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MAXIMAL IDEAL SPACES OF U-ALGEBRAS

BY

JONATHAN M. KANE

1. Introduction

For n > 1 let Bn be the open unit ball in C and $2-1 be its boundary. The
group of n x n unitary matrices, U(n), acts on C by multiplication on the right
and this action takes B. onto itself and $2.-1 onto itself. A subspace, X, of
C($2-1) is called a U-space if for each f X and V U(n), f V X. A
U-space which is closed under multiplication is called a U-algebra. In this
paper the maximal ideal spaces are found for every closed U-algebra which
contains the constant functions.

Let Z represent the natural numbers {0, 1, 2, ...} and Z/, the positive
natural numbers. For p, q Z, le_t Hp, be the set of restrictions to S2._ of the
harmonic polynomials in z and z which are homogeneous of degree p in z and
qin z.

A. Nagel and W. Rudin show in I-2] that if X is a closed subspace of
C($2._ 1) and

Y {(p, q) lX c H,, =p 0},
then X is a U-space if and only if X is th closure in C($2_ 1) of the direct sum
X* ,)rH,. Thus, each closed U-space is associated with a set of lattice
points, Y_ Z2, and a dense subspace, X*, equal to a direct sum of H,
spaces. If X is a closed U-algebra, its associated set of lattice points is called an
alaebra pattern. Note that _H,, is a U-space and is spanned by the unitary
translates of the function zlz2.

Define H,,q. H,,s to be the subspace of C(S2n_I) spanned by {f. gift H,,q,
g H,,s} and (Hp,q) (Hp.q) H,,q for m > 1. Nagel and Rudin prove in
l-2] and I-3-1 the results"

cH, wherej=O, 1, minPROPOSITION 1.1. (a) H,,q H,,,_ +,_,q+,_j

(p + q, r + s, p +,r, q + s).
(b) Ifn > 3, (H,q) Hm,-j,mq- wherej 0, 1, min (mp, mq).
(c) Ifn 2, (n,,q)2 n2"_2,2q_2 wherej 0, 1, min (p, q).
(d) If n 2 and m > 2, (Hp,c) E nml,-j,mq-j where j 0, 2, 3, 4, min
(rap, mq).
(e) Ifn 2, Hp+,_ ,+_ H,, H,, ifand only if ps qr.
(f) Hp,. H,o Hp+,_,_ wherej 0, 1, 2,..., min (p + r, q).
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It follows that a sufficient condition for Y
_
Z2 to be an algebra pattern is

that for all (p, q) and (r, s) in Y,

(p + r-j, q + s-j)

is also in Y for each j 0, 1, min (p + q, r + s, p + r, q + s). For n > 3 this
condition is also necessary. For example, if # (0, 1), define

Y=((P,q)lP=q=O orq<#p}.

Then Y, satisfies the sufficient condition for being an algebra pattern. Let E,
be the closed U-algebra with algebra pattern Y.
The central step in finding the maximal ideal spaces for all U-algebras is

finding the maximal ideal spaces for the algebras E,. This is done in Theorem
2.1. The maximal ideal spaces of a few special U-algebras are found in Theo-
rems 3.1 through 3.4. The remaining maximal ideal spaces are found in
Theorems 4.1 and 4.2.

2. The algebras E.
For r (0, 1] and # (0, 1) define

tr(r, #) #2-1 + -"
1+#

where 2 is given implicitly by r (#2 + 2")/(1 + #). tr is real analytic and is
decreasing in both r and #. For w e C2" let

r(w)= lw#l2 and s(w)= lw,+#l2.

K. fw c2.i 1, r(w) (0, 1). and s(w) <

Note. (a) K, is contained in the algebraic variety A {wl= ww,+ 1}.
(b) K,

_
K,, if # > /.t’.

(c) If n" C2"--, C" is the projection onto the first n coordinates, 7t(K,)=

(d) For z B\(0), the set (w K. I(w) z) is an (n 1)-dimensional ball.
(e) For (w)

_
K.,, (wfl- 0 if and only if wl-- .

