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BEURLING’S GENERALIZED INTEGERS

AND ITS APPLICATION

BY

WEN-BIN ZHANG

O. Introduction

In 1968 Halhsz [6] proved the following important result:

THEOREM. Let f(n ) be a completely multiplicative function such that If(n)l
< 1 holds for all n N. Suppose that

()F(s) := E f(n) c 1
ns..= s_l +o o’1

n=l

holds with constant c as o Re s ---} 1 + uniformly for -K < < Kfor each
fixed K > O. Then

F(x) ,= E f(n) =cx + o(x).
n<x

This theorem is generalized here in Theorem 1.1 to Beurling’s generalized
integers [1], [2]. We then apply Theorem 1.1 to prove Theorem 2.1 which is a
generalization of Halsz-Wirsing’s theorem [4], [9]. From Theorem 2.1, we
deduce Theorem 2.3 on the estimate M(x) o(x). The latter combined with a
theorem of Beurling [2] and an example of Diamond [3] shows that the prime
number theorem and the estimate M(x) o(x) are not completely equivalent.

1. A generalization of Halfisz’s theorem

Let (Pi}--1 be a sequence of real numbers subject to the following
three conditions but otherwise arbitrary:

(i) pl>l, (ii) Pn+x >pn, (iii) pnO
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Following Beurling, we shall call such a sequence a set of generalized
(henceforth g-) primes. Let V’* be the set of all sequences v

(vl,..., Vm,... ) of non-negative integers all but a finite number of which are
zeros. Then, under the addition of sequences, M/’* is an additive semi-group.
For each v (vl,..., tim,... ) o/* we set

n(r)=

Then for r’, r" 1/*, we have n(r’ + r") n(r’)n(r’). In this sense, the set
of all n(r) is a multiplicative semi-group which we consider to be generated by. Moreover, this set is countable and may be arranged in a non-decreasing
sequence= {n}=0 (where no 1, n p, etc.). We shall call the set
of g-integers associated with .

Let fir) be a complex-valued function defined on .#’*. We define

F(x)= E f(r).
n(r<x

In particular,

N(x) =N(x) _, 1

n(r)x

denotes the distribution function of the g-integers associated with . A
function f is said to be completely multiplicative if

f(r’ + r")= f(v’)f(v")
holds for all r’, r" /’*. For convenience, we write fir) as f(ni) for
n n(r). If fir) is completely multiplicative on 4/’* then we have

f(nin) f(ni)f(n)
for all n i, n. and in this case we will call f a completely multiplicative
function on V’. Suppose that F(x) O(x). Then wehave

if(s) := x- dF (x)
1 i=O n

for a > 1.

THEOREM 1.1. Let f(ni) be a completely multiplicative function on such
that If( n ) < 1 holds for all n 4/’. Suppose that, for some constant A > O,

(1.1) x- 21N(x) Axldx <
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and either

flxt-(N(t) At}logtdt << x

or

x-alN(x) Axl21og xdx < o

holds. Furthermore, suppose that

c (1)(1.4) if(s)= s-i + o 1

holds as o Re s 1 + uniformly for -K < < K for each fixed K > O.
Then we have

(1.5) F(x) cx + o(x).

condition
(1.4) is Halhsz’s condition. (1.2) is an average form of the

N(x) Ax + O(x/logx).

To prove Theorem 1.1, we need several lemmas.

LEMMA 1.2.
constant A,

Let N(x) be a real-valued nondecreasing function. If, for some

f N(X )x 2- Ax
converges then, as x , N(x) Ax + o(x).

Proof Let0<e<l. Wehave

N(x) 1 + e
x

dt + A log(1 + e)).
It follows that

lim sup
x-+o

N(x) 1 + e
x Alog(1 + e).

Letting e - O, we obtain

N(.x..). <_A.lim sup x
x 3
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In the same way, from

N(x) >_
x e -e)x

2 1)dt+Alog l_e

we can deduce

N
liminf ". >A.

LEMMA 1.3. Assume (1.2). Given ,/> 0, we have, for 1 < o 2,

(1.6) flx-(a+it)-l{ N(x) Ax}logxdxl
2

o((o- 1)-’).
Proof. Set

-*-I(N(x) Ax }log xdx.

Then we have

s-l fOx- (x) dx= e-’tu-ud#(eU) du,

where
X

ep(x) t-l(N(t) At)logtdt.

