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1. Introduction

Let C be a linear space of Radon measures on R. Then we say a bounded
Borel set E C_ R is a determining set for C if and only if /z C,
/z(x + E) 0 for all x Rn implies/z 0 (equivalently,/, , C and
/z(x + E) y(x + E) for all x R implies/z =- ,). The general problem
is: given a class of measures C, find conditions under which a given set E
is a determining set. In this paper we study this problem for various classes
of measures under different growth/decay conditions of the measures at
Let M be the class of all Radon measures, Mr the class of "tempered"
Radon measures, M0 the class of measures "vanishing at oo" and Me the
class of finite complex measures. Then we have M _C M0, Mr C_ M.
We describe the following interesting features:

(i) No bounded Borel set E is a determining set for M [3].
(ii) No "symmetric" bounded Borel set is a determining set for Mr

(Corollary 3.4).
(iii) No "spherically symmetric" bounded Borel set is a determining

set for M0 (Theorem 4.3)
(iv) Every bounded Borel set of positive Lebesgue measure is a deter-

mining set for Me (see [10]).

The problem of finding determining sets when one allows rotations as
well as translations is an old one and is known in the literature as Pompeiu’s
problem [3], [13]. However, in this paper we restrict our attention, for the
most part, to determining sets under translations. Some of the results presented
here are our own while others rephrase old results in the language of
determining sets. The main tool used here is the Fourier transform on R.
Since the basic question is measure theoretic it would be interesting if we
could find geometric proofs of the results obtained without appealing to
Fourier analysis (as for example in the proof of Helgason’s support theorem
for the Radon transform [5]).
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2. Notation and Terminology

For any unexplained terminology see [9]. Let h denote the Lebesgue
measure on R and LI(Rn) the set of complex valued Borel measurable
functions on R which are absolutely summable with respect to Lebesgue
measure. Then LI(Rn) is a Banach space when equipped with the norm
defined by Ilfll f. If(x)l dX(x). (As usual we identify functions which are
equal almost everywhere with respect to Lebesgue measure.) Iff LI(Rn),
X Rn, let xf be defined by Xf(y) f(x + y). Let Vz be the closure in the
norm topology of L(Rn) of the linear span of {xf; x Rn}. If E is a Borel
set, let le denote its indicator function, i.e., le(x) 1 if x E, le(x)
0 if x E. Let S(Rn) be the space of smooth, rapidly decreasing functions
equipped with the Schwartz topology (see [9]). By a tempered distribution
we mean a continuous linear functional on S(Rn). Let C(Rn) denote the
set of infinitely differentiable functions of compact support, C(R) the set
of continuous functions of compact support and C0(Rn) the .set of continuous
functions vanishing at infinity. A continuous linear functional on CT(R")
(equipped with the inductive limit topology) is called a distribution, and a
distribution of order zero is called a (complex) Radon measure (see [9] for
relevant definitions). Alternately a Radon measure is a continuous linear
functional on C(R) equipped with the inductive limit topology (see [9])
(thus, for example, any continuous function f defines a Radon measure
usually denoted by f(x) dh(x)). Let M be the set of all complex Radon
measures on Rn. A Radon measure/z is said to be "tempered" if/z defines
a tempered distribution. (Thus for example, any L-function f and, more
generally, any complex Radon measure of "polynomial growth" are tempered
Radon measures.) Let

Mr {/x M;/x a tempered measure}.

We say /x C M "vanishes at " if/z(x + K) ---> 0 as Ilxll --> o for each
compact set K.

Let
M0 {/z M;/z vanishes at } and

ME {/Z M;/z a finite complex measure}.

Observe that MF

_
Mo, Mr C_ M. Finally let denote covolution (of

functions, measures,, distributions, etc.), .and iff is an L-function or more
generally a tempered distribution, f denotes its Fourier transform (see [9]).
Let C denote the field of complex numbers. An entire function f on C

is said to be of "exponential type" if there exist positive constants A and
r such that

If(z)[ < Ae"llzll for all z Cn.
We now record three theorems which will be used later.

THEOREM 2.1 (Paley-Wiener). Let tx be a tempered distribution on Rn.
Ifl is ofcompact support, then is an entire function on C ofexponential
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type. Conversely if extends to an entire function on C" of exponential
type and is of slow growth on R", then I is compactly supported.

THEOREM 2.2 (Malgrange [7]). Iff and f2 are entire functions on C"
exponential type and iffl/f2 is entire, then fl/f2 is of exponential type.