Let S (w C2 r(w 1 and w / for j <_ n). Then S is the collection
of all the points w in the closure of K.. cl (K.), with r(w) 1.

THEOREM 2.1. For # (0, 1) the maximal ideal space of E. is the one point
compactification of the space cl (K.). Moreover, iff E., f is homolomorphic on

K. andf(z) f(rc(z))for each z S.
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Define Hz to be the algebra of functions continuous on the one point
compactification of el (Kz) and holomorphic on K. Theorem 2.1 will be
proved after establishing the following facts.

PROPOSITION 2.2. E and H are isomorphic Banach aloebras.

PROPOSITION 2.3. cl (K,) is polynomially convex.

Proof ofProposition 2.2. If w C2", let

171/n+ n+ 2 l2n
For V U(n) define Tv: C2"--, C2" by Tv(z)= w if Jw JzV. Then Tv is
biholomorphic with T Tv-1. Note that for each V U(n) and z e C2,
r(Tv(z)) r(z), s(Tv(z)) s(z), and z A if and only if Tv(z) A. Therefore, Tv
maps K onto itself. If z S, n(Tv(z)) 7r(z)V. If z A there are u, v >_ 0 and
V U(n)so that

E: o o
Jz V= -1 v 0

Here r(z) u2 and s(z) u-2 + v2.
For p, q Z+,x [0, 1], and V U(n) define Vp,q,x,v: St--, Sby

o
)’,,q,x,v(0 w if Jw

kx-, x/1 x2 -t/0
V.

Then ,,x,v is a continuous function of ( and ,,,v extends to be holomor-
phic for ( cl (B1)\{0}.

LEMMA 2.4. K, {wlw V,,,x,v()for some p and q with q/p (#, 1),
x [0, 1], V U(n), and BI\{O}}.

Proof of Lemma 2.4. Clearly, if q/p #’ (#, 1), x [0, 1], V e U(n), and
e BI\{0}, then Vp,q,,v(() A. Therefore, for some u, v > 0 and VI U(n),

Vp,,x,v(() w where

[: o o
JwV1 -1 v 0

Here

and
r(w) u2 x2l(I2p + (1 x2) l(l2

S(W) U- 2 _. V2 X2 1- 2p .. (1 x2)[ C I- 2q.

Let 2 l( 12’ (0, 1) so

r(w) x22 -t- (1 x2)2’ and s(w) X2/ "1- (1 x2)/ -W.
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As x varies in [0, 1] and 2 varies in (0, 1), r(w) ranges over (0, 1). Fix a value of
r(w) in (0, 1), that is fix r(w) x22 + (1 x2)2w, and consider what values can
be obtained for

S(W) X2 -I- (1 X2)/ It’.

If x 0 or 1, s(w) r(w)-1 which corresponds to having u x and v O.
As x ranges over (0, 1), s(w) reaches a maximum at

This gives

X
#’

1 +#’

r(w) ’2 +
1 +la’

and

s(w) #2- + 2 -’’
1 +#’

(r(w), ’) < (r(w), ).

This shows that s(w) can take on any value with u-2 < s(w) < a(r(w), #). This
proves that 7,, q, x, v(() is in KIt. Moreover, z KIt only if there are u, v > 0 and
V2 U(n) with

E; oo... Oo]JzV2 -1 V 0

Selecting p, q, x, V, V1 and ( so Tvx(,t,,q,x,v(O)= Tv2(Z) shows z=

’,,,x, vvlv2-1(O. This proves the lemma.

Note that if q/p # and x x//#/(1 + #), )’,,,x,v(() is in the boundary of KIt.
7r," S----. S2n_ is a homeomorphism so let h" S2n_ S be its inverse. Define

G" HIt--* C(S2n_ 1)

by G(f)=f h. G is an algebra homomorphism and for V U(n), G(f)o
V f Tv h G(f Tv) so G(HIt) is a closed U-algebra. Suppose zxz2" G(f
for r, s e Z and f e HIt. Then, by Lemma 2.4, whenever clip e [#, 1), x e [0,