By Plancherel’s formula for Fourier transforms [5, Chapter 3, 13], we have

it)
o+it

O

-20u2( udt 2r e e ) du.

We note that, by (1.2), (eu) << e u holds. It follows that

it)
o+it fe-2( 1)u 1) tdt << du << (o-

.’o

and hence

o + it)lZdt << n f__- (o + it)[2o + it
dt << (o-1)-
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LEMMA 1.4. Assume (1.3). Then we have

(1.7) f flX-(O+it)-l{ N(x) Ax }log xdx

o((.- 1)-’).

2

Proof. Let I denote the integral on the left-hand side of (1.7). Then by
Plancherel’s formula for Fourier transforms, we have

I e-itu-OUu{ N(eu) Ae) du

foe-2OUu u) 22r { N(e Ae} du.

2

By (1.3),

e-2v{N(e) AeV)2 dv

is convergent. Define

q(u) e-2v(N(e) Ae}2 dr.

Then (u) o(1). By integration by parts, we have

LEMMA 1.5 [8].
Suppose that dGxl < dG2. Then for all T R, rl > 0 and o > 1 we have

Let k(S ) fo_X dGk(x ), k 1, 2, converge for o > 1.

it) 12 dt < 2f 1(2(o + it)12 dt.

Proof We have

e ixt dt=

1 2

sin/x
1 for x, 0,

1 for x 0.
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Therefore, for o > 1, we have

f(+nl(l(o + it)12dt

Proof of Theorem 1.1.
consider

We follow the proof of Hallsz’s theorem. We

H(X)-" SlXt-l(SltlogudF(u))dt
and shall show

H(x) cx log x + o(x log x),

from which the desired estimate of F(x) will be obtained by a tauberian
argument. We have

fmx dH(x)

and, by Perron’s inversion formula,

(1.9) H(x)
=oo

--o

x ds
s

xS_ P’(S)
ds

S 2
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where oo 1 + 1/log x. Let K be a large number, fixed for the moment, and
let x be so large that log x > 2K. Hence we have Ix-X xo--- e for
o oo and K(oo 1) < 1/2. We break the integration contour o oo into the
following parts"

1o= (s=oo+it" -K(oo- 1) <t<K(oo-1)),
It= (s=oo+it: K(oo-1) <t<K},
12= {s= oo + it: -K < < -K(oo-1)},
I3= (S= oo + it: K < t < oo),
14= {s= oo + it: -oo < < -K}

and estimate the last integral in (1.9) on each part separately.
(i) Estimate of fro- For s 10, s fixed for the moment, consider the disk

{ 1 }D= z" Iz-s[ <(o0-1)
For z Ds, Re z 1 > 1/2(o0 1). Therefore, by the hypothesis (1.4),

c ( 1 ) ( 1 )P(z) z-1 = Rez-1 -- 00_.1
holds uniformly for all z D, and all s I0. It follows, by Cauchy’s
inequality for derivatives of analytic functions, that

c (.1)2 (1)ff’(s)+
(s-l)z = O0 ...1%"i = (o-1)

holds uniformly for s 1o. Hence, we have

(1.10)

since

1 fio xs-12ri S2 ff’(S) ds

1 (f/o x-t ds
s (s-l)2 o

(o-1)2 s2
ds

C flo xS-1
"7 s2( s 1)2

ds + Ko(logx)

o
( 1)z sZ ( 1 )ds=2K(oo-1)o

(0o-1)2

1

Ko(log x).
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The last integral in (1.10) can be evaluated by using Cauchy’s integral
theorem. Define the semi-circle I" by

r Re s < o0, Is o0l K(oo 1)}.
Note that K(oo 1) < 1/2, o0 > 1 and hence s 0 is not within the contour
I" Io. Therefore, the integrand has only one pole at s 1, with residue
log x 2 within the contour. Hence, we have

x- + xS--1
sE(s- 1)2

On F, Ix-Xl x- xo- e, Is[ > 1/2 since K(oo 1) < 1/2, and

Is- 11 > (K- 1)(o0- 1),

hence we have

1 fr xS-1
7 s2(s- l)2ds

<<
1

K(o 1)2K(oo- 1) << K-Xlogx.

