A GENERALIZATION OF HALÁSZ'S THEOREM TO BEURLING'S GENERALIZED INTEGERS AND ITS APPLICATION

BY
Wen-Bin Zhang ${ }^{1}$

0. Introduction

In 1968 Halász [6] proved the following important result:
Theorem. Let $f(n)$ be a completely multiplicative function such that $|f(n)|$ ≤ 1 holds for all $n \in \mathbf{N}$. Suppose that

$$
F(s):=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}=\frac{c}{s-1}+o\left(\frac{1}{\sigma-1}\right)
$$

holds with constant c as $\sigma=\operatorname{Re} s \rightarrow 1+$ uniformly for $-K \leq t \leq K$ for each fixed $K>0$. Then

$$
F(x):=\sum_{n \leq x} f(n)=c x+o(x)
$$

This theorem is generalized here in Theorem 1.1 to Beurling's generalized integers [1], [2]. We then apply Theorem 1.1 to prove Theorem 2.1 which is a generalization of Halász-Wirsing's theorem [4], [9]. From Theorem 2.1, we deduce Theorem 2.3 on the estimate $M(x)=o(x)$. The latter combined with a theorem of Beurling [2] and an example of Diamond [3] shows that the prime number theorem and the estimate $M(x)=o(x)$ are not completely equivalent.

1. A generalization of Halász's theorem

Let $\mathscr{P}=\left\{p_{i}\right\}_{i=1}^{\infty}$ be a sequence of real numbers subject to the following three conditions but otherwise arbitrary:
(i) $p_{1}>1$,
(ii) $p_{n+1} \geq p_{n}$,
(iii) $p_{n} \rightarrow \infty$.

[^0]Following Beurling, we shall call such a sequence \mathscr{P} a set of generalized (henceforth $g-$) primes. Let \mathscr{N}^{*} be the set of all sequences $\nu=$ $\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right)$ of non-negative integers all but a finite number of which are zeros. Then, under the addition of sequences, \mathscr{N}^{*} is an additive semi-group. For each $\nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \in \mathscr{N}^{*}$ we set

$$
n(\nu)=\prod_{j=1}^{\infty} p_{j}^{\nu_{j}}
$$

Then for $\nu^{\prime}, \nu^{\prime \prime} \in \mathscr{N}^{*}$, we have $n\left(\nu^{\prime}+\nu^{\prime \prime}\right)=n\left(\nu^{\prime}\right) n\left(\nu^{\prime \prime}\right)$. In this sense, the set of all $n(\nu)$ is a multiplicative semi-group which we consider to be generated by \mathscr{P}. Moreover, this set is countable and may be arranged in a non-decreasing sequence $\mathscr{N}=\left\{n_{i}\right\}_{i=0}^{\infty}$ (where $n_{0}=1, n_{1}=p_{1}$, etc.). We shall call \mathscr{N} the set of g-integers associated with \mathscr{P}.

Let $f(\nu)$ be a complex-valued function defined on \mathscr{N}^{*}. We define

$$
F(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} f(\nu)
$$

In particular,

$$
N(x)=N_{\mathscr{P}}(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} 1
$$

denotes the distribution function of the g-integers associated with \mathscr{P}. A function f is said to be completely multiplicative if

$$
f\left(\nu^{\prime}+\nu^{\prime \prime}\right)=f\left(\nu^{\prime}\right) f\left(\nu^{\prime \prime}\right)
$$

holds for all $\nu^{\prime}, \nu^{\prime \prime} \in \mathscr{N}^{*}$. For convenience, we write $f(\nu)$ as $f\left(n_{i}\right)$ for $n_{i}=n(\nu)$. If $f(\nu)$ is completely multiplicative on \mathscr{N}^{*} then we have

$$
f\left(n_{i} n_{j}\right)=f\left(n_{i}\right) f\left(n_{j}\right)
$$

for all $n_{i}, n_{j} \in \mathscr{N}$ and in this case we will call f a completely multiplicative function on \mathscr{N}. Suppose that $F(x)=O(x)$. Then we have

$$
\hat{F}(s):=\int_{1-}^{\infty} x^{-s} d F(x)=\sum_{i=0}^{\infty} \frac{f\left(n_{i}\right)}{n_{i}^{s}}
$$

for $\sigma>1$.
Theorem 1.1. Let $f\left(n_{i}\right)$ be a completely multiplicative function on \mathscr{N} such that $\left|f\left(n_{i}\right)\right| \leq 1$ holds for all $n_{i} \in \mathscr{N}$. Suppose that, for some constant $A>0$,

$$
\begin{equation*}
\int_{1}^{\infty} x^{-2}|N(x)-A x| d x<\infty \tag{1.1}
\end{equation*}
$$

and either

$$
\begin{equation*}
\int_{1}^{x} t^{-1}\{N(t)-A t\} \log t d t \ll x \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{1}^{\infty} x^{-3}|N(x)-A x|^{2} \log x d x<\infty \tag{1.3}
\end{equation*}
$$

holds. Furthermore, suppose that

$$
\begin{equation*}
\hat{F}(s)=\frac{c}{s-1}+o\left(\frac{1}{\sigma-1}\right) \tag{1.4}
\end{equation*}
$$

holds as $\sigma=\operatorname{Re} s \rightarrow 1+$ uniformly for $-K \leq t \leq K$ for each fixed $K>0$. Then we have

$$
\begin{equation*}
F(x)=c x+o(x) \tag{1.5}
\end{equation*}
$$

Remark. (1.4) is Halász's condition. (1.2) is an average form of the condition

$$
N(x)=A x+O(x / \log x)
$$

To prove Theorem 1.1, we need several lemmas.
Lemma 1.2. Let $N(x)$ be a real-valued nondecreasing function. If, for some constant A,

$$
\int_{1}^{\infty} \frac{N(x)-A x}{x^{2}} d x
$$

converges then, as $x \rightarrow \infty, N(x)=A x+o(x)$.
Proof. Let $0<\varepsilon<1$. We have

$$
\frac{N(x)}{x} \leq \frac{1+\varepsilon}{\varepsilon}\left(\int_{x}^{(1+\varepsilon) x} \frac{N(t)-A t}{t^{2}} d t+A \log (1+\varepsilon)\right)
$$

It follows that

$$
\limsup _{x \rightarrow \infty} \frac{N(x)}{x} \leq \frac{1+\varepsilon}{\varepsilon} A \log (1+\varepsilon)
$$