1], and V U(n), f 7,,,,v is continuous on cl (Bx) and holomorphic on
Bx\{0}. But then f Y,,,x,V is holomorphic on all of B1 andf )’p,q,,v(0)=f
(oo) is independent of p, q, x, and V. One gets

f 7,,,,v()=f h no
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’- extends to be holomorphic on B1. If V haswhen I(I 1 so glg2 Yp,q,x,V
entries (%), then for I1 1,

zlz2 7to Yp,,,v(O (:,xp + 2,t x/1 x2)

(01,2X"v + 02,2//1 X2q) (OI,IX"p "[- 2.1 x/’1 x2q)

which extends to be holomorphic on B1 only if s/r < q/p. Moreover,
z[ r ’v,,x,v(0) is independent of x and V only if r s 0 or sir < q/p.
This can hold for each choice of p and q with q/p e [/, 1) only if r s 0 or
s < #r. Thus, G(H) Hv, 4= (0) if and only if r s 0 or s </r so G(H,)
Ez.

If z e K,, z Yv,,x,v() for some p, q, x, V, and . Iff e H,, f Yv,,,,v is
holomorphic on B so

f(z) If Yp,a,,v()l sup fo Y,a,,v(O sup f(w) l.
S1

Thus,
f sup f(w) sup f(w) sup

so G is a Banach algebra isomorphism.

Proof of Proposition 2.3. Since K. .,
<. Ku, it will be sufficient to prove

Proposition 2.3 for rational =q/p. Let W EC2ncl (K). Let P(z)=
E=X Zj gn+j 1. If [PI(W)[ > O, then

e(w) > sup e(z) O.
e el (Kp)

If r(w) > 1, let P(z) = z. Then

Ie(w) r(w) > sup Ie(z) l.
e el (Kp)

So assume Pl(W) 0 and r(w) 1 but s(w) > a(r(w), ). Select u, v > 0 and
V U(n) so

JV= - v 0

where r(w)= u and s(w) u- + v. For some < v, u- a + t e(r(w), ) so
there is a V2 e U(n) and e cl (B1) so

[u 0 0 001 i+u
u- 0 V2=

/ lz
+ /a

l+t 0 0

1
_

i+
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Let Pa(z) zgz+ 1. For 2 e cl (B1) define wx by

E: 0 0... 00]JV= - v 0

Find a $1 so that

IP3 V2o VI(Wa)I suple3 V2 VI(WA)I.
AB1

If Try(w) w,

[P3 V2o V1 V3(w)I sup lp3 V2o
eBt

--suplz2z+a l= sup Izz+l
S el

sup P3o v2 E V(z)l.
el (K)

Therefore, if w cl (K), there is a polynomial with modulus larger at w than
any point of cl (K). Hence cl (K)is polynomially convex.

Proof of Theorem 2.1. By Proposition 2.2, it is enough to show that the
one point compactification of cl (K) is the maximal ideal space ofH and that
all multiplicative linear functionals ofH are point evaluations.

LMMA 2.5. H is the closure of the linear span of the monomials

Proof of Lemma 2.5. w e H, if and only if

G(wa)= fiajan+j
j=l

If p E7=1 aj and q E7=1 a,,+j,

G(w") e Hp,0 Ho,q E Hp_j,q_j c: E, if q < #p.
j=O

E. is the closed linear span of the H,, spaces with q < #p or p q 0 and
the I-I,, spaces are linear spans of the functions { V IV e U(n)}. If V has
entries

ZPlZ V 1Zk 2m
k
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which shows that zil V is a sum of monomials of degree p in z and q in i.
This proves the lemma.

Let be a multiplicative linear functional on H. By Lemma 2.5, is
determined by the values it assigns to the monomials wa where = a,+j <
#= a. Forj _< n, let z (%).

Suppose zj=0 for each j n. Choose we H with a0. Since

=t a+ < =1 a, for some m > 0,

m an+ j= <.ma-- 1
j=l

Thus, for some k n, wm/Wk H and (w) (wm) (Wk)(wm/WR) O.
It follows that is point evaluation at the point at infinity.

