that a.e. the non-tangential limit is zero
if the normal limit is zero. As will be remarked later this is an immediate
consequence of the Harnack inequalities.
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2. A Local Fatou Theorem for the Helmholtz Equation

Let « > 0. Consider the Helmholtz equation Au = 2au on R". All
potential-theoretic concepts in this section are to be understood as being
relative to the potential theory associated with the operator Lu = (1/2)Au —
au. For convenience let \V/2a be denoted by A.

The Martin compactification X of X = R” is obtained by adjoining S~
at infinity. To show this one considers the Green function G(x) with pole
at 0. Then

G(x) L e~ (2mt) "2~ W gy

= o' "2\ ||x|) 'K, (\Ix]) (where v = n/2 — 1)
~ ||x]| ' =m72e =M1 (118] 6.22 (15) and 7.23 (1)).

Let G(x, y) denote the Green function with pole at y. Then G(x, y) =
G(x — y). Consequently, G(x, y)/G(y) has a limit for all x as ||y|| — o« if
and only if |x — y| — [yl has a limit. This is the case precisely when
y/llyll has a limit 5 on $"~! which shows that B = X\ X can be identified
with §"~!. A basic neighbourhood U of b € §" ' is

ixll > n, ', by >1 — 1/m} U {c € §" c, b) > 1 — 1/m},

where x' = x/||x||. The minimal harmonic functions, normalized to take the
value 1 at 0, are the functions K,(x) = ¢**? b € §"7'. Let

K. (x) = be(x)u(db), Kf(x) = Kp(x)

where o is normalised Lebesgue measure and denote K1(x) by A(x) (the
rotationally invariant solution of Au = 2au with u(0) = 1).

DerINITION 2.1.  For all b € §"~! and B > 0 define the admissible region
A(b;B) to be
{x € Rllx — |x|bll < Blx|"*}

and the truncated admissible region A™(b;B) to be A(b;B) N {x||x|| = N}.
A function f'is said to converge admissibly at b if for all B > 0 f(x) has
a limit as ||x|| — «, x € A(b;B).

Remarks. 1. For admissible convergence the paraboloids

{tb + y|lt >0, (y, b) = 0, |ly|*> < Bt}

could be used instead of the regions A(b;B).
2. When n = 4 it is not hard to show that a tube of constant width
about the ray determined by b € $"! is thin at b. A set E is thin at b if
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there is a potential p that dominates K, on E ([14, Théoréme 5 p, 205],
also [17]). In probabilistic terms this is equivalent to saying that for any
x with probability 1 the paths of the K,-process starting from x fail to meet
E sufficiently near to b ([4, p. 455], [5, p. 4], and [8, lemma p. 140]).
Consequently, such tubes cannot be used as admissible regions if one hopes
to relate fine and admissible convergence. (See the proof of Theorem 2.9.)

This thinness comes from the fact that if B, = B(th;r) then Rz K,(0) =~ ¢
for t = t(r) where 2k = 1 — n (where for any set E and superharmonic
function u, Rzu(x) = inf{v(x)|v = u on E, v superharmonic}). Hence, it is
not hard to construct a potential (as the sum of a series) dominating
R:K,(Rgu is the lower semicontinuous regularization of Rgu and is super-
harmonic), if E is a tube of constant width ‘‘at”” b. Another consequence
of this estimate is that the standard ‘‘bubble’’ set used by Brelot and Doob
[1] and also used in [10] is thin at the appropriate minimal point. From this
fact comes the difficulty alluded to in the introduction.

ProposiTiON 2.2. Let b € $" ' and let E = U,, E,,, E, = A(b;B) N
{x| lIxll = R,} with R,,1 + «. Then E is not thin at b (i.e., if v = 0 is
superharmonic and v = K, on E then v = K, which is equivalent to saying
that no potential dominates K, on E (cf., G) [17]).

Proof. For x € A(b;B), K,(x) = "™ since
IxI{1 — (', B} = 2|xlllx" — b|> = 1, where x = |x|x'.

Further, the value at the origin of the harmonic function A,, on {x | |x|| < R,.}
with boundary value 1, is h,(0) ~ o((1/R,)E,)/h({R,,) where h = K1 is
the positive radial solution corresponding to o.