Finally, let Supp/x denote the (closed) support of/x, and Cx(Supp
the convex hull of the support of

THEOREM 2.3 (Lions and Titchmarsh [4]).
distributions on R of compact support, then

If [1 and [2 are tempered

Cx(Supp (/x */-*2)) Cx(Supp/x) + Cx(Supp/z2).

3. LI(R") and Determining Sets for MT
We begin with the observation that there are no determining sets for the

class M of all Radon measures on R". More precisely we have the following
theorem of Brown-Schreiber-Taylor (see Theorem 4.3 in [3]):

THEOREM 3.1. Let E be a bounded Borel set ofpositive Lebesgue measure
in RE. Then there exists a non-trivial continuous function f on RE such that
fe+x f(y)dh(y) 0 for all x RE. (As the authors point out, the results in
[3] can be generalized to any n > 2.)

In view of this we look for determining sets for Mr, the class of tempered
Radon measures on Rn. We begin by proving the following proposition:

PROPOSITION 3.2. Let E be a bounded Borel subset of R of positive
Lebesgue measure. Then E is a determining set for Mr if and only if
"re(x) 0 for all x in Rn. Equivalently, E is a determining set for Mr if
and only if Vl Ll(Rn).

Proof. We first observe that if there exists x0 R with "fe(Xo) 0,
then Xo - 0 because ]’e(0) h(E). Now consider the complex measure
d/z eux dh(x), where denotes the usual inner product in Rn. Then
0 # tz Mr and (E + x) = 0 for all x Rn. On the other hand, sup-
pose ]’e(x) # 0 for all x Rn. Suppose/z Mr and (x + E) 0 for all
x R". This implies le * 0, where g(A) /x(-A). Since E is bounded
and/z Mr, le * defines a tempered distribution (see [9]) and it has a
Fourier transform in the sense of tempered distributions. Passing to. Fourier
transforms we have ’e 0. (Note ]’e is a C-function since E is bounded.)
Since "re(x) 0 for x Rn, we conclude 0 (as a distribution) and
hence 0; i.e.,/z 0; i.e., E is a determining set for Mr.

Finally, the last part follows immediately from the Wiener-Tauberian
theorem (see [9]).
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Example of determining sets for Mr. Take .n and let

E [-1, 1] U [2 a, 2 + a]

where a is irrational and 0 < a < 1. For R, n > 1, we can take the
n-fold product of E.

We thank M. G. Nadkarni and R. L. Karandikar for this example.
In view of the last part of Proposition 3.2, a natural question to ask at

this stage is." Given a Borel set E such that 0 < h(E) < oo, is there a criterion
to decide whether V. L(R")? In this connection we prove a negative
result, i.e., a large class of sets do not have this property. More generally
we prove the following negative result"

PROPOSITION 3.3. Letf L1(Rn) be real valued, bounded and satisfy the
following conditions:

(i) There exists Xo Rn such that f(x + ho) f(-x + X0) a.e (x).
(ii) There does not exist a continuous function g on R such that

f g almost everywhere.

Then Vs L’(R").
An immediate consequence of this theorem is the following:

COROLLARY 3.4. Let E be a Borel set in R with 0 < h(E) < oo. Suppose
le(x) le(-x) a.e (x). Then V L(R). Thus such an E which is
moreover bounded cannot be a determining set for Mr.

Proof of Proposition 3.3. By translating if necessary we may assume
h0 0. In this case, since f(x) f(-x), f^ is a real valued function. To
prove the theorem it is enough to show that f" has a zero. Suppose not.
Since f" is a continuous real valued function on R we may assume if(t) >
0 for t R. Now, it is known that iff L1(R) is bounded and f"(t) > 0
for all t, then f" L(R). (See Remark (i) following this proof.) However,
by Fourier inversion, this implies thatfix) g(x) (a.e) where g is a continuous
function. This contradicts condition (ii) and the proof of the theorem is
complete. The corollary is immediate from the theorem. (Corollary 3.4 can
be regarded as an analogue of Theorem 3.1; i.e., we have shown that a
"symmetric set" E can never be a determining set for Mr.)

Remarks. (i) Iff L t’l L, thenf L2. Choose an approximate identity
{u} in L such that 0 < a L L2 (many such exist). Then an
uniformly on compact sets. If f" > 0, we have 0 < fad" fu,f < IIql.
Hence f" L and in fact f fl < Ilfll.

