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MIXED SIEGEL MODULAR FORMS
AND KUGA FIBER VARIETIES

MIN Ho LEE

1. Introduction

Mixed automorphic forms were first introduced by Hunt and Meyer [1] in
connection with holomorphic forms on elliptic surfaces. A generalization to
mixed automorphic forms of higher weights was treated in [5] (see also [7],
[8]).

Let E be an elliptic surface and let 7r" E X be an elliptic fibration in
the sense of Kodaira (cf. [2]). Thus E is a compact smooth surface over C, X
is a compact Riemann surface, and the generic fiber of r is an elliptic curve.
We assume that - has a global section and that there are no exceptional
curves of the first kind in the fibers of 7r. Let E0 be the union of the regular
fibers of rr and let X0 7r(E0). We identify the universal covering space of
X0 with the Poincar6 upper half plane e,,, and the fundamental group
rrl(X0) with a subgroup F of PSL(2, R). Thus we have X0 F \ , where F
acts on by linear fractional transformations. Given a point z X0, we
choose a holomorphic 1-form on Ez rr-l(z) and a basis {az,z} of
HI(Ez, Z) that depends on z X0 in a continuous manner. Then the
many-valued function

on X0 can be lifted to a holomorphic function to: satisfying
to(yz) X(y)to(z) for all y F and z , where X: F --* SL(2,R) is the
monodromy representation of F rl(X0) for the elliptic fibration r: E X.
Hunt and Meyer [1] defined the space of mixed cusp forms $2,1(F, to, X) using
the automorphy factor

(cz + +
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where

and X(3’) cx dx SL(2,R).

They proved that S2,1(F, to, X) is canonically isomorphic to the space
H(E, fl2) of holomorphic 2-forms on E. In [5] the space Sz.,,(F, to, X) of
mixed automorphic forms of type (2, n) was defined using the automorphy
factor

j( , Z) ( CZ -I- d)2(Cxto( Z) -l- dx)n,
and it was proved that the space S2, n(F, to, X) is canonically isomorphic to the
space H(E", It"+ 1) of holomorphic (n + 1)-forms on the elliptic variety En,
where E" is obtained by resolving the singularities of the compactification of
the n-fold fiber product of E0 over X0.
Assuming that F SL(2, R) with -1 F and that X is an inclusion

F "--> SL(2, R), the above result of Hunt and Meyer was proved by Shioda [11]
and the higher weight case was proved by S6kurov [12].
The purpose of this paper is to obtain a result similar to the ones described

above in the case of Siegel modular forms. Let G be a semisimple Lie group
whose quotient G/K by a maximal compact subgroup K is isomorphic to
m and let F be a discrete subgroup of G such that the quotient
X F \m has a structure of a complex manifold, where o3m is the
Siegel upper half space of degree m. Then both G and Sp(m, R) act on m.
Let p: G -, Sp(m, R) be a homomorphism and let -: ’’ --, zam be a
holomorphic map such that

for all g G and z m. Then the equivariant pair (p, to) defines a Kuga
fiber variety zr: Y,o --> X over X whose fibers are complex tori. In this paper,
we define mixed Siegel modular forms and show that the space of holomor-
phic forms of the highest degree on the fiber space Y of the n-fold fiber
product 7rn: Y ---> X of the Kuga fiber variety zr: Y,o X is canonically
embedded in the space .’m+l,,,(F, to, p) of mixed Siegel modular forms of
type (m + 1, n) associated to F, to and p.

I would like to thank the referee for various helpful suggestions.

2. Kuga fiber varieties

Let V be a vector space over R of dimension 2m, and let /3 be an
alternating bilinear form on V. We set

Sp() {g GL(V)I(gx, gy) (x, y) for all x, y e V}.
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and let *ta(/3) be the set of all complex structures J on V such that the
bilinear form (x, Jy) on V is symmetric and positive definite. Then Sp(O)
acts on deta(/3) transitively by

(g,j) gjg-1 for g Sp(), J ().

Let {el,..., era, f,..., fro} be a basis for V and let o: V- RTM be the
isomorphism such that

o(ei) e and 0(fj) Era+

for 1 < i, j < m, where {ei[1 < < 2m} is the standard basis for R2m. We
assume that the choice of the basis for V has been made in such a way that
corresponds to the (2m 2m)-matrix

0 -I)I 0

( ei, ej) (fi, fj) O,

(ei, fj) -Sij

for 