Now

h(x) = f M Pa(db) ~ /x|~ P2 [18, 6.15 (2) and 7.25 (1)].

Hence, 4,,(0) ~ e " and so for some constant c, ¢ < k,,(0) < 1/c where
k,, is the solution on B(O;R,,) of the Dirichlet problem with boundary value
K,1g,. The Perron-Wiener-Brelot method of solving the Dirichlet problem
shows that k, < RzK, on B(O;R,,). Therefore, if k is the limit on R” of
some subsequence (k,,) (which will exist by virtue of Harnack’s inequal-
ities) it follows that £ < RgK,. Since k > 0, no potential dominates K, on
E; i.e., E is not thin at b.

DeriniTION 2.3.  For every u satisfying Au = 2au in some domain of
R” let Du be defined (for all ¢+ > 0 and x € R” such that the formula is
meaningful) by

Du(x, t) = Qmt)~ "~ M2y (x /1)e~ /",
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Remark. For any solution v(x, t) of the heat equation dv/otr = % Av on
a domain where ¢t # 0, the Appell transform [19]

Av(x, t) = Qmt) e W0y (x /1, —1/1)
determines another solution. If v(x, t) = u(x)e® then v is a solution of the

heat equation and Du = Av.

ProrosiTiON 2.4. Let u > 0 be a solution of Au = 2au defined on a
neighbourhood of a set AN(b;B) and let h = K1. If 0 < B, < B there exists
a constant C, independent of u, such that

up) _ ~44)
h(p)  h(q)

for all p, g € A*™(b;B,) such that 2|p|l = liqll.

Proof. If W is the domain of Du then there exist constants M, and ¢,
such that

WO {x, t) ER" X R, ||lx — Ab|| < Vt/M,, 0<t<t,}

(for example, for sufficiently large ¢, and B, < B take BoMo\"? = 2).
Since Du satisfies the heat equation, Harnack’s inequalities [13] imply
that if M, > M, there is a constant C such that for all ¢t < t,/2,

* Du(x, 2t) = C Du(y, t)
provided |x — Ab|| < V2t/M,, |ly — Mb|| < ViM,.
Assume |lx|| = |ly] = \ and let p = x/2t, ¢ = y/t. Then 2|[p| = |ql|

and substitution in the inequality (*) of these values gives u(p)e ¢! =
C u(gq)e 4!, The result follows from the asymptotic behaviour of the radial
function 4 (see the proof of 2.2).

Remark. For global positive solutions u# this can be proved directly
without using Harnack’s inequality for the heat equation by considering the
behaviour of the functions K,(x)/h(x).

LemMA 2.5. Let E C S"~'. Assume that to each b € E there is associated
the set

A(b; B) N {x||lx]l > N} = AY(b; B)

(where N and B vary with b) and let U = U,cx AY(b; B).

Let € > 0. Then for any given By there exists a compact set D and N,
such that

(1) Usep A™(b; By) C U
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and
) o*(EN\D) <e,

where o* is the outer measure determined by o.

Proof. An obvious adaptation of Calderén’s argument [2] using the re-
gions A(b; B) instead of cones proves the result. It is also possible to trans-
form R” into the interior of the unit ball by the map x — |lx[|(1 + [x[*) ™.
This map transforms the region A(b; B) into a region which is essentially
a cone and Calderdn’s agument then applies.

COROLLARY 2.6. For each B > 0, for almost all b € E there exists
N = N(b, B) such that A¥(b; B) C U.

ProposiTiON 2.7. Let E C S"! and assume that for each b € E a
truncated parabolic region AN(b; B) is given. Let U be the union of these
regions. Then U° is thin at almost every point of E.

Proof. The argument of Constantinescu-Cornea used to prove Théoréme
8 in [1] applies once the following result is established.

Note that if D(x; B) denotes the complement of the union of all those
A(b; B) that do not contain x then the intersection of D(x; B) with the
Martin boundary $"~'is C(x) = {c||lc — x'|| < B/V/||x||}, where x = ||x||x'.

Lemma 2.8. For all x € R", x # 0, there is a constant A = A(B) > 0
such that (Klcy)(x) = Ah(x).