Suppose for some k n Zk O. Choose m so that 1/m < . Forj n, define

+

If w H, let p E= a and q E= a+. Then

I)(Wa) ((Wk)-mq)(Wk)mqf(Wa)

j=1

za.
Therefore, is point evaluation at the point z e C2". It follows from Proposi-
tion 2.3 that z e cl (K).

Since functions in H separate points in K, distinct point evaluations on
the compactification of cl (K) give distinct multiplicativc linear functionals on

H. This proves Theorem 2.1.

3. Special cases

Nagel and Rudin show that there are four types of U-algebras which arc
self-adjoint (that is, f e X wheneverf e X.)"

(a) C Ho.o;
(b) Ak {f C(S2,,_l)lf(e2’a/kz) =f(z) for each z e $2-1} where k Z/;
(c) D1 {f C($2,,_ 1) f(oz) f(z) for z 6 $2- and g $1 };
(d) if n= 2, D2 {f C(S2,,_l)lf(z)=f(w) for z, w $2,-1 with

<z, w> o}.
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THEOREM 3.1. The maximal ideal space
(a) For C1 is a one point space,
(b) For Ak is the lens space [4, p. 88] consisting ofS2n-1 where z, w $2-1

are identified whenever e2i/kz W.

(C) For 01 is CP(n- 1)I-4, p. 146].
(d) For D2 is RP(2) I-4, p. 146].

Proof of Theorem 3.1. Each algebra given is isomorphic to the set of con-
tinuous functions on the set claimed to be its maximal ideal space. Since each
set is compact and Hausdorff and the continuous functions on each set se-
parate points on the set, the theorem follows.
Nagel and Rudin also show that if a U-algebra is not self adjoint, then its

algebra pattern, Y, either satisfies q < p for all (p, q)e Y or p < q for all
(p, q) Y. Moreover, {(p, q) Y IP q} is {(0, 0)}, {(p, P) IP Z}, or in the
case n 2 only {(2p, 2p) lp Z}. If X is a U-algebra with algebra pattern
such that (p, q) only if p < q, then X is isomorphic to X {flf X} and

has an algebra pattern " with (p, q) " only if q < p. Therefore, when
finding the maximal ideal spaces for the remaining U-algebras, it will be
enough to consider those whose algebra pattern satisfies (p, q) Y only if
q<_p.
For # e [0, 1-1 and c Z let

Y,,c.o ={(P,q)lP=q=0 or q<#p and cdividesp-q}.

If # is rational with # s/r where s and r are relatively prime positive integers
and d is a positive integer, let

Y.c.d Y,,o {(mdr, mds) m Z+ }.

Then Y,,d is an algebra pattern provided that

(a) c=dwhen#=0,
(b) d 0 when # is irrational,
(c) c divides d(r s),
(d) d=0,1, or(ifn=2) d=2when#= 1.

Let Eu,,,a be the closed U-algebra with algebra pattern Y,,,.a. Let L,,c,a be the
maximal ideal space of E,,,a. If # (0, 1), E,l.o E discussed in Section 2.
Then

Eo.1,1 {f C(S2_I) If
extends to be continuous on cl (B) and holomorphic on B}

and

E1,1,o {f C($2_ 1) If extends to be continuous on cl (Bn)

suchthat for each z
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THEOREM 3.2. Eo,1,1 and E1,1,o both have el (Bn)for a maximal ideal space.
The case of Eo,1,1 is a classical result in function theory while the case of

E1,1,o is a lesser known result ofK. Hoffman and I. Singer [1].

THEOREM 3.3. The maximal ideal space of E1,1,1 is L1,1,1 {(z, [w]) e
cl (Bn) x CP(n 1)[w e S2n_ and z 2wfor some 2 e C1}.