(ii) The corresponding theorem is false in L2(R). In fact, iffis any non
trivial function in L2(R) which vanishes outside a compact set, then it can
be easily shown that the linear span of the translates offis dense in L2(Rn).
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(iii) As remarked in the introduction, the Pompeiu problem concerns
itself with the following question" What conditions on the set E ensure that
E is a determining set for M if one allows rotations as well as translations?
More precisely we say that a bounded set E of positive measure has the
Pompeiu property if/z 0 whenever/z M and/z(tr(E)) 0 for all rigid
motions tr of R. So the above question can be reformulated as follows’
when does E have the Pompeiu proerty? This question is surprisingly deep
and leads to problems of spectral synthesis. It has been completely answered
by Brown-Schreiber-Taylor in [3] and the condition involves the "complex
zeros" of ’e. However in the same paper it is pointed out that the following
theorem is, on the other hand, quite easy: for each ct > 0, let

C {x R Ilxll
Then the following are equivalent: (i) Iff is a bounded continuous function
on R such that fe)f(x)dh(x) 0 for all rigid motions tr of R, then f-
0; (ii) "i’e does not vanish identically on C for any a > 0. We wish to point
out that this theorem can be strengthened. We say a bounded set E of
positive measure has the Pompeiu property for Mr if/z 0 whenever
/z Mr and/z(o’(E)) 0 for all rigid motions tr of R. Using the methods
of Proposition 3.2 and standard properties of Fourier transforms and or-
thogonal transformations, one can prove that if

C {xR’llxll a} foray>0

then the following are equivalent" (i) E has the Pompeiu property for Mr;
(ii) ’e does not vanish identically on C for any a > 0.

4. Determining Sets for Mo
We begin with the following remark. Let/z M0 and letfbe the indicator

function of a ball with centre at 0 such that f fdh 1. Let f, be the
corresponding approximate identity. Then

f**f**lz--’>l as e --> 0

(in the sense of distributions). Nowf f, /z e C0(R). In view of this, in
most arguments, it is enough to take /z g(x)dh(x) with g C0(R).
It follows from a deep theorem about mean periodic functions on R (see
[2], [6]) that if f C0(R), E is a bounded Borel subset of R of positive
Lebesgue measure and fe+y f(x)dh(x) 0 for all y R, then f--- 0. In
view of the remark in the first paragraph we can rephrase this result as
follows:

THEOREM 4.1. Let E be a bounded Borel subset ofR ofpositive Lebesgue
measure. Then E is a determining set for Mo(R).

Using this result it is proved in [2] that"
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THEOREM 4.2. Let E be a bounded Borel subset ofR ofpositive Lebesgue
measure of the form E1 E2 En where each Ei is a bounded Borel
subset of R. Then E is a determining set for Mo.

The question of what happens if E is not of the above type is left open
in [2]. The following theorem shows that for sets which are not product
sets the situation can be very unsatisfactory.

THEOREM 4.3. Let E be a bounded Borel subset ofR" (n > 1) ofpositive
Lebesgue measure. Also assume that E is spherically symmetric about 0
O.e., x E implies Tx E for all orthogonal transformations T). Then E
is not a determining set for Mo.

Proof. Since E is spherically symmetric about 0, it is symmetric about
0 (i.e., x E implies -x E). Hence by Corollary 3.4, there exists
0 x0 R" such that "e(Xo) O. Let I[x0[I R > 0. Then, because E is
spherically symmetric, ]’e vanishes on {x; Ilxll R}, Let Wn be the uniform
probability measure on {x; Ilxll R}, Then it is well known that fin
C0(Rn). Now "EWR is.the zero measure. Hence (’eW) --= 0; i.e., le * I

0; i.e., fe+y lndh 0 for all y R".Thus E is not a determining set
for M0.
The following interesting remark is due to B. V. Rao. Theorem 4.2 can

be interpreted as follows. Let E be as in the theorem. Let /z M and
suppose there exists c C such that for every compact set K, (tz ch)
(x + K) 0 as Ilxll (i.e., /x is asymptotically like the Lebesgue
measure). Further if/x(x + E) /x(E) for all x Rn, then/x ch; i.e.,
if/z is a Radon measure which is asymptotically like the Lebesgue measure
and is moreover translation invariant with respect to the single set E, then
it is actually (a constant multiple of) the Lebesgue measure.
Theorem 4.3 (and its proof) is motivated by an example, given to us by

Prof. J. P. Kahane, of a non trivial mean periodic function on R vanishing
at .