It follows that

s-1

(1.11) 2ri s:(s_ 1):
10(log x).ds= clogx +

(ii) Estimates of ft3 and fl,- For o > 1, we have

if(s) 1
f(p,) -1

p 4 O.

Define A(v) on f’* by setting

A(v) "/lg Pi,

O,

if v (vl,..., Vm,...) with

v > 0 and vm 0 for rn : i,

otherwise,

the analogue of the classical von Mongoldt function, and set

G(x)= E A(v)f(v), k(x)= E
n(v)<x n(v <x
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As before, we write A(v) as A(n i) for n

P’(l-t fl
for e > 1.
To estimate ,L3.,, we have

n (v). Then we have

EA(n,)f(n,)n:,
i=0

f x’-P’(s)s- as
,4

< ef, Iff’(s)Ilsl-2ldsl
I3,t

<_e f, if(S)
1/2

,, lal 2 Idal

by the Cauchy-Schwarz inequality. We first apply Lemmas 1.3, 1.4 and 1.5 to
estimate

oo P(s) Isl 2"

Note that

’()
()

where (s) is the zeta function associated with JI/’, and that IdG] <
Therefore,

l’T+n ’(Oo + it)
]" T ff( O0 + it)

dt 2 dt.(Oo+ it)

We need now a stable choice of . Consider

A() s + A + g(),

where the function g(s) is defined by

g() -’-(g(x) x } dx.

The function g is analytic on o > 1 d continuous on o 1. Therefore, we
have

’() h()t() -where

h(s) 1 + sg(s) sg’(s)
"J- (s- 1)’(s) + ’(s)
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We note that

(s- 1)’(s) As + s(s- 1)g(s)

is continuous on o > 1 and may be extended to a continuous function on
o > 1. Hence there exists a number 1 > 0 such that (s- 1)(s): 0 for
It[ < /, 1 < o < 2 since A > 0. We now fix /> 0. It follows that

Ih( )l << 1 +

for ]t < , 1 < o < 2. Therefore, by Lemma 1.3 or Lemma 1.4, we have

’(oo + it)
(oo + it) dt 2

n o0-1 + it + O(1 +lg’(0 + it)l)

<< 1 + r/7
J 1)- + 2

12f oo-(+it)-l(N(x) Ax,}logxdx+ x

2 ff/(oo-1) du -1)
o0- 1o 1 + uz + O(( 1)

<< (%- 1) -t

log x.

It follows that

(1.12) F’(s)
2

m 0 o+im

im
+

1)1)"oo--i(m+

<<
1 + m2’12 log

x << log x.
m--O

We then use the same method to estimate

Again, we have

if(s) flX dF(x ) x aN(x)
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and dF < dN. Hence

ff+ le(oo + it)[2dt 2flI’( + it)[2

o- 1 + it

<< log x

and

f:, I(.I.1 =)t.LIdt f,,o + ,( + + .:, I(.., )1 :

,,,-_o "oo+ i(K+-, Isl e
oo 1

<< )21g xm=Ol+(K+m

<< logx
K

2

+ 0(1) dt

ldsl

Similarly estimate the integral

Hence we deduce that

(1.13) f, x’- P’() a
h,4 s2

1
<< Kt/21ogx.

(iii) Estimates of k and f2" We have

Isl-9ldsl < max Iff(s)11/2 ftl,2

By (1.4),

maxlP(s)tX/2 < ,z,.max s
c ( 1)lx/2i+o

Oo 18EI1,2

(o-1)/2(l+Ke)x/,
+o

(o-1)/
<< K-/logX/x + o(logX/x).

We next consider l(s)l /4. Sce f is completely multipcative we have

i=0
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where x(ni) denotes x(,) for n n(v) and

(v) I ll,j,

O,

if (v,..., gin,’’’) with

’j > 0 and ,,, 0 for rn :/: j,

otherwise.

Therefore, we have

We also have

exp x-d E x(’)f(’)
(,)_<x

{3)exp E x()f()
n()<_x

Note that

(;())/ f-x Sd (3exp - E x(v)
n(,)x

(3)/exp - E r(;’)f(’)
n(,)x

<d (3 )exp - E x(e)
n(,)x

Hence, by Lemma 1.5, we have

f+llp(oo + it)[3/2dt <_ 4fo11(o0 + it)13/2dt

--4fo /
:

oo 1 + it O(1) dt

1( 1 )3/4<<l+f0 dt
(oo 1)2 + 2

_<1+
1 foo du

(oo 1)/: "to (1 -]" U2)3/4

1
<<

(oo 1)x/:
logt/2x.
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It follows that

[K]

fxl/(s) 13/21s1-21ds _< , f+i<K<-)+"+)ll(s) 13/211-2[ds
m-O "oo+i(K(oo-1)+m)

[K] 1
<< )og/2x

1 + m2
m0

<< log/2x

and hence

log x
K/2

+ 0 (log x).