Proof. 1t is clear that it suffices to consider x with |x|| large. If ¢ €
C(x) then K.(x) = €"“* and so K. (x)e M = ¢ Mxl=x% Now for large

llxll
1 - (e, x) = lle = xIP/2=1/lx]l if c€ CW.

Since the measure of C(x) ~ ||x||~"~"2 and h(x) ~ (lx]))~®~"2 &M this
proves the lemma.

THEOREM 2.9. Let E C $""! and assume that for each b € E there is
associated a region AN(b; B). Let u be a solution of the Helmholtz equation
on U = U,er AN(b; B). On each set AN(b; B) assume that u/h is either
bounded above or below.

Then u/h converges admissibly at almost every point of E.

Proof. As usual (cf. [1]) it suffices to consider the case of u > 0 and
U connected. Since the operator 3Au — au is strictly elliptic the points of
S$"~! (where $"~! is viewed as the Martin boundary of R") at which U° is
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thin can be identified with a Borel subset of the minimal points A;(U) of
Martin boundary of U (see the appendix of [10]). Denote this subset by S'.
Let S be the subset of S’ obtained by removing the exceptional sets of
corollary 2.6 for an increasing unbounded sequence (B,).

Let B > 0. Define an admissible system by setting, for each point d of
the Martin boundary of U, A(d) = A™(d;B) for N suitably large if d € S
(see Corollary 2.6) and the intersection with U of a neighbourhood of d
in the Martin compactification of U otherwise.

By Theorem A.6 of [10], by the Fatou-Naim-Doob theorem and by Theo-
rem 1.2 it will suffice to prove that if «/h has fine limit zero at b € § then
it has A-admissible limit zero at b.

Assume this to be false. Then there exists an € > 0 and a sequence (x,,) C
A(b;B) such that |x,| — © and (u/h)(x,,) = & for all m. Let 0 < B, < B.
Then by Proposition 2.4, (u/h) = Ce on the union E of the sets

E, = {x € AB;B) | Ixll = lxnl/2}.

By Proposition 2.2, E is not thin at b which contradicts the fact that the
fine limit of u/h is zero at b.

Remark. The thinness of a tube of constant width about a half ray
referred to earlier shows that the above argument cannot be applied when
parabolic regions are replaced by such tubes.

3. The Fatou Theorem for Global Solutions of the Helmholtz Equation

For global solutions Theorem 2.9 can be strengthened in two ways. The
first of these is stated as

THEOREM 3.1. Let u and v be positive solutions of the equation Au =
2au, a > 0, defined on all of R" and let w, v be the representing measures
of u, v on the Martin boundary S"~". Then u/v converges admissibly v-a.e.
to du/dv.

Proof. Let Du and Dv be as in Definition 2.3. They are solutions of the
heat equation on the upper half space R" X R, and with respect to the
Gaussian kernel

KC(x, t) = (27Tt)_n/2e‘"x"c||2/2:

have the representing measures u', v’ that correspond to 4 and » when
S$"~1 is identified with the sphere of radius A = V2a in the boundary
R” x {0} (this follows from the fact that DK, = K,,).

By a theorem of Doob (Theorem 5.2 in [6] and for n = 1, Theorem 3.1
in [5]) Du/Dv has a parabolic limit du'/dv’ v'-a.e. Since (Du/Dv)(x, t)
= (u/v)(x/t) this implies the result.
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THEOREM 3.2. Let N be a complex number with Re N > 0. Consider
solutions to Au = Nu of the form

ux) = Ln,l P u(db),

w a positive measure. Let h(x) = [¢-1 ePa(db), o normalized Lebesgue
measure. Then, u/h converges admissibly to du/do o-a.e.

Proof. By standard arguments [20, Ch. XVII] it suffices to prove the
following estimate.

Let f € L'($"") = L'(o) and define

FHe) = sup ———— Lw) lf(b)|o(db).

0<r<2 O‘(B(C ;r))

Then there are constants C = C(B) and L(B) (independent of f) such that

sup | |f(b)||K(x, b)lo(db) < Cf*(c) when |x|| = L(B),

XEA(c;B)

and where
K(x, b) = P /h(x), h(x) = f g (db).