5. Support Theorems for Finite Measures

It is easy to prove (see [10]) that if E is a bounded Borel set of positive
measure in R", then E is a determining set for MF. It is therefore natural
to ask the following question: If/z MF and/z(x + E) 0 for all x R
such that [xl > R, can one say something about the support of/z? We prove
in this section that if/x is "very rapidly decreasing", then indeed one can
conclude that/x is of compact support. The theorem we are going to prove
is essentially a reinterpretation of some famous results of Malgrange in [7].
Before stating our theorem, we make a definition.

DEFINITION 5.1. I MF is said to be "very rapidly decreasing" if
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Let

ellXlld I/x[ (x) < for all r > 0.

N {l MF; "very rapidly decreasing"}.

THEOREM 5.1. Let I N and let E be a bounded Borel set ofpositive
measure such that E C_ {x Ilxll < r}. If t(x / E) 0 for all x with
lxll > R, then Supp/x C_ {x Ilxll < R / r),

Proof. Since g N it is easy to show that is an entire function on
C", bounded on R". Further, the condition /x(x + E) 0 for Ilxll > R
implies that g e g where g is a measure of compact support, Supp

c_ Bn (where g(A) /x(-A)). Passing to Fourier transforms we have
]’e . Moreover ]’e.and are entire functions on C of exponential

type, being., Fourier transforms of compactly supported measures. As already
observed is an entire function and hence it follows from Theorem 2.2 that
/z is of exponential type (and is moreover bounded on R"). Thus by Theorem
2.1, g is of compact support; i.e.,/x is of compact support. It follows easily
from Theorem 2.3 that Supp/x C_ B+ and this concludes the proof of our
theorem.
The theorem above is motivated by Helgason’s support theorem for

Radon transforms (see [5]). In Helgason’s theorem one needs to assume
only "rapid decrease" whereas we have to assume "very rapid decrease".
We observe below that this condition is really necessary.

PROPOSITION 5.2. Let E be a bounded Borel subset of R of positive
Lebesgue measure such that "fe(zo) 0 for some zo C, zo q R. Then
there exists f S(R), f not of compact support, such that f le is of
compact support.

Proof. We first remark that such an E does exist; for example, take E
to be the disjoint union of two closed bounded intervals of R, suitably
chosen--see the example of a determining set for Mr in 3.
Choose g CT(R) suchthat (z0) -7t: 0---this is certainly possible. Now

,(x)
S(R)

x Zo

(because Zo R and g(x) S(R)) and hence there exists f S(R) such
that

(x) x)
x R.

X Z0

However f is not of compact support because (z)/(z Zo) is not entire.
Now
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f(x) Te(x) (x);e_---, x R.

Also the right hand side extends to an entire function on C of exponential
type (because both , "fe(z)/(z Zo) are entire functions of exponential
type--note zo is a zero of ’e(z)). Thus

(f " e) (f, le)

is an entire function of exponential type and hence since it is bounded on
R, by Theorem 2. l, f, le is of compact support. As already observed,
f S(R) but f is not of compact support and the proposition is proved.

We can generalize this proposition to R by taking the n-fold product of
E.
However if the set E is "sufficiently nice" we can get a support theorem

without any decay conditions on the measure/z, as the next proposition
indicates. For simplicity we work with R2 but the same proof can be used
in R.

PROPOSITION 5.3. Let E {(x, x2) xi
2 + x < r2}. If Ix Me(R2) and

I(x + E) 0 for x R with Ilxll > R, then Supp/ _C B+r.

Proof (sketch). We are given that/z le g where g is a measure of
compact support and supported in Bn. Passing to Fourier transforms, we
have (x) "re(x) (x) for x R2. Now it is known that the zeros of ’e
on R2 occur precisely on a sequence of circles

{(x,,x2)’x2 +x r/2}, 0<r,<r2<

Since is a continuous function on R2, , also vanishes on these circles.
But is an entire function on C2 and hence vanishes on

{(z, z2) C2; z + z2

Since z2 + Z
2
2 r2 is an irreducible entire function vanishing on this set,

it divides . Also ’e vanishes precisely on those sets and it can easily be
shown by an argument similar to above that if (z2 + z2 r2) divides
then it divides . From this it follows that /’e is an entire function on C2

and hence, since
,(x)

(x) - for x R2,

extends to an entire function on C. The rest of the proof is exactly as
in Theorem 5.1.

Remarks. (i) For finite measures there is no need to confine oneself to
bounded sets E. For a discussion of determining sets without assuming
boundedness of E, see 1], 10], 11].
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(ii) For a discussion of determining sets for MF in the context of general
locally compact abelian groups etc., see [8].

(iii) The main idea in the proof of Proposition 5.3 is motivated by the
proofs in [3].
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