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1.1 Introduction. We denote by f a domain properly contained in n-
dimensional Euclidean space Rn. A continuous nondecreasing function

,(t)" [0, oo) -o [0, o) with X(0) 0

is called a majorant if )(t + t2) < ,(tx) + ,(t2), 0 < tl, 2 < 00. When f:
f---> Rm and X(t) is a majorant we write f Lipx(fl ) if there exists a
constant M < o such that

If(xx) -f(x) < M(Ixx- xl)

for all x1, X 2 ’. We denote the smallest such M by Ilfllx. When h(t) ,
0 < a < 1, the classes Lipx() are the usual__Lipschitz classes. We write D for
the open unit disk of the complex plane, D for its closure and OD for its
boundary. Theorem 1.2 follows from theorems of Hardy and Littlewood (see
[9] and [2]). When 0 < a < 1, it can be derived from a similar theorem of
Privalov concerning conjugate functions on OD [15].

1.2 THEOREM. lff u + iv is analytic in D, if X(t) a, 0 < a < 1, and
/f u LiPx(D ), then f Lipx(D ). Moreover Ilfllx < Cllullx where C is a

constant which depends only on a.

The papers [6] and [7] by Gehring and Martio show that Theorem 1.2 holds
for a wide class of planar domains, so-called Lip-extension domains (see
Section 2). On the other hand, simple examples show that Theorem 1.2 fails in
arbitrary domains.
The main result of this paper, Theorem 3.8, generalizes Theorem 1.2 to

quasiregular mappings in certain domains in R" and to somewhat more
general majorants than . Theorem 3.8 reduces to Theorem 1.2 in the case
that =D, K=land h(t)=t.
We first show that Theorem 3.8 holds locally in balls. The geometry of

Lipx-extension domains (Section 2) then guarantees that the result holds
globally.
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We define the modulus of continuity of a continuous function f: E R"
over a set E c Rn as

0(f, ; E) sup(lf(x) -f(xz) x, x2 E and Ix- x2l -< }.
Moduli of continuity are nondecreasing with 0(f,0; E)= 0. Moreover,
o(f, 8" D) and o(f, 8; D) are majorants. Corollary 3.7 states that the moduli
of continuity of the components of a quasiregular mapping are locally equiv-
alent. In Section 4 we give examples of bounded analytic functions f u + iv
in D with

lim w(v,. ; D)
-,o w(u, ; D)

Hence in general the moduli of continuity of the components of a bounded
quasiregular mapping are not globally equivalent even in a ball.

2.1 Lipx-extension domains. When f: f ---, R’ we write f locLipx(fl) if
there exists a constant M such that (1.1) holds whenever xx, x2 fl with
Ix x21 < 1/2d(xl, Of). Here d(xx, Of) denotes the Euclidean distance from
x to the boundary of fl, Off. We denote the smallest such M by Ilfll.

2.2 Remark. In [11], Lappalainen shows that if (1.1) holds whenever

Ix x2l < ad(x,

for some a < 1, then f locLipx(f).

We call f a Lipx-extension domain if there exists a constant b such that
Ilfll x < bllfll, for all f: fl Rm. That is, f Lipx(f) whenever f
locLipx(f ). fl is a Lipx-extension domain if and only if there exists a
constant M such that each pair xl, x2 f can be joined by a continuous
curve ,/c fl satisfying

(2.1) -( }" ds < MX ( x

(see [11]). These domains were first identified by Gehring and Martio for
X(t) ’ and called Lip-extension domains [7].

For certain X(t), the class of Lipx-extension domains is wide. All uniform
domains are Lipx-extension domains if and only if there is a constant A such
that

(2.2) f0 _< ax(t)
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for all 0 < < o (see [11] and [14]). In particular, if X(t)= , all balls,
half-spaces, wedge-domains and quasiballs are Lipx-extension domains for all
0<a<l.

3.1 Quasiregular mappings. We refer to the following spaces of functions:
Wx(f), Sobolev space of L-integrable functions with L-integrable distri-

butional first derivatives over f.
W.lo(f) n W2(f’), where the intersection is taken over all f’ compactly

contained in f.
We write Df for the Jacobi matrix of f and IDfl for its norm as a linear
transformation. J/is the Jacobian determinant of f.

3.2 DEFINITION. A function f: fl --) R" is K-quasiregular in fl R",
1_< K< o,if

(a) / W.n, lo( )
(b) Dfl" _< KJ, a.. in .
When n 2, f is 1-qr if and only if it is an analytic function. A function f

is a K-quasiregular homeomorphism if and only if it is K-quasiconformal in
the usual sense (see [17], [13] and [12]).
We first prove a local version of Theorem 1.2 for quasiconformal mappings.

Although this is a special case of Theorem 3.6, its proof is more geometric in
character. We assume from here on that h(t) is a majorant.

3.3 THEOREM. lff (fl, f2,..., fn) is K-quasiconformal in f, and if

fj locLipx(f)

for somej 1,2,..., n, then f locLipx() with Ilfllk _< CIIf.ll. Here C is
a constant which depends only on n, ) and K.