Leta = Re A > 0.

Letx = 1 ¢ + y € A(c;B) with {c, y) = 0. Then |ly| < BV. Further,
t < ||x|| < 2t if ||x| = L for some constant L = L(B). Assume from now
on that ||x| = L.

Since |A(x)| ~ [lx]|~®~"/2¢“™ there is a constant C such that
K(x, b) < C "~ V2ematgatxb),
Now (x, b) = Kc, b) + (y, b — ¢) < tc, b) + BV1|b — c| implies
E(x, b)<C t(n—])/ze—ae(l—<c,b>)eB\/?||b—c||
= C (n-D/2p-arlb=cl?/2
= C ("~ D/2p-alilb=cl?/2-BVilb=cl]

Fix 0 <n =< 1 (say n = 1). Then

C mvrgmanmen it <y - o < 21
t

K(x, b) < , v
C t(n—])/Ze—a[tn /2-2BV't] for ) < ”b _ c”.
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Hence,

swp [ o) botab)

lxll =L

V71 _
=2 oty IR Do)

* ﬁlb"C”?ﬂy] |f(B)||K(x, b)|a(db)

Vil
— - 2/9 —
<C E t(n 1)/2e alk?/2-B(k+1)]
k=0

Llc —bl<k+1)/V7 |f(b)|0'(db)

+C t(n—1)/2e—a[m2/2—23\/?]”f”] )

Now o({b | |lc — b|| < r}) ~ r"~! for small r and so the above expression
is dominated by

Vil 1
ol k + ln—l —alk?/2—B(k+1)]

2, e+ e ol — bl <k + D/
FB)lotdb) + C'If I,

Jllc—bl|s(k+ /vt

< I:CI E (k + l)n—le——a[kz/Z—B(k+l)] + Cl/]f*(c)

k=0

= C f*().

4. The Case of the Heat Equation

Let X = R" X (0, +»). The heat equation Au — 2(3u/dt) = 0 determines
a potential theory on X with the property that every positive solution « has
the form

ux) = J' Q) ~"2e™ W2 (db),

where u is a positive measure on R". If X = R* x R, then the boundary
B = X\ X is identified with R". An admissible system A is given by setting

A(b;B) = Ab) = {(x, 1) | |x — bl < Bt'*}

for each b € R", where B = B(b) > 0 is arbitrary. A function f
converges admissibly at b if for all B > 0 the limit of f(x, ¢) exists as
t—> 0, (x, t) € A(b;B).

Doob [6] proved that if u, v are any two positive solutions of the heat
equation, then u/v converges admissibly v-a.e. on B to du/dv where u, v
are the respective representing measures. This proof uses direct estimates
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on the Gaussian kernel and is independent of the theory of fine convergence.
An earlier proof of this result (when n = 1) is given in [5] where in addition
Doob states that u/v converges finely to du/dv and indicates how to relate
path-convergence to fine convergence. In this section it will be shown for
the case v = 1 (and hence dv = dx) that Doob’s fine convergence result
implies his admissible (i.e., parabolic) result. The argument used breaks
down for v # 1 because the nature of the Harnack inequality for a heat
equation does not permit one to control the nearby values of a quotient
by the value at one point (as is possible for a second order strictly elliptic
equation).

For the potential theory on X associated with the heat equation a lower
semicontinuous function u is superharmonic if (a) u(x, t) > —oo for all
(x, t) and (b) for any (x, t) and cylinder {(y, s) | a; < y; < b;, to < 5 < t}
= C with a; < x; < b; the value u(x, t) = [ udug, , where uf, ,, is the
‘“‘parabolic measure’” on dC\(R" X {t}) that reproduces solutions of the
heat equation defined on a neighbourhood of C. See Doob [7] for details
(where such a function is said to be ‘‘superparabolic’’).

Let & denote the convex cone of non-negative superharmonic functions
on X which are finite on a dense set. Denote by # the convex subcone
of positive solutions of the heat equation and by ? the convex subcone
of functions u € § which have the following property: » € # and & < u
implies 4 = 0. Then it is well known that #, % and & satisfy the hypotheses
(1)-(11) inclusive of [17] (cf. [7]) with

1 1/2
- x— b2
Ky(x,t) = (2_m> o~ (/200 =012,

The parabolic admissible regions are related to thinness as shown in the
next result.