Similarly estimate the integral

fl P(s)I Is1-21dsl

Hence we deduce, by applying (1.12) once more, that

(1.14)
,2

2, ip(s)l 2

< e , if(s) , Isl 2

<< K-/41ogx + o(logx).

Combining (1.10), (1.11), (1.13) and (1.14) with (1.9), we arrive at

H(x) cx log x + K-/40(x log x) + Ko(x log x).

Given e > 0, we have

1IK-/40(x log x)l < ex log x

for K > Ko sufficiently large. Fixing K > Ko, for x > xo sufficiently large, we
have

1
log x) < "ex log x.

This implies

H(x) cx log x < ex log x
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for x > xo, i.e.,

(1.15) H(x) ex log x + o(x log x).

It remains to deduce (1.5) from (1.15) by a tauberian argument. Set

O(x) fXlog tdF(t).

Then we have

x

H(x) t-l(t) dt cx log x + o(x log x).

For 0 < e < 1/2, on the one hand we have

t-l(t) dt (t) dt

cex log x + c(1 + e)x log(1 + e) + o(x log x).

On the other hand,

x+xt_(t) dt (x)log(1 + e) + t-x((t) (x)) at.

It follows that we have

(x) =c log(1 + e)x log x + c(1 + e)x + o(xlogx)
log(1 + e)

1 x+

log(1 + e) eXt-l((t) (x)) dt

and

(x) cx log x
x log x log(1 + e) + Icl(1 + ) + o(1)

log x log(1 + e)

x log x log( +ext-l(dP(t) d(x)) dt

We note that, for x < x + ex,

I(t) (x)l +log udF(u)

< log dN(u)
+

(log + log(1 + +
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Therefore, we have

t(x) cx log x
x log x

_< Icl ]og(i + ) + Ici(1 + e) + o(1)
log x log(1 + e)

1 (log x + log(1 + e))lN(x + ex) N(x)l+ X ig 3

and hence

O(x) cx log x
x logx log(1 + e)

holds for any fixed t > 0 since

N(x + ex)- N(x) =Ae+ N(x + ex) A(x + ex) N(x) -Ax
x x x

---,Ae asx-, oo

by Lemma 1.2. Letting e --, 0, we arrive at

lim sup
x-- oo

t(x) cx log x
x logx =0,

dp(x) cx log x + o(x log x).

Finally, by integration by parts, we have

Lx ddP(t)F(x) =1 + logt c + o(x)

where 1 < a < n. This completes the proof of the theorem.
The following two corollaries are immediate.

COROLLARY 1.6. If we replace (1.2) in Theorem 1.1 by

N(x) =Ax + O(xlog-x), x> 1.

then (1.5) is true.

COROLLARY 1.7. If we replace (1.1), (1.2) and (1.3) in Theorem 1.1 by

N(x) Ax + O(xlog-Vx), x > 1

with constant > 1 then (1.5) is true.
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2. A generalization of Haifisz-Wirsing’s theorem

The following theorem is a generalization of Halhsz-Wirsing’s theorem [4],
[9] to g-integers.

TI-IEOgEM 2.1. Suppose that (1.1) and one of (1.2) and (1.3) hold. Let f be a
completely multiplicative function on .W" such that If(n)l < I for all n
Then

(2.1) F(x) =o(x)

holds if and only if

E1 Re(1 f(p)p-it) oo
k--1

holds for all real t.
To prove Theorem 2.1, we need the following:

LEMMA 2.2. Assume (1.1). Let f be a completely multiplicative function on r
satisfying If(n)[ < 1 for all n ,At. Let I be a compact interval in R. Then
(2.2) holds for all I if and only if

(1)(2.3) if(s) o 1

holds uniformly for I as o 1 +

Proof We first note that

Re log 1
k-1

f(Pk)) (1)log 1 P

E p--(1- Ref(pk)p- it) + O(1)

holds for o > 1 since, by Lemma 1.2, r(x) < N(x) << x. Hence

I ( 1(1IP(sl  o P?’2"- =exp
k-’l

Ref(pk)p; ’t) + O(1)}.
We then note that

A
o -1 + a + og(o)
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where g(o) is continuous on o > 1. From these two facts, it follows that if
(2.2) holds for all I then, by Dini’s theorem, (2.3) holds uniformly for

I as o 1 +. The inverse implication is trivial.