Proof of Theorem 3.3. Eachfe El, 1,1 can be written as a sum # + h where
g e D1 (as in Theorem 3.1) and h e E1,1, o where h extends to cl (B.) with
h(0) 0. Let b be a multiplicative linear functional on E1,1,1. Then restricts
to be a multiplicative linear functional on both D1 and E1,1,o. By Theorems
3.1 and 3.2 there are Woe $2-1 and Zo e cl (B) so that b(g)= g(Wo) and
p(h) h(zo) for all 0 e D1 and h e E1,1,o. Therefore, for fe E1,1,1 with

f= + h, dp(f) q(#) + dp(h) 0(Wo) + h(zo). Suppose Zo tw for t e C and
w e $2._ 1. For all e D1 and h e E1,1,o,

and ( h)(zo) #(w)h(zo).

Thus #(w)h(zo)=(#. h)(zo)= b(#h)= p(g)p(h)=#(wo)h(zo). It follows that
[w]=[Wo] in CP(n-1) so zo=2wo for some 2eC1. This proves the
theorem.

For p e (0, 1), Lml,O is the one point compactification of cl (K) which is the
maximal ideal space for E.,1,o by Theorem 2.1. The maximal ideal space of
E.,1,1 for rational # is similar to L,l,O except that L,1,1 is a more compli-
cated compactification of cl (K). If r and s are relatively prime positive in-
tegers with # s/r, let L be the compactification of cl (Ku) created by
attaching the set U(n) x [0, 1-1 in such a way that a neighborhood base of
(W, y) e U(n) x [0, 1-1 consists of the sets

{Y.,,x,v(0111W VII < , ly- xl < , I1 < }
{(v, x) e U(n) [0, 1]111V WII < e, y- x < e}

for small e > 0 where r,s,x,v is the same as in Lemma 2.4.

THEOREM 3.4. If # s/r, the maximal ideal space of E,,1,1(L,,1,1) is the set
L where two points (W, y) and (V, x) e U(n) x [0, 1] are identified whenever

E0y N,--y2 0 ]W._.[l 0 ][0 %//1--x2 0 0]0 0 092 X 0 0 0
V,

where o9 &-s.

Proof of Theorem 3.4. Proposition 2.2 shows that E,l,o is isomorphic to
the algebra of functions continuous on the one point compactification of
cl (K) and holomorphic on Ku. Similarly, E,1,1 is isomorphic to the algebra
of functions continuous on L and holomorphic on K. Call this algebra H,1,1.
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Then H,,1,1 is the closed linear span of {wal =1 an+ < # =1 a}. As in
Theorem 2.1, if $ is a homomorphism of H,,x into C such that $(w) # 0 for
some j <_ n, then $ is point evaluation at some point of cl (K.). If $(w) 0 for
all j <_ n, then th(w) 0 whenever = a.+ < = a. On the other hand,
using the monomials w with= a.+ = a, one gets a set of relations

rk(w)r(w) rk(w*)rk(w) when a + b c + d.

Solving a set of difference equation arising from these relations yields a point
z C2 such that $(w) z" when= a.+ #= a. It follows that such
a homomorphism arises as

b(f) lim f
-0

for proper choice of x and V and that the space of all such b is the continuous
image of U(n)x [0, 1]. The functions in Hz, I, do not separate points of
U(n) x [0, 1]

_
L so some of these points must be identified to give the maxi-

mal ideal space of H,, 1,1. This yields
Notice that the maps {TvlV U(n)} which map cl (K,) onto itself extend

continuously .to L,,1,1 by mapping (W, x) U(n) x [0, 1] to Tv((W, x))=
(wv, x).

4. Final reductions

In Section 3 the maximal ideal spaces were given for each closed self-adjoint
U-algebra and for the algebras E,,1,1 for # E0, 1]. In this section the maxi-
mal ideal space L,,c,d is found for each E,c,d (Theorem 4.1) and then it is
shown that each remaining U-algebra has a maximal ideal space equivalent to
one of,the E,,,,d algebras (Theorem 4.2).

THEOREM 4.1. Let # (0, 1), c, d Z +, o e2ni/c, and fl e2ni/d.
(a) Lo,,, is cl (Bn) with z, w cl (B.) identified ifz w.
(b) L,,,, o is L,l,o with z, w cl (K) identified wheneter z
(c) If # is rational, L,,c,d is L,I, with z, w cl (K) identified whenever

z T;(w)and z, w U(n) x [0, 1] identified whenever z T(w).
(d) LI,, is L1,1,1 with (z 1, [w]) and (z2, [w2]) identified if [wl] [w2]

and 0 z xz2.
(e) If n= 2, Ll,c, 2 is L1,,1 with (0, [wl]) and (0, [w2] identified if

(W1, W2) 0.