ProposiTiON 4.1. Let b € B and E = U, E,, where E,, = {(x, t,) |
Ix — bl < BV1,} and 1,1 0. Then E is not thin at b (i.e., if v = 0 is
superharmonic and v = K, on E then v = K,, which is equivalent to saying
that no potential dominates K, on E (cf. (G) [17])).

Proof. Letx, = (a,s) € X and let A,, be the complement of the bounded
cylinder

U, = B(b;m) X (t,, m).

Then, for sufficiently large m, xo & A,..

Assume E is thin at b. This is equivalent to the existence of a potential
p € ?with p = K, on E. Let p,, be the function on X obtained by replacing
p on U, by the solution of the Dirichlet problem with boundary value p
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on oU,, i.e.,if x = (x, t) € U,,

pr(X) = f J 2 TH

where u{; ;) is the parabolic measure of & determined by U,. Then p,, €
P, p=p, = pus and lim,_,. p,, = 0 as it is in .
It is clear that p,, = K, on E,,,,. Hence, RzK, # K, implies

lim REme().C()) = 0.

m—>x

Consequently, to prove the proposition it suffices to show that there exists
a constant C(x,) > 0 with Rg, K, (%) = C(x,) for sufficiently large m. Let
t = t, <s where x, = (a, s5). Then,

. 1
R, Kylxo) = fuy—busmfr [4m(s — D)1]"?

My —al? ly - 4P
exp( 2{ p—— + ; dy

since the probability (for the heat process associated with 3Au — du/ot)

of starting from X, and hitting A C R" X {¢} is the probability for Brownian

motion of being in A at time s — ¢ after having started from a at time zero.
Now

ly = al®  ly = b|®

s—t t
_Hlly - b + 2b —y,a — b) + lla = b} + (s = Dy — b||*
ts —t)
_sly = bl + {2b —y,a — b) + lla — b}
(s — 1) s —t ’

Assume 0 < t < s/2. Then |y — b| < BVt implies

la — b1 _{2b — y,a — b) + lla — b|*} < 3la - b
2s s —t )

as long as 4B\t < la — b|.

Consequently, in computing a lower bound for Rg, K,(x,) one can forget
the corresponding term in the exponential.

Consider, for t = ¢,

1 n/2
= | — —slyl?/12¢¢s — )]
Iom) (27rt) fnyusmﬁ ¢ dy

for 0 < ¢t < min{s/2, |la — b|*/16B%}.
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Then

n/2
1 f 11/t gy =
Iom) = <2m> i<avi © dy = c.

This non-thinness result is the key to proving Doob’s theorem for u/v
when v = 1.

THEOREM 4.2. Let u > 0 be a solution of the heat euqation on R" X
(0, + ). Then, for all b € R",

[(fine limit «)(b) = 0] = [(A-lim u)(b) = 0].

Hence, u converges admissibly to du/dx a.e. on R", where w is the rep-
resenting measure for u.

Proof. Assume (y,,, t,,) € A(b) with u(y,,, t,) =\ =0and t,, | 0. Then
by Harnack’s inequality [10], for some ¢ > 0, u = Ac on

E=UE,, E,={x2t,)]|llx - bl <BVi,}

Since E is not thin at b by Proposition 3.1, the fact that u converges finely
to 0 implies A = 0. The last statement is a consequence of Theorem 1.2.

Remark. This is the same argument as the one used to prove Theorem
2.9. Further, for classical harmonic functions # on R" X R, that are positive
this argument shows that the nontangential limit is zero if the radial limit
is zero. This is because by Harnack’s inequality there is a constant ¢ with
ux, y) < C u(xy, y)forall y > 0if |x — x|l < ay, a > 0 (cf. (3.17) on
p. 63 of [15]).

These techniques can also be applied to the heat equation on

R, XR={(x,t)|X>0}.