Proof. Since f is K-quasiconformal there exists a continuous, strictly
increasing function 0r(t): (0,1)
lim, o0r(t) 0 and

(3.1)

for all x, x: $ satisfying Ix x_l < d(x, 3f) (see [4]). We use the
notation

Iv( f x) rain If(x)-f(y)
Ix-yl =r

Lr(f,x) max If(x) f(y)l.
Ix-yl
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Choose CO so that Or(Co) 1. Fix xx f]. For each x2 ( with

Ix1- X2[ < Cod(x1, Oa),

(3.1) gives

If(xt) f(x2)[ < d(f(xl), 0f(a)).

In other words, if B(y, r) (x R"I x Y < r } then

(3.2) B(f(xl) Lr(f, Xl)) C

where r Ix -x21. By a standard distortion theorem (see [17] and for
n 3, [4]), we conclude from (3.2) that

(3.3) tr(f, xl)
lr(f, Xl) < ex(n)K C(n, K),

where x(n) is a constant which depends only on n. Next choose x3 so that

IXl- x3l IXl- x2l r

and f(xl) -f(x3) is a vector in the fj-direction. Since fj locLipx(f), (3.3)
gives

If(x) f(x2) < Lr(f, Xl)
< C(n, K)lr(f, Xl)
< C(n, K)lf(x) f(x3)

C(n, K)lf.(x) f(x3)
< C(n, K)llfjll[c)k(lXl xal )

C(n, K)[lfj.ltiX(lXl- x21 ).

Hence f locLipx().
We immediately obtain the following theorem.

3.4 THEOREM. /f f= (fl, f2,..., fn) is K-quasiconformal in a Lipx-exten-
sion domain f and iffj Lipx(fl ) for somej 1,2,..., n, then

f Lipx(a) with II/11 x -< Clif.ll x,

where C is a constant which depends only on n, X, f and K.
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We now prove Theorem 3.4 for quasiregular mappings. We use certain
integrability results which require the following definitions.

3.5 DEFINITIONS. If E c Rn is a measurable set we write EI for the
n-dimensional Lebesgue measure of E. We write dx dxldx2.., dx for
Lebesgue measure and assume this measure when it is omitted from an
integral. If B c Rn is a ball, then oB, o >_ 1, denotes the ball with the same
center as B and with a radius of o times that of B.

3.6 THEOREM. Iff (fl, f2,..., f) is K-quasiregular in f and if

fj locLipx(f) for somej 1,2,..., n,

then

f locLipx(f ) with Ilfll, < CIIf.ll

where C is a constant which depends only on n, ?t and K.

Proof. By Remark 2.2, it is sufficient to show that

f(xx) -f(x)l _< cX(Ixx- xl) whenever

Fix such an xl and x2 and set B B(x, Ix x2l ). Then 4B 2. Next if f
is K-quasiregular in fl, then there exists an s > n, depending only on n and
K, such that f W.,lo(fl). Moreover for every open set A compactly
contained in fl we have

(3.4) IDfl <_ Cd(A, Oax)("-/s lDfl
where C is a constant which depends only on n and K. Here d(A, 1) is the
Euclidean distance between A and Of. See [1]. When f is quasiconformal,
this result is due to Gehring [5]. Since f WI(B), the following estimate
holds for each x, y B:

(3.5) If(x) f(Y)l < diam B Dfl

where C(n) is a constant which depends only on n. Here diam B denotes the
Euclidean diameter of B (see [1]).
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Using (3.4), with
y x2, we obtain

=3/2B and A=B, and (3.5), with x=x and

(3.6) ssC n2 ( 1 fl ) 1/sIf(x1) f(xg_)[ < _( diam B - Dfl

<CtdiamB - s/zlDfl
Next if f (f, f2,..., f,) is K-quasiregular in and if D is a ball with

oDc f, o > 1, then for every a R and j 1, 2,..., n we have

(3.7)
1/n

where C is a constant which depends only on n (see [10]). Using (3.7) with
D 3/2B and fl 2B, (3.6) becomes

1

lf[f(x) -/(x)l < c,_
I2BI

Choose a f(xt). When x 2B, Ix xtl < 1/2d(xt, 0f) and since fj
locLipx(fl) we obtain

(3.8) If(x) f(x.) C=llfj.IIk 12Bl (Ix xl)" dx

_< c x( lx - x l)
_< 2CX(Ix- xl).

Hence f locLipx(f).