Proof of Theorem 4.1. Consider the space Ett,c,d. If # is rational let X
E,,1,1 and if # is irrational let X E,l,o. The theorem will follow when it is
shown that each homomorphism of E,c,a into C is the restriction of a homo-
morphism from X into C because then one only has to identify homorphisms
on X which are equal when restricted to E,c,. Since X* (see Section 1) is
dense in X, it is enough to show that each homomorphism on E,c,a extends to
be a bounded homomorphism on X*.
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Let b be a hornornorphisrn from E,.c.d into Cx. If O H o, Hc o c

Casel. Suppose tk(g*)0 for some g Hx, o. Let x be a cth root of
tk(g*). If fH,,q_X, let r=q-p (modc). Then g’fE,,,,a. Define
$*(f) dp(g’f)/x’. Then q* is well defined since r s + mc implies

p(grf) p(gSgmcf) p(g,nC) p(gSf) p(gSf)
X xSx Xmc X X

One may extend b* by linearity to X*. Since

where thef’s and hk’S lie in H,, spaces, tk* is multiplicative.
To show that tk* is bounded on X* letf X* with Ilfll 1. Let x, 2,

d be the (cd)th roots of 1 and Vk kI U(n). Then for all m Z /,

cd

_fm l/’ - Et,c,a
k=l

and
cd

fm V cd.

Thus,

cd

E (/)*(fo V)
k=l

But this can happen for all m only if Ib*(f Vk)l< 1 for all k which proves
that b* is bounded. b* extends tk to X as desired.

Case 2. Suppose qb(gc) 0 for all g e H,o. Then b(g) 0 for all g Hp,q

Eu,, o with p > 0. For p > 0 and f Hp,q

_
Eu, t, o let b*(f) 0. If d 0,

this extends b to b* on X. If d > 0 and # sir where r and s are relatively
prime, for all g H,,s, gn Eu,,d. If b(0) 0 for all 0 e H,,., then b is the
trivial homomorphism and easily extends to X. If 0 H,, with b(9) :/: 0, let x
be a dth root of b(gn). Then b* extends to H.,,,. for m e Z+ as in Case 1 and
b* extends by linearity to a multiplicative linear functional on X in the same
way as in Case 1. This completes the proof.

THEOREM 4.2.
in9 (0, 0). Let

Let X be a closed U-algebra with algebra pattern Y contain-

sup {qlP (P, q) Y, P 4: O} _< 1.
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Let c g.c.d. {p-ql(P, q) Y}. If {(p, q) Y lq #P} is empty, let d O.
Otherwise let d g.c.d. {m (mr, ms) Y} where r and s are relatively prime with
# sir. Then the maximal ideal space ofX is L,c,d.

The idea of the proof will be similar to that of Theorem 4.1 except that less
is known about Y, making the proof more technical.

LEMMA 4.3. (a) For some No Z, (mc, O) Yfor all m > No.
(b) If # > 0, for each q Z there is an N Z such that (mc + q-j,

q -j) Y whenever m >_ N and 0 <_ j <_ q.
(c) If (p, q) Z2 with q/p < # such that c divides p- q, there exists m,

k Z+ with k >_ No such that (rap kc, mq) Y.

Proof ofLemma 4.3. It follows from Proposition 1.1 (b)-(d) that g.c.d.
{ml(m, 0) Y} c. Part (a) follows.

If # > 0, there is a (p, q) Y with q > 0. Proposition 1.1 (b)-(d) then shows
that there are (p, q) Y with arbitrarily large q. Since (mc, O) Y for all large
m, (b) follows from Proposition 1.1 (f).