In this case the boundary R = {0} X R = B together with B, = (0, +]
parametrizes the minimal functions K,, where

(1/\/ ) e XD if > b € B,
K,(x, 1) =

b)3/2
ift<b€ B,

and
. bt
K,(x, t) = sinh (bx)e7 f0<b< +x€EB,

Ky(x,t) = x ifb = +o EB,.

The positive solutions are all of the form [ K,(x, t)u(db) [9], and in [9]
Kaufmann and Wu show that quotients of positive solutions converge ad-
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missibly in the usual way, where the admissible regions A(b) at b =
(0, b) € B, are of the form

A(b) = {(x, t) | o< B])C2 <t-b< Bzxz}.

These regions are ‘‘canonical’’ in view of the following result.

PropoSITION 4.3. Let 0 < A < 1 and t,\0. Set E, = [AVt,,
1/AVt,] X {tn}. Then E = U,, E,, is not thin at (0, 0).

Proof. The argument of Proposition 4.1 can be imitated with U, taken

to be the rectangle [AVt,,, m] X [t,., m]. It will then be sufficient to verify
that

Rg, Ko(%o) = c(xo) > 0,

is independent of m, for each point x, = (a, s) with s > 0.

The probability for the heat process on X = R, X R of starting at x,
and being in A C R X {t} at time ¢ < s is the probability for Brownian
motion on R Killed at zero of starting from a at time zero and being in A
at time s — ¢. Therefore,

Vi/A

1 2 2 2
. _ -x2/2ty ,—(x—a)*/2(s—1) —(x+a)*/2s 1)
REmKo(x()) = 2-.77'(5‘ — [)1/2t3/2 J;{\/? xe * {e X—a s — e x+a s } dx

Vi/A
_ 2 — )2 — — —
= C(l/t) v e QA/2)[x*/2t+(x—a)*/(s l)]{l —e 2ax /(s t)} dx

if 0 < t < min{s/2, 1}.
Now

X2t + (x — al/s —t) = sx*/t(s — t) + {a® — 2xa}/(s — 1)

andfor 0 < ¢ <s/2and x < V/t /A the second term is essentially a constant
as long as 4V/A < |a| = a. Therefore a lower bound may be obtained
by estimating, for 0 < ¢t < min{s/2, 1},
V't/A
—sx¥2t(s — Of1 _ ,~2ax/(s — 1)
(1/1) PV {1 —e }dx

1/A

= (1/V1) f

L e = e YR Y dy = Cliy).

Remarks. (1). Wu has pointed out to the authors that this result for X
proves a special case of Kemper’s ‘‘two-sided’’ parabolic convergence
result for positive solutions [11]. This states (in the case under consider-
ation) that if ¥ = 0 is a solution of the heat equation on R, X R =
{&x, £) | x > 0} then, dt — a.e. on {0} X R, u(x, t) has a limit as (x, ) —
(0, b) with |t — b| < A(b)x*. It suffices to note that Moser’s theorem [13]
implies the following Harnack inequality for # > 0 a solution of the heat
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equation on R, X R: let B > 0; then there is a constant ¢ > 0 such that,
for all ¢ > 0,

inf  u(x',2t) = c sup u(x(t), s) where ¢t = 2BxX(t).

x(1)=x'<2x(t) |s|<t
If t, > 0, scaling by (x, t) ~» (Ax, M%) for A = 1/x(t,) maps

[x(t0), 2x(t)] X {2t} onto [1, 2] x {2B}
and

{x(t)} X [—ty, t4] onto {1} X [—B, B].

If (y,, t,) — (0, 0) with |t,| < By? and u(y,, t,) = & > 0(Vn) then in view
of the Harnack inequality u cannot converge finely to 0 at (0, 0). This
observation and the argument used in Theorem 4.2 prove Kemper’s result
in the case of R, X R.

(2) Assume that the part of the kernel representing positive solutions
to the heat equation on R"™! X R, x R = X corresponding to 9X (with
t € R) is given by

Ko, 1) = (— 1)51—W(x, £y, 0), 8)

where b = (y',0,s) €ER"™! x {0} X R.

The proof of the proposition carries over when the admissible regions A(b)
are of the form

{A%¢ - ) <|ix" = y'IP + x2 < (1/A = ), x> Clx'll},

where the generic point in X is denoted by (x', x,, ).
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