Letting $\varepsilon \rightarrow 0$, we obtain

$$
\limsup _{x \rightarrow \infty} \frac{N(x)}{x} \leq A
$$

In the same way, from

$$
\frac{N(x)}{x} \geq \frac{1-\varepsilon}{\varepsilon}\left(\int_{(1-\varepsilon) x}^{x} \frac{N(t)-A t}{t^{2}} d t+A \log \frac{1}{1-\varepsilon}\right)
$$

we can deduce

$$
\liminf _{x \rightarrow \infty} \frac{N(x)}{x} \geq A
$$

Lemma 1.3. Assume (1.2). Given $\eta>0$, we have, for $1<\sigma \leq 2$,

$$
\begin{align*}
& \int_{-\eta}^{\eta}\left|\int_{1}^{\infty} x^{-(\sigma+i t)-1}\{N(x)-A x\} \log x d x\right|^{2} d t \tag{1.6}\\
& \quad=O\left((\sigma-1)^{-1}\right)
\end{align*}
$$

Proof. Set

$$
\hat{\Phi}(s)=\int_{1}^{\infty} x^{-s-1}\{N(x)-A x\} \log x d x
$$

Then we have

$$
\frac{\hat{\Phi}(s)}{s}=\int_{1}^{\infty} x^{-s-1} \Phi(x) d x=\int_{0}^{\infty} e^{-i t u-\sigma u} \Phi\left(e^{u}\right) d u
$$

where

$$
\Phi(x)=\int_{1}^{x} t^{-1}\{N(t)-A t\} \log t d t
$$

By Plancherel's formula for Fourier transforms [5, Chapter 3, 13], we have

$$
\int_{-\infty}^{\infty}\left|\frac{\hat{\Phi}(\sigma+i t)}{\sigma+i t}\right|^{2} d t=2 \pi \int_{0}^{\infty} e^{-2 \sigma u} \Phi^{2}\left(e^{u}\right) d u
$$

We note that, by (1.2), $\Phi\left(e^{u}\right) \ll e^{u}$ holds. It follows that

$$
\int_{-\infty}^{\infty}\left|\frac{\hat{\Phi}(\sigma+i t)}{\sigma+i t}\right|^{2} d t \ll \int_{0}^{\infty} e^{-2(\sigma-1) u} d u \ll(\sigma-1)^{-1}
$$

and hence

$$
\int_{-\eta}^{\eta}|\hat{\Phi}(\sigma+i t)|^{2} d t<{ }_{\eta} \int_{-\infty}^{\infty}\left|\frac{\hat{\Phi}(\sigma+i t)}{\sigma+i t}\right|^{2} d t \ll(\sigma-1)^{-1}
$$

Lemma 1.4. Assume (1.3). Then we have

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|\int_{1}^{\infty} x^{-(\sigma+i t)-1}\{N(x)-A x\} \log x d x\right|^{2} d t \tag{1.7}\\
&=o\left((\sigma-1)^{-1}\right)
\end{align*}
$$

Proof. Let I denote the integral on the left-hand side of (1.7). Then by Plancherel's formula for Fourier transforms, we have

$$
\begin{aligned}
I & =\int_{-\infty}^{\infty}\left|\int_{0}^{\infty} e^{-i t u-\sigma u} u\left\{N\left(e^{u}\right)-A e^{u}\right\} d u\right|^{2} d t \\
& =2 \pi \int_{0}^{\infty} e^{-2 \sigma u} u^{2}\left\{N\left(e^{u}\right)-A e^{u}\right\}^{2} d u
\end{aligned}
$$

By (1.3),

$$
\int_{0}^{\infty} e^{-2 v} v\left\{N\left(e^{v}\right)-A e^{v}\right\}^{2} d v
$$

is convergent. Define

$$
\phi(u)=\int_{u}^{\infty} e^{-2 v} v\left\{N\left(e^{v}\right)-A e^{v}\right\}^{2} d v
$$

Then $\phi(u)=o(1)$. By integration by parts, we have

$$
\begin{aligned}
I & =2 \pi \int_{0}^{\infty} \phi(u) e^{-2(\sigma-1) u}(1-2(\sigma-1) u) d u \\
& \leq 2 \pi \int_{0}^{\infty} \phi(u) e^{-2(\sigma-1) u} d u \\
& =o\left((\sigma-1)^{-1}\right)
\end{aligned}
$$

Lemma 1.5 [8]. Let $\hat{G}_{k}(s)=\int_{1-}^{\infty} x^{-s} d G_{k}(x), k=1,2$, converge for $\sigma>1$. Suppose that $\left|d G_{1}\right| \leq d G_{2}$. Then for all $T \in \mathbf{R}, \eta>0$ and $\sigma>1$ we have

$$
\int_{T}^{T+\eta}\left|\hat{G}_{1}(\sigma+i t)\right|^{2} d t \leq 2 \int_{-\eta}^{\eta}\left|\hat{G}_{2}(\sigma+i t)\right|^{2} d t
$$

Proof. We have

$$
0 \leq \frac{1}{\eta} \int_{-\eta}^{\eta}\left(1-\frac{|t|}{\eta}\right) e^{i x t} d t= \begin{cases}\left(\frac{\sin \frac{1}{2} \eta x}{\frac{1}{2} \eta x}\right)^{2} & \text { for } x \neq 0 \\ 1 & \text { for } x=0\end{cases}
$$

Therefore, for $\sigma>1$, we have

$$
\begin{aligned}
\int_{T}^{T+} \quad \mid & \left|\hat{G}_{1}(\sigma+i t)\right|^{2} d t \\
\leq & 2 \int_{-\eta}^{\eta}\left(1-\frac{|t|}{\eta}\right)\left|\hat{G}_{1}\left(\sigma+i\left(T+\frac{1}{2} \eta+t\right)\right)\right|^{2} d t \\
= & 2 \int_{1-}^{\infty} \int_{1-}^{\infty} x^{-(\sigma+i(T+\eta / 2))} y^{-(\sigma-i(T+\eta / 2))} \\
& \times\left(\int_{-\eta}^{\eta}\left(1-\frac{|t|}{\eta}\right) x^{-i t} y^{i t} d t\right) d G_{1}(x) d G_{1}(y) \\
\leq & 2 \int_{1-}^{\infty} \int_{1-}^{\infty} x^{-\sigma} y^{-\sigma}\left(\int_{-\eta}^{\eta}\left(1-\frac{|t|}{\eta}\right) x^{-i t} y^{i t} d t\right) d G_{2}(x) d G_{2}(y) \\
= & 2 \int_{-\eta}^{\eta}\left(1-\frac{|t|}{\eta}\right)\left|\hat{G}_{2}(\sigma+i t)\right|^{2} d t \\
\leq & 2 \int_{-\eta}^{\eta}\left|\hat{G}_{2}(\sigma+i t)\right|^{2} d t .
\end{aligned}
$$

Proof of Theorem 1.1. We follow the proof of Halász's theorem. We consider

$$
\begin{equation*}
H(x)=\int_{1}^{x} t^{-1}\left(\int_{1}^{t} \log u d F(u)\right) d t \tag{1.8}
\end{equation*}
$$

and shall show

$$
H(x)=c x \log x+o(x \log x)
$$

from which the desired estimate of $F(x)$ will be obtained by a tauberian argument. We have

$$
\int_{1}^{\infty} x^{-s} d H(x)=-\frac{\hat{F}^{\prime}(s)}{s}
$$

and, by Perron's inversion formula,

$$
\begin{align*}
H(x) & =\frac{1}{2 \pi i} \int_{\sigma=\sigma_{0}}-x^{s} \frac{\hat{F}^{\prime}(s)}{s^{2}} d s \tag{1.9}\\
& =\frac{x}{2 \pi i} \int_{\sigma=\sigma_{0}}-x^{s-1} \frac{\hat{F}^{\prime}(s)}{s^{2}} d s
\end{align*}
$$

where $\sigma_{0}=1+1 / \log x$. Let K be a large number, fixed for the moment, and let x be so large that $\log x>2 K$. Hence we have $\left|x^{s-1}\right|=x^{\sigma_{0}-1}=e$ for $\sigma=\sigma_{0}$ and $K\left(\sigma_{0}-1\right)<\frac{1}{2}$. We break the integration contour $\sigma=\sigma_{0}$ into the following parts:

$$
\begin{aligned}
& I_{0}=\left\{s=\sigma_{0}+i t:-K\left(\sigma_{0}-1\right) \leq t \leq K\left(\sigma_{0}-1\right)\right\} \\
& I_{1}=\left\{s=\sigma_{0}+i t: K\left(\sigma_{0}-1\right) \leq t \leq K\right\} \\
& I_{2}=\left\{s=\sigma_{0}+i t:-K \leq t \leq-K\left(\sigma_{0}-1\right)\right\} \\
& I_{3}=\left\{s=\sigma_{0}+i t: K \leq t<\infty\right\} \\
& I_{4}=\left\{s=\sigma_{0}+i t:-\infty<t \leq-K\right\}
\end{aligned}
$$

and estimate the last integral in (1.9) on each part separately.
(i) Estimate of $\int_{I_{0}}$. For $s \in I_{0}, s$ fixed for the moment, consider the disk

$$
D_{s}=\left\{z:|z-s| \leq \frac{1}{2}\left(\sigma_{0}-1\right)\right\}
$$

For $z \in D_{s}, \operatorname{Re} z-1 \geq \frac{1}{2}\left(\sigma_{0}-1\right)$. Therefore, by the hypothesis (1.4),

$$
\hat{F}(z)-\frac{c}{z-1}=o\left(\frac{1}{\operatorname{Re} z-1}\right)=o\left(\frac{1}{\sigma_{0}-1}\right)
$$

holds uniformly for all $z \in D_{s}$ and all $s \in I_{0}$. It follows, by Cauchy's inequality for derivatives of analytic functions, that

$$
\hat{F}^{\prime}(s)+\frac{c}{(s-1)^{2}}=o\left(\frac{1}{\sigma_{0}-1}\right) \frac{2}{\sigma_{0}-1}=o\left(\frac{1}{\left(\sigma_{0}-1\right)^{2}}\right)
$$

holds uniformly for $s \in I_{0}$. Hence, we have

$$
\begin{align*}
& -\frac{1}{2 \pi i} \int_{I_{0}} \frac{x^{s-1}}{s^{2}} \hat{F}^{\prime}(s) d s \tag{1.10}\\
& \quad=\frac{1}{2 \pi i}\left(\int_{I_{0}} c \frac{x^{s-1}}{s^{2}} \frac{d s}{(s-1)^{2}}+\int_{I_{0}} o\left(\frac{1}{\left(\sigma_{0}-1\right)^{2}}\right) \frac{x^{s-1}}{s^{2}} d s\right) \\
& \quad=\frac{c}{2 \pi i} \int_{I_{0}} \frac{x^{s-1}}{s^{2}(s-1)^{2}} d s+K o(\log x)
\end{align*}
$$

since

$$
\begin{aligned}
\int_{I_{0}} o\left(\frac{1}{\left(\sigma_{0}-1\right)^{2}}\right) \frac{x^{s-1}}{s^{2}} d s & =2 K\left(\sigma_{0}-1\right) o\left(\frac{1}{\left(\sigma_{0}-1\right)^{2}}\right) \\
& =K o\left(\frac{1}{\sigma_{0}-1}\right) \\
& =K o(\log x)
\end{aligned}
$$

The last integral in (1.10) can be evaluated by using Cauchy's integral theorem. Define the semi-circle Γ by

$$
\Gamma=\left\{s: \operatorname{Re} s \leq \sigma_{0},\left|s-\sigma_{0}\right|=K\left(\sigma_{0}-1\right)\right\}
$$

Note that $K\left(\sigma_{0}-1\right)<\frac{1}{2}, \sigma_{0}>1$ and hence $s=0$ is not within the contour $\Gamma \cup I_{0}$. Therefore, the integrand has only one pole at $s=1$, with residue $\log x-2$ within the contour. Hence, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{I_{0}} \frac{x^{s-1}}{s^{2}(s-1)^{2}} d s \\
& \quad=(\log x-2)+\frac{1}{2 \pi i} \int_{\Gamma} \frac{x^{s-1}}{s^{2}(s-1)^{2}} d s
\end{aligned}
$$

On $\Gamma,\left|x^{s-1}\right|=x^{\sigma-1} \leq x^{\sigma_{0}-1}=e,|s|>\frac{1}{2}$ since $K\left(\sigma_{0}-1\right)<\frac{1}{2}$, and

$$
|s-1| \geq(K-1)\left(\sigma_{0}-1\right)
$$

hence we have

$$
\left|\frac{1}{2 \pi i} \int_{\Gamma} \frac{x^{s-1}}{s^{2}(s-1)^{2}} d s\right| \ll \frac{1}{K^{2}\left(\sigma_{0}-1\right)^{2}} K\left(\sigma_{0}-1\right) \ll K^{-1} \log x .
$$

It follows that

$$
\begin{equation*}
\frac{c}{2 \pi i} \int_{I_{0}} \frac{x^{s-1}}{s^{2}(s-1)^{2}} d s=c \log x+\frac{1}{K} O(\log x) \tag{1.11}
\end{equation*}
$$

(ii) Estimates of $\int_{I_{3}}$ and $\int_{I_{4}}$. For $\sigma>1$, we have

$$
\hat{F}(s)=\prod_{i=1}^{\infty}\left(1-\frac{f\left(p_{i}\right)}{p_{i}^{s}}\right)^{-1} \neq 0
$$

Define $\Lambda(\nu)$ on \mathscr{N}^{*} by setting

$$
\Lambda(\nu)=\left\{\begin{array}{lc}
\log p_{i}, & \text { if } \nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \text { with } \\
& \nu_{i}>0 \text { and } \nu_{m}=0 \text { for } m \neq i \\
0, & \text { otherwise }
\end{array}\right.
$$

the analogue of the classical von Mongoldt function, and set

$$
G(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} \Lambda(\nu) f(\nu), \quad \psi(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} \Lambda(\nu)
$$

As before, we write $\Lambda(\nu)$ as $\Lambda\left(n_{i}\right)$ for $n_{i}=n(\nu)$. Then we have

$$
-\frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}=\int_{1-}^{\infty} x^{-s} d G(x)=\sum_{i=0}^{\infty} \Lambda\left(n_{i}\right) f\left(n_{i}\right) n_{i}^{-s}
$$

for $\sigma>1$.
To estimate $\int_{I_{3,4}}$, we have

$$
\begin{aligned}
\left|\int_{I_{3,4}} x^{s-1} \hat{F}^{\prime}(s) s^{-2} d s\right| & \leq e \int_{I_{3,4}}\left|\hat{F}^{\prime}(s)\right||s|^{-2}|d s| \\
& \leq e\left(\left.\int_{I_{3,4}} \frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}\right|^{2} \frac{|d s|}{|s|^{2}}\right)^{1 / 2}\left(\int_{I_{3,4}} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s|\right)^{1 / 2},
\end{aligned}
$$

by the Cauchy-Schwarz inequality. We first apply Lemmas 1.3, 1.4 and 1.5 to estimate

$$
\int_{\sigma=\sigma_{0}}\left|\frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}\right|^{2} \frac{|d s|}{|s|^{2}} .
$$

Note that

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\int_{1-}^{\infty} x^{-s} d \psi(x)
$$

where $\zeta(s)$ is the zeta function associated with \mathscr{N}, and that $|d G| \leq d \psi$. Therefore,

$$
\int_{T}^{T+\eta}\left|\frac{\hat{F}^{\prime}\left(\sigma_{0}+i t\right)}{\hat{F}\left(\sigma_{0}+i t\right)}\right|^{2} d t \leq 2 \int_{-\eta}^{\eta}\left|\frac{\zeta^{\prime}\left(\sigma_{0}+i t\right)}{\zeta\left(\sigma_{0}+i t\right)}\right|^{2} d t
$$

We need now a suitable choice of η. Consider

$$
\zeta(s)=\frac{A}{s-1}+A+s g(s)
$$

where the function $g(s)$ is defined by

$$
g(s)=\int_{1}^{\infty} x^{-s-1}\{N(x)-A x\} d x
$$

The function g is analytic on $\sigma>1$ and continuous on $\sigma \geq 1$. Therefore, we have

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\frac{1}{s-1}-h(s)
$$

where

$$
h(s)=\frac{1}{s}+\frac{s g(s)}{(s-1) \zeta(s)}+\frac{s g^{\prime}(s)}{\zeta(s)}
$$

We note that

$$
(s-1) \zeta(s)=A s+s(s-1) g(s)
$$

is continuous on $\sigma \geq 1$ and may be extended to a continuous function on $\sigma>1$. Hence there exists a number $\eta>0$ such that $(s-1) \zeta(s) \neq 0$ for $|t| \leq \eta, 1 \leq \sigma \leq 2$ since $A>0$. We now fix $\eta>0$. It follows that

$$
|h(s)| \ll 1+\left|g^{\prime}(s)\right|
$$

for $|t| \leq \eta, 1<\sigma \leq 2$. Therefore, by Lemma 1.3 or Lemma 1.4, we have

$$
\begin{aligned}
& 2 \int_{-\eta}^{\eta}\left|\frac{\zeta^{\prime}\left(\sigma_{0}+i t\right)}{\zeta\left(\sigma_{0}+i t\right)}\right|^{2} d t= 2 \int_{-\eta}^{\eta}\left|\frac{1}{\sigma_{0}-1+i t}+O\left(1+\left|g^{\prime}\left(\sigma_{0}+i t\right)\right|\right)\right|^{2} d t \\
& \ll 1+\int_{-\eta}^{\eta} \frac{d t}{\left(\sigma_{0}-1\right)^{2}+t^{2}} \\
&+\int_{-\eta}^{\eta}\left|\int_{1}^{\infty} x^{-\left(\sigma_{0}+i t\right)-1}\{N(x)-A x\} \log x d x\right|^{2} d t \\
&= 1+\frac{2}{\sigma_{0}-1} \int_{0}^{\eta /\left(\sigma_{0}-1\right)} \frac{d u}{1+u^{2}}+O\left(\left(\sigma_{0}-1\right)^{-1}\right) \\
& \ll\left(\sigma_{0}-1\right)^{-1} \\
&= \log x
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \int_{\sigma=\sigma_{0}}\left|\frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}\right|^{2} \frac{|d s|}{|s|^{2}} \tag{1.12}\\
&=\sum_{m=0}^{\infty}\left(\int_{\sigma_{0}+i m \eta}^{\sigma_{0}+i(m+1) \eta}+\int_{\sigma_{0}-i(m+1) \eta}^{\sigma_{0}-i m \eta}\right)\left|\frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}\right|^{2} \frac{|d s|}{|s|^{2}} \\
& \ll \sum_{m=0}^{\infty} \frac{1}{1+m^{2} \eta^{2}} \log x \ll \log x .
\end{align*}
$$

We then use the same method to estimate

$$
\int_{I_{3,4}} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s|
$$

Again, we have

$$
\hat{F}(s)=\int_{1-}^{\infty} x^{-s} d F(x), \quad \zeta(s)=\int_{1-}^{\infty} x^{-s} d N(x)
$$

and $|d F| \leq d N$. Hence

$$
\begin{aligned}
\int_{T}^{T+1}\left|\hat{F}\left(\sigma_{0}+i t\right)\right|^{2} d t & \leq 2 \int_{-1}^{1}\left|\zeta\left(\sigma_{0}+i t\right)\right|^{2} d t \\
& =2 \int_{-1}^{1}\left|\frac{A}{\sigma_{0}-1+i t}+O(1)\right|^{2} d t \\
& \ll \log x
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{I_{3}} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s| & =\sum_{m=0}^{\infty} \int_{\sigma_{0}+i(K+m)}^{\sigma_{0}+i(K+m+1)} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s| \\
& \ll \sum_{m=0}^{\infty} \frac{1}{1+(K+m)^{2}} \log x \\
& \ll \frac{\log x}{K} .
\end{aligned}
$$

Similarly estimate the integral

$$
\int_{I_{4}} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s|
$$

Hence we deduce that

$$
\begin{equation*}
\left|\int_{I_{3,4}} x^{s-1} \frac{\hat{F}^{\prime}(s)}{s^{2}} d s\right| \ll \frac{1}{K^{1 / 2}} \log x . \tag{1.13}
\end{equation*}
$$

(iii) Estimates of $\int_{I_{1}}$ and $\int_{I_{2}}$. We have

$$
\int_{I_{1,2}}|\hat{F}(s)|^{2}|s|^{-2}|d s| \leq \max _{s \in I_{1,2}}|\hat{F}(s)|^{1 / 2} \int_{I_{1,2}}|\hat{F}(s)|^{3 / 2}|s|^{-2}|d s|
$$

By (1.4),

$$
\begin{aligned}
\max _{s \in I_{1,2}}|\hat{F}(s)|^{1 / 2} & \leq \max _{s \in I_{1,2}}\left|\frac{c}{s-1}+o\left(\frac{1}{\sigma_{0}-1}\right)\right|^{1 / 2} \\
& \ll \frac{1}{\left(\sigma_{0}-1\right)^{1 / 2}\left(1+K^{2}\right)^{1 / 4}}+o\left(\frac{1}{\left(\sigma_{0}-1\right)^{1 / 2}}\right) \\
& \ll K^{-1 / 2} \log ^{1 / 2} x+o\left(\log ^{1 / 2} x\right) .
\end{aligned}
$$

We next consider $|\hat{F}(s)|^{3 / 4}$. Since f is completely multiplicative we have

$$
(\hat{F}(s))^{3 / 4}=\exp \left\{\frac{3}{4} \sum_{i=0}^{\infty} \kappa\left(n_{i}\right) f\left(n_{i}\right) n_{i}^{-s}\right\}
$$

where $\kappa\left(n_{i}\right)$ denotes $\kappa(\nu)$ for $n_{i}=n(\nu)$ and

$$
\kappa(\nu)=\left\{\begin{array}{lc}
1 / \nu_{j}, & \text { if } \nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \text { with } \\
& \nu_{j}>0 \text { and } \nu_{m}=0 \text { for } m \neq j \\
0, & \text { otherwise }
\end{array}\right.
$$

Therefore, we have

$$
\begin{aligned}
(\hat{F}(s))^{3 / 4} & =\exp \left\{\int_{1-}^{\infty} x^{-s} d\left(\frac{3}{4} \sum_{n(\nu) \leq x} \kappa(\nu) f(\nu)\right)\right\} \\
& =\int_{1-}^{\infty} x^{-s} d\left(\exp \left\{\frac{3}{4} \sum_{n(\nu) \leq x} \kappa(\nu) f(\nu)\right\}\right)
\end{aligned}
$$

We also have

$$
(\zeta(s))^{3 / 4}=\int_{1-}^{\infty} x^{-s} d\left(\exp \left\{\frac{3}{4} \sum_{\substack{\nu \\ n(\nu) \leq x}} \kappa(\nu)\right\}\right)
$$

Note that

$$
\left|d\left(\exp \left\{\frac{3}{4} \sum_{n(\nu) \leq x} \kappa(\nu) f(\nu)\right\}\right)\right| \leq d\left(\exp \left\{\frac{3}{4} \sum_{\substack{\nu \\ n(\nu) \leq x}} \kappa(\nu)\right\}\right) .
$$

Hence, by Lemma 1.5, we have

$$
\begin{aligned}
\int_{T}^{T+1}\left|\hat{F}\left(\sigma_{0}+i t\right)\right|^{3 / 2} d t & \leq 4 \int_{0}^{1}\left|\zeta\left(\sigma_{0}+i t\right)\right|^{3 / 2} d t \\
& =4 \int_{0}^{1}\left|\frac{A}{\sigma_{0}-1+i t}+O(1)\right|^{3 / 2} d t \\
& \ll 1+\int_{0}^{1}\left(\frac{1}{\left(\sigma_{0}-1\right)^{2}+t^{2}}\right)^{3 / 4} d t \\
& \leq 1+\frac{1}{\left(\sigma_{0}-1\right)^{1 / 2}} \int_{0}^{\infty} \frac{d u}{\left(1+u^{2}\right)^{3 / 4}} \\
& \ll \frac{1}{\left(\sigma_{0}-1\right)^{1 / 2}} \\
& =\log ^{1 / 2} x
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{I_{1}}|\hat{F}(s)|^{3 / 2}|s|^{-2}|d s| & \leq \sum_{m=0}^{[K]} \int_{\sigma_{0}+i\left(K\left(\sigma_{0}-1\right)+m\right)}^{\sigma_{0}+i\left(K\left(\sigma_{0}-1\right)+m+1\right)}|\hat{F}(s)|^{3 / 2}|s|^{-2}|d s| \\
& \ll \log ^{1 / 2} x \sum_{m=0}^{[K]} \frac{1}{1+m^{2}} \\
& \ll \log ^{1 / 2} x
\end{aligned}
$$

and hence

$$
\int_{I_{1}}|\hat{F}(s)|^{2}|s|^{-2}|d s| \ll \frac{\log x}{K^{1 / 2}}+o(\log x)
$$