Proof of Theorem 2.1. If (2.2) holds for all real then, by Lemma 2.2, (2.3)
holds uniformly for -K < < K for each fixed K > 0 and hence, by Theo-
rem 1.1, (2.1) holds. The inverse implication is trivial.

Application. Define

h(,) (- 1)

for , (P1,.-., lm,"" ) Jlf*, the respective generalizations of the classical
functions 2(n) and X(n) (Liouville function). Suppose that (1.1) and one of
(1.2) and (1.3) hold. For o > 1 and all R, we have

’3()1’(o / it) 14l’(o / 2it)l

exp
1 (3 + 4cos(at logpk) + cos(2atlogpk))

k=l a>l
Olp

>1

and hence

(o)l(o + it)l o or log((o)l(o + it)[)

as o 1 + On the other hand, we have

it)l)- E E 1 (1 --[- Rep; iat)
k,l a>l oP

E p--(1 + Re p-") + 0(1).

Therefore, we have

k--1

as o 1 + for all R. If we now take f(v) h(v) and write f(v) as f(ni)
for hi= n(,) then we find that

o 1 (1-Ref( )p-,t
oo 1E E P )= g E(1 +Rep-i‘)= oo

k--1
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holds for all t R because f(Pk) --1. By Theorem 2.1, we have

(2.4) E X(,) o(x).
n(,<x

From this fact, we can deduce the following:

THEOREM 2.3.
have

Suppose that (1.1) and one of (1.2) and (1.3) hold. Then we

M(x) ., Ix(,) o(x),
n(p)x

where (v), the analogue of the classical Mbius function, is defined on /l/’* by
setting

/(v) / (-1)’0,

/f
0 < ’1,..., ’,,,... < 1, ,1 + +’m + k,

otherwise.

This theorem follows from (2.4) and the following:

LEMMA 2.4. Assume N(x)= O(x). Then Y.,,,f,)<h(v)= o(x) if and
only if M(x) o(x).
Remark. From the proof below, we can see that the hypothesis N(x)

O(x) can be relaxed.

Proof. We have

where X(ni) and/2(ni) denote X(,) and/2(u) for n n(,) respectively and

if ,= (’,...,’m,...),’’= (’,’’’,"m,’’’) .W’*
with Pm 2u, Vm N,

otherwise.
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Hence

n()<x n()<x n(’)<x/n()

Assume E,,()xh(,) o(x). Then we have

M(x)
n()<x n(<x

since

I/=()1 1Z

Also, we have

i-" nts’ i----1 P

$

i----O n i=.o /’/

where 12(n i) denotes 12(/2) for n n(v) and

1_() { 1’
O,

if,= (,x,..., Vm,...
otherwise.

) ,/V’* with 2Ivm, Ym N,

In the same way, we can show that M(x)= o(x) implies
o(x).

COROLLARY 2.5. If

(2.5) N(x) Ax + O(x log-Vx), x > 1

holds with constants A > 0 and y > 1 then M(x) o(x).

We know that, in classical prime number theory, the prime number theorem
is "equivalent" to the assertion that M(x) o(x) in the sense that each is
deducible from the other by an "elementary" argument. It is interesting that
this equivalence does not hold in some g-prime systems. Actually, we know,
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from Beurling’s theorem [2], that the hypothesis (2.5) with 3’ > 3/2 implies the
prime number theorem and, from Diamond’s example [3], that there exists a
g-prime number system which satisfies (2.5) with V 3/2 and for which the
prime number theorem does not hold. Corollary 2.5 shows, however, that
M(x) o(x) still holds for Diamond’s example. Therefore, the conjecture in
[7], which says that the prime number theorem and the estimate M(x) o(x)
are equivalent for all g-prime number systems satisfying (2.5) with 3’ > 1, is
not true.
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