If (p, q) Z2 where q/p < # and c divides p- q, choose (a b) Y with
b/a > q/p. Choose m* such that m*(bp- qa)> 2Noc and let m m*b. By
Proposition 1.1 (b)(d)(f), for allj _< mq,

(m*qa + Noc j, m*qb j) (m*bp + Noc + m*(qa bp) j, m*bq j) Y.

So (mp kc -j, mq -j) Y where kc m*(bp qa) Noc >_ Noc. This
gives (c).

LEMMA 4.4. Let dp be a homomorphism from X to C. Then p is the re-
striction ofa unique homomorphism *" E*,c,d-- C.

Proof of Lemma 4.4. Let N be defined as in Lemma 4.3.

Case 1. Suppose that for some m >_ No there is a Hm,o such that
b(#) 0. Let (p, q) Y,,a and select a Z+ such that p + amc >_ N + q.
If feH,, Proposition 1.1 (a} shows that 0fHom,o’H_,-
_--o H+,,,_j,_ which is contained in X by Lemma 4.3 {b). Define
p*(f) p(of)/dp(o). As in Theorem 4.1, b* extends by linearity to a homo-.morphism of E,,,a. Since b*(f)= dp(oaf)/dp({l) must hold for all tk* that
extend tk, tp* is uniquely determined.

Case 2. Suppose that for all m >_ No and e Hm,O, b(#)= 0. If (p, q)
Y,,a, q/p < #, andf H,,, define b*(f) 0. If d 0, this defines b* on each

*H,,
_

E,,c,a. If # 1, then d 0, 1 or 2. In each of these cases (p, p) Y if
and only if (p, p) Y,,,d so q is already defined on H,, so set b* tp on H,,,.
If # < 1 and d 0, # sir. The set W {m Z l(mdr, mds) Y} is closed
under addition, and g.c.d. W 1. Thus, there is an N Z+ such that for all
m >_ N, (mdr, mds)e Y. Let (a, b) Y,,a with b/a =/z. Then m >_ Nrd/a
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implies (ma, mb) Y. Proposition 1.1 (b)(d)(e) shows that for all m > 3Nrd/a,
(H.,b)

_
X. Iff e H., and m >_ 3Nrd/a, define *(f) 0 if dp(fm) 0 and

dp*(f) dp(fm+ x)/ck(fm) otherwise,

Extend p* by linearity. Again, b* becomes a multiplicative linear functional
on E*,,a. The way * was defined on H, with b/a # was clearly forced. If
H., Eu,,o, then by Lemma 4.3 (c) there exist m, k Z+ such that (kc, 0) and
(ma kc, rob) Y. Proposition 1.1 (a)(b)(d)shows

(Ha.b)
__
H,,o Hma_kc.mb

so $* must be zero on Ha.b since $ is zero on Hc,O. Thus $* is the unique
extension of $.

Proof of Theorem 4.2. Lemma 4.4 shows that every homomorphism $ on
X has a unique extension, $*, to E*,,,,d SO it is enough to prove that this
extension is bounded. If # < 1, it follows from the proofs of Theorems 2.1, 3.2,,
and 3.4 that $* is bounded if and only if $* is bounded on Hp.q for each
(P, q) Y,,,d. But Proposition 1.1 (b)(d)(f) and Lemma 4.3 (b) imply that
if f Hp,q

_
E,c,d, then fm X for some m Z+. Thus

*(f) (fm) I’/m f II.
If g 1, define I to be the linear direct sum of the H, spaces in El,,a with

q < p and define A to be the sum of the H, spaces in Ex,,a. Iff I, thenf is
contained in the span of finitely many H, spaces with q < k, c dividing p q,
and q/p _< #’ < 1. Then for m Z+, fm is contained in the span of H, spaces
with q < m/c, m < p q, c dividing p q, and q/p < #’. It follows from Lemma
4.3 and Proposition 1.1 (f), that for some mZ+, fmx. Thus,
*(f)l Idp(fm) x/m <- Ilfll, so * is bounded on I. One has * bounded on
A since A __. X. It then follows from Theorem 3.1 (a)(c)(d) and Theorem 3.2,that b* is bounded on E,, as in the proof of Theorem 3.3.
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