Similarly estimate the integral

$$
\int_{I_{2}}|\hat{F}(s)||s|^{-2}|d s|
$$

Hence we deduce, by applying (1.12) once more, that

$$
\begin{align*}
& \left|\int_{I_{1,2}} x^{s-1} \hat{F}^{\prime}(s) s^{-2} d s\right| \tag{1.14}\\
& \quad \leq e\left(\left.\int_{I_{1,2}} \frac{\hat{F}^{\prime}(s)}{\hat{F}(s)}\right|^{2} \frac{|d s|}{|s|^{2}}\right)^{1 / 2}\left(\int_{I_{1,2}} \frac{|\hat{F}(s)|^{2}}{|s|^{2}}|d s|\right)^{1 / 2} \\
& \quad \ll K^{-1 / 4} \log x+o(\log x)
\end{align*}
$$

Combining (1.10), (1.11), (1.13) and (1.14) with (1.9), we arrive at

$$
H(x)=c x \log x+K^{-1 / 4} O(x \log x)+K o(x \log x)
$$

Given $\varepsilon>0$, we have

$$
\left|K^{-1 / 4} O(x \log x)\right|<\frac{1}{2} \varepsilon x \log x
$$

for $K \geq K_{0}$ sufficiently large. Fixing $K \geq K_{0}$, for $x \geq x_{0}$ sufficiently large, we have

$$
|K o(x \log x)|<\frac{1}{2} \varepsilon x \log x
$$

This implies

$$
|H(x)-c x \log x|<\varepsilon x \log x
$$

for $x \geq x_{0}$, i.e.,

$$
\begin{equation*}
H(x)=c x \log x+o(x \log x) \tag{1.15}
\end{equation*}
$$

It remains to deduce (1.5) from (1.15) by a tauberian argument. Set

$$
\Phi(x)=\int_{1}^{x} \log t d F(t)
$$

Then we have

$$
H(x)=\int_{1}^{x} t^{-1} \Phi(t) d t=c x \log x+o(x \log x)
$$

For $0<\varepsilon<\frac{1}{2}$, on the one hand we have

$$
\begin{aligned}
\int_{x}^{x+\varepsilon x} t^{-1} \Phi(t) d t & =\left(\int_{1}^{x+\varepsilon x}-\int_{1}^{x}\right) t^{-1} \Phi(t) d t \\
& =c \varepsilon x \log x+c(1+\varepsilon) x \log (1+\varepsilon)+o(x \log x)
\end{aligned}
$$

On the other hand,

$$
\int_{x}^{x+\varepsilon x} t^{-1} \Phi(t) d t=\Phi(x) \log (1+\varepsilon)+\int_{x}^{x+\varepsilon x} t^{-1}(\Phi(t)-\Phi(x)) d t
$$

It follows that we have

$$
\begin{aligned}
\Phi(x)= & c \frac{\varepsilon}{\log (1+\varepsilon)} x \log x+c(1+\varepsilon) x+\frac{o(x \log x)}{\log (1+\varepsilon)} \\
& -\frac{1}{\log (1+\varepsilon)} \int_{x}^{x+\varepsilon x} t^{-1}(\Phi(t)-\Phi(x)) d t
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\frac{\Phi(x)-c x \log x}{x \log x}\right| \leq & |c|\left|\frac{\varepsilon}{\log (1+\varepsilon)}-1\right|+\frac{|c|(1+\varepsilon)}{\log x}+\frac{o(1)}{\log (1+\varepsilon)} \\
& +\frac{1}{x \log x \log (1+\varepsilon)}\left|\int_{x}^{x+\varepsilon x} t^{-1}(\Phi(t)-\Phi(x)) d t\right|
\end{aligned}
$$

We note that, for $x<t \leq x+\varepsilon x$,

$$
\begin{aligned}
|\Phi(t)-\Phi(x)| & =\left|\int_{x+}^{t} \log u d F(u)\right| \\
& \leq \log t \int_{x+}^{t} d N(u) \\
& \leq(\log x+\log (1+\varepsilon))(N(x+\varepsilon x)-N(x))
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left|\frac{\Phi(x)-c x \log x}{x \log x}\right| \leq & |c|\left|\frac{\varepsilon}{\log (1+\varepsilon)}-1\right|+\frac{|c|(1+\varepsilon)}{\log x}+\frac{o(1)}{\log (1+\varepsilon)} \\
& +\frac{1}{x \log x}(\log x+\log (1+\varepsilon))|N(x+\varepsilon x)-N(x)|
\end{aligned}
$$

and hence

$$
\limsup _{x \rightarrow \infty}\left|\frac{\Phi(x)-c x \log x}{x \log x}\right| \leq|c|\left|\frac{\varepsilon}{\log (1+\varepsilon)}-1\right|+A \varepsilon
$$

holds for any fixed $\varepsilon>0$ since

$$
\begin{aligned}
\frac{N(x+\varepsilon x)-N(x)}{x} & =A \varepsilon+\frac{N(x+\varepsilon x)-A(x+\varepsilon x)}{x}-\frac{N(x)-A x}{x} \\
& \rightarrow A \varepsilon \text { as } x \rightarrow \infty
\end{aligned}
$$

by Lemma 1.2. Letting $\varepsilon \rightarrow 0$, we arrive at

$$
\limsup _{x \rightarrow \infty}\left|\frac{\Phi(x)-c x \log x}{x \log x}\right|=0
$$

i.e.,

$$
\Phi(x)=c x \log x+o(x \log x)
$$

Finally, by integration by parts, we have

$$
F(x)=1+\int_{\alpha}^{x} \frac{d \Phi(t)}{\log t}=c x+o(x)
$$

where $1<\alpha<n_{1}$. This completes the proof of the theorem.
The following two corollaries are immediate.
Corollary 1.6. If we replace (1.2) in Theorem 1.1 by

$$
N(x)=A x+O\left(x \log ^{-1} x\right), \quad x>1
$$

then (1.5) is true.
Corollary 1.7. If we replace (1.1), (1.2) and (1.3) in Theorem 1.1 by

$$
N(x)=A x+O\left(x \log ^{-\gamma} x\right), \quad x>1
$$

with constant $\gamma>1$ then (1.5) is true.

2. A generalization of Halász-Wirsing's theorem

The following theorem is a generalization of Halász-Wirsing's theorem [4], [9] to g-integers.

Theorem 2.1. Suppose that (1.1) and one of (1.2) and (1.3) hold. Let f be a completely multiplicative function on \mathscr{N} such that $\left|f\left(n_{i}\right)\right| \leq 1$ for all $n_{i} \in \mathscr{N}$. Then

$$
\begin{equation*}
F(x)=o(x) \tag{2.1}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{p_{k}} \operatorname{Re}\left(1-f\left(p_{k}\right) p_{k}^{-i t}\right)=\infty \tag{2.2}
\end{equation*}
$$

holds for all real t.
To prove Theorem 2.1, we need the following:
Lemma 2.2. Assume (1.1). Let f be a completely multiplicative function on \mathcal{N} satisfying $\left|f\left(n_{i}\right)\right| \leq 1$ for all $n_{i} \in \mathscr{N}$. Let I be a compact interval in \mathbf{R}. Then (2.2) holds for all $t \in I$ if and only if

$$
\begin{equation*}
\hat{F}(s)=o\left(\frac{1}{\sigma-1}\right) \tag{2.3}
\end{equation*}
$$

holds uniformly for $t \in I$ as $\sigma \rightarrow 1+$.
Proof. We first note that

$$
\begin{aligned}
-\operatorname{Re} & \sum_{k=1}^{\infty} \log \left(1-\frac{f\left(p_{k}\right)}{p_{k}^{s}}\right)+\sum_{k=1}^{\infty} \log \left(1-\frac{1}{p_{k}^{\sigma}}\right) \\
& =-\sum_{k=1}^{\infty} \frac{1}{p_{k}^{\sigma}}\left(1-\operatorname{Re} f\left(p_{k}\right) p_{k}^{-i t}\right)+O(1)
\end{aligned}
$$

holds for $\sigma>1$ since, by Lemma 1.2, $\pi(x) \leq N(x) \ll x$. Hence

$$
\frac{|\hat{F}(s)|}{\zeta(\sigma)}=\exp \left\{-\sum_{k=1}^{\infty} \frac{1}{p_{k}^{\sigma}}\left(1-\operatorname{Re} f\left(p_{k}\right) p_{k}^{-i t}\right)+O(1)\right\} .
$$

We then note that

$$
\zeta(\sigma)=\frac{A}{\sigma-1}+A+\sigma g(\sigma)
$$

where $g(\sigma)$ is continuous on $\sigma \geq 1$. From these two facts, it follows that if (2.2) holds for all $t \in I$ then, by Dini's theorem, (2.3) holds uniformly for $t \in I$ as $\sigma \rightarrow 1+$. The inverse implication is trivial.

Proof of Theorem 2.1. If (2.2) holds for all real t then, by Lemma 2.2, (2.3) holds uniformly for $-K \leq t \leq K$ for each fixed $K>0$ and hence, by Theorem 1.1, (2.1) holds. The inverse implication is trivial.

Application. Define

$$
\Omega(\nu)=\nu_{1}+\cdots+\nu_{m}+\cdots, \quad \lambda(\nu)=(-1)^{\Omega(\nu)}
$$

for $\nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \in \mathscr{N}^{*}$, the respective generalizations of the classical functions $\Omega(n)$ and $\lambda(n)$ (Liouville function). Suppose that (1.1) and one of (1.2) and (1.3) hold. For $\sigma>1$ and all $t \in \mathbf{R}$, we have

$$
\begin{aligned}
& \zeta^{3}(\sigma)|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \\
& \quad=\exp \left\{\sum_{k=1}^{\infty} \sum_{\alpha \geq 1} \frac{1}{\alpha p_{k}^{\alpha \sigma}}\left(3+4 \cos \left(\alpha t \log p_{k}\right)+\cos \left(2 \alpha t \log p_{k}\right)\right)\right\} \\
& \quad \geq 1
\end{aligned}
$$

and hence

$$
\zeta(\sigma)|\zeta(\sigma+i t)| \rightarrow \infty \quad \text { or } \quad \log (\zeta(\sigma)|\zeta(\sigma+i t)|) \rightarrow \infty
$$

as $\sigma \rightarrow 1+$. On the other hand, we have

$$
\begin{aligned}
\log (\zeta(\sigma)|\zeta(\sigma+i t)|) & =\sum_{k=1}^{\infty} \sum_{\alpha \geq 1} \frac{1}{\alpha p_{k}^{\alpha \sigma}}\left(1+\operatorname{Re} p_{k}^{-i \alpha t}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{p_{k}^{\sigma}}\left(1+\operatorname{Re} p_{k}^{-i t}\right)+O(1)
\end{aligned}
$$

Therefore, we have

$$
\sum_{k=1}^{\infty} \frac{1}{p_{k}^{\sigma}}\left(1+\operatorname{Re} p_{k}^{-i t}\right) \rightarrow \infty
$$

as $\sigma \rightarrow 1+$ for all $t \in \mathbf{R}$. If we now take $f(\nu)=\lambda(\nu)$ and write $f(\nu)$ as $f\left(n_{i}\right)$ for $n_{i}=n(\nu)$ then we find that

$$
\sum_{k=1}^{\infty} \frac{1}{p_{k}}\left(1-\operatorname{Re} f\left(p_{k}\right) p_{k}^{-i t}\right)=\sum_{k=1}^{\infty} \frac{1}{p_{k}}\left(1+\operatorname{Re} p_{k}^{-i t}\right)=\infty
$$

holds for all $t \in \mathbf{R}$ because $f\left(p_{k}\right)=-1$. By Theorem 2.1, we have

$$
\begin{equation*}
\sum_{\substack{\nu \\ n(\nu) \leq x}} \lambda(\nu)=o(x) . \tag{2.4}
\end{equation*}
$$

From this fact, we can deduce the following:
Theorem 2.3. Suppose that (1.1) and one of (1.2) and (1.3) hold. Then we have

$$
M(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} \mu(\nu)=o(x)
$$

where $\mu(\nu)$, the analogue of the classical Möbius function, is defined on \mathscr{N}^{*} by setting

$$
\mu(\nu)= \begin{cases}(-1)^{k}, & \text { if } \nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \\ & 0 \leq \nu_{1}, \ldots, \nu_{m}, \ldots \leq 1, \nu_{1}+\cdots+\nu_{m}+\cdots=k \\ 0, & \text { otherwise } .\end{cases}
$$

This theorem follows from (2.4) and the following:
Lemma 2.4. Assume $N(x)=O(x)$. Then $\sum_{\nu, n(\nu) \leq x} \lambda(\nu)=o(x)$ if and only if $M(x)=o(x)$.

Remark. From the proof below, we can see that the hypothesis $N(x)=$ $O(x)$ can be relaxed.

Proof. We have

$$
\begin{aligned}
\frac{1}{\zeta(s)} & =\sum_{i=0}^{\infty} \frac{\mu\left(n_{i}\right)}{n_{i}^{s}}=\prod_{i=1}^{\infty}\left(1-\frac{1}{p_{i}^{s}}\right) \\
& =\prod_{i=1}^{\infty}\left(1+\frac{1}{p_{i}^{s}}\right)^{-1}\left(1-\frac{1}{p_{i}^{2 s}}\right) \\
& =\sum_{i=0}^{\infty} \frac{\lambda\left(n_{i}\right)}{n_{i}^{s}} \sum_{i=0}^{\infty} \frac{\mu_{2}\left(n_{i}\right)}{n_{i}^{s}}
\end{aligned}
$$

where $\lambda\left(n_{i}\right)$ and $\mu_{2}\left(n_{i}\right)$ denote $\lambda(\nu)$ and $\mu_{2}(\nu)$ for $n_{i}=n(\nu)$ respectively and

$$
\mu_{2}(\nu)= \begin{cases}\mu\left(\nu^{\prime}\right), & \text { if } \nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right), \nu^{\prime}=\left(\nu_{1}^{\prime}, \ldots, \nu_{m}^{\prime}, \ldots\right) \in \mathscr{N}^{*} \\ \quad \quad \text { with } \nu_{m}=2 \nu_{m}^{\prime}, \forall m \in \mathbf{N} \\ 0, & \text { otherwise } .\end{cases}
$$

Hence

$$
M(x)=\sum_{\substack{\nu \\ n\left(\nu^{\prime} \leq x\right.}} \mu(\nu)=\sum_{\substack{\nu \\ n(\nu) \leq x}}\left(\sum_{\substack{\nu^{\prime} \\ n\left(\nu^{\prime}\right) \leq x / n(\nu)}} \lambda\left(\nu^{\prime}\right)\right) \mu_{2}(\nu)
$$

Assume $\sum_{\nu, n(\nu) \leq x} \lambda(\nu)=o(x)$. Then we have

$$
M(x)=\sum_{\substack{\nu \\ n(\nu) \leq x}} o\left(\frac{x}{n(\nu)}\right) \mu_{2}(\nu)=o\left(x \sum_{\substack{\nu \\ n(\nu) \leq x}} \frac{\left|\mu_{2}(\nu)\right|}{n(\nu)}\right)=o(x)
$$

since

$$
\sum_{\substack{\nu \\ n(\nu) \leq x}} \frac{\left|\mu_{2}(\nu)\right|}{n(\nu)} \leq \sum_{n(\nu) \leq \sqrt{x}} \frac{1}{(n(\nu))^{2}}<\infty .
$$

Also, we have

$$
\begin{aligned}
\sum_{i=0}^{\infty} \frac{\lambda\left(n_{i}\right)}{n_{i}^{s}} & =\prod_{i=1}^{\infty}\left(1+\frac{1}{p_{i}^{s}}\right)^{-1}=\prod_{i=1}^{\infty}\left(1-\frac{1}{p_{i}^{2 s}}\right)^{-1}\left(1-\frac{1}{p_{i}^{s}}\right) \\
& =\sum_{i=0}^{\infty} \frac{\mu\left(n_{i}\right)}{n_{i}^{s}} \sum_{i=0}^{\infty} \frac{1_{2}\left(n_{i}\right)}{n_{i}^{s}}
\end{aligned}
$$

where $1_{2}\left(n_{i}\right)$ denotes $1_{2}(\nu)$ for $n_{i}=n(\nu)$ and

$$
1_{2}(\nu)= \begin{cases}1, & \text { if } \nu=\left(\nu_{1}, \ldots, \nu_{m}, \ldots\right) \in \mathscr{N}^{*} \text { with } 2 \mid \nu_{m}, \forall m \in \mathbf{N} \\ 0, & \text { otherwise }\end{cases}
$$

In the same way, we can show that $M(x)=o(x)$ implies $\sum_{v, n(\nu) \leq x} \lambda(\nu)=$ $o(x)$.

Corollary 2.5. If

$$
\begin{equation*}
N(x)=A x+O\left(x \log ^{-\gamma} x\right), \quad x>1 \tag{2.5}
\end{equation*}
$$

holds with constants $A>0$ and $\gamma>1$ then $M(x)=o(x)$.
We know that, in classical prime number theory, the prime number theorem is "equivalent" to the assertion that $M(x)=o(x)$ in the sense that each is deducible from the other by an "elementary" argument. It is interesting that this equivalence does not hold in some g-prime systems. Actually, we know,
from Beurling's theorem [2], that the hypothesis (2.5) with $\gamma>3 / 2$ implies the prime number theorem and, from Diamond's example [3], that there exists a g-prime number system which satisfies (2.5) with $\gamma=3 / 2$ and for which the prime number theorem does not hold. Corollary 2.5 shows, however, that $M(x)=o(x)$ still holds for Diamond's example. Therefore, the conjecture in [7], which says that the prime number theorem and the estimate $M(x)=o(x)$ are equivalent for all g-prime number systems satisfying (2.5) with $\gamma>1$, is not true.

References

1. P.T. Bateman and H.G. Diamond, Asymptotic distribution of Beurling's generalized prime numbers, Studies in Number Theory, vol. 6, Math. Assoc. Amer., Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 152-210.
2. A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, Acta Math., vol. 68 (1937), pp. 225-291.
3. H.G. DiAmOND, A set of generalized numbers showing Beurling's theorem to be sharp, Illinois J. Math., vol. 14 (1970), pp. 29-34.
4. P.D.T.A. Elliott, Probabilistic number theory, Springer-Verlag, New York, 1979.
5. R.R. Goldberg, Fourier transform, Cambridge Univ. Press, London, 1961.
6. G. HalÁsz, Über die Mittewerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sci. Hung., vol. 19 (1968), pp. 365-403.
7. R.S. HAll, Theorems about Beurling's generalized primes and the associated zeta function, Ph.D. Thesis, Univ. of Illinois, Urbana, Illinois, 1967.
8. H.L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, vol. 227, Springer-Verlag, New York, 1971.
9. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, II, Acta Math. Acad. Sci. Hung., vol. 18 (1967), pp. 411-467.

University of Illinois
Urbana, Illinois

[^0]: Received March 7, 1986.
 ${ }^{1}$ This article is, with minor changes, a chapter of the author's Ph.D. dissertation, written at the University of Illinois at Urbana-Champaign under the direction of Professor Harold G. Diamond.