3.7 COROLLARY. If f= (f, rE,..., f,) is K-quasiregular in , then there
exists a constant C, ,depending only on n and K, such that

for allj 1, 2,..., n and all balls B with 2B c .
Proof Since 2B c f, fj is bounded in B and w(f, 8; B) is a majorant. If

x, y f with Ix Yl <- 1/4d(x, 0), then (3.8) gives

(3.9) If(x) f(Y) -< 2Cato(fj, Ix Yl; Bo)

where Bo B(x, 1/4d(x,
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Now fix xt, X2 B. If x2 B(xt, 1/4d(xx, 0fl)), then (3.9) holds with
x xx and y x. Otherwise let L c B be the line segment joining x to x2

and define points yj and balls Bj as follows:

Yl Xl

Bj B( yj, 1/4d( yj, Oa))
Yj+ L n OBj where lYj Yxl < lYj+ YxI,

for j 1,2,..., N- 1 where N is the integer such that x2

B(yN, 1/4d(yN, 0f)). If r(B) is the radius of B and Yv+ x2, then d(yj, Of)
>_ r(B) for j 1, 2,..., N + I and we have

N-1

1/4(N- 1)r(B) < . 1/4d(Yk, Of])
k-1

N-1

lYk+t--Ykl
k-’-I

_< IXl x2l
_< 2r(B)

and N < 9. Hence

N

If(xx) $(x)l _< E I$(y+x) f(y)l
kl

N

< 2C3 E 0(f, lYk+x Ykl; B)
k-1

< 18C3o(f, Ix x2l; B).
The result follows.
The next result also follows from Theorem 3.6.

3.8 THEOREM. If f (fx, f2,..., f,) is K-quasiregular in a Lipx-extension
domain and iff Lipx(f]) for some j 1, 2,..., n, then f Lipx(f) with

Ilfllx -< CIIfj.IIx, where C is a constant which depends only on n, f, h and K.

We next present an example which shows that Theorem 3.8 fails in arbitrary
domains.

3.9 Example. The function f(reio) log r + iO is analytic in

f {reill < r < oo andO < 0 < 2r}.
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WhenO<a<landl <rl<r2< oowehave

1
log r log r < (r rx)

Hence Re f Lipx(fl ), h(t) , for all 0 < a < 1. However if zt
z2 re i(2*r-O, then

lim
Arg z Arg 22

CK for all 0 < a < 1.
-o Iz-z21

re ie and

4.1 Other moduli of continuity. The unit disk D is a Lipx-extension domain
if and only if there exist constants C and b such that

(4.1) fosk(t)t dt _< C,(8)

whenever 0 < 8 < b. See [11]. The following theorem shows that the moduli of
continuity of the components of an analytic function in D need not be
equivalent when (4.1) fails. We use the notation a e -(p+2),

0

A(t) log-{- loglog 7-

if O,

if0<t<a,

if a< t,

and

0 if O,

t) ifO<t<a,

if a< t,

for p >_ 1. Ap(t) and .p(t) are concave majorants.

4.2 THEOREM. For each p >_ 1 there exists an analytic function in D,
f u + iv, with u Lipxp(D) and v q LiPxp(D). Moreover when p > 1, f
Lipxp_ I(D).
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Proof.
A(a)/a. For [-r, r],

First we define the boundary values of u as follows with rn

Ay(t)

it)= -m(t-2a)
0

u(e

If It t21 < a, then

If Itx

if0<t <a,

ifa<t<2a,
otherwise.

lu(e"’) u(e")l<_ (1 + ,r/2)A,(le ’t’

tz[ a, then

lu(e’") u(e") _< 2A,(a) < 2(1 + ,r/2)Ap(le itx eit21 )’

Hence u LipA(OD). Since u is harmonic, when _< 1/2 Poisson’s formula
gives

(1)w(u, 8; D) _< Cllog w( u, 8; OD ) whereC
3,r log or
log 2

Hence u Lipxp(D). The conjugate function on the 0D is given by

(v(e ’t) cot 2 u(e ds.

v(t) is bounded when p > 1 and assuming 0 < 8 < a we have

v( e-i) v(1) cot - -cot 2 u( e it) dr-- ot ((e -.(e ) e.

Hence

-i)_ (1) > gcot(-) u(e") dt

L (t) it ))dta+cot - ( u( e ) u( ei’-*)

f2a+ (t) it ))dt
a+

cot " ( u( e ) u( ei(’-)

> cot u(e )dr

-2A(a)cot(-)8- A,(
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We write CO 3A,(a)cot(a/2). Next

fo
g (t) foU(e")dtcot - u(eit) dt >

1 1
1p-1

log logg
X_l()
p-1

Since limt_.,o/h_l(t ) oo there exists o > 0 such that 2(p- 1)Cot <
kp_l(t ) whenever 0 < < 0. Hence for 8 sufficiently small,

12rl(e-’*)- v(1)l >- 2(p- 1)

Since

X,-l(t)
lim lim log log

1
t-.O kp (t) t..-O "

v ff Lipx_(D).
To show that f Lipxp_l() we apply the following general inequality (see

[3, p. 106]). There is a constant C1, independent of f and o(u, t; OD), such
that

w(v 8" gD)< Cl(foW(u’ t; D) dt + 8 f,w(u’ t; BD) dr)2

Since Ap(t)/t is nonincreasing, we obtain

6o(v,8;OD)<C2(foSAp(t) fl )dt + A,(8) --[ dt

=C2 (( P 1
1 ) h_,(8)+h,(8)(log r- log 8))

Hence v Lipxp_,(0D) and so f Lipx,_( 0D). Since f is analytic it follows
that f L.ipxp_,(D ). Proofs of this last assertion can be found in [16] and [8].
This completes the proof of Theorem 4.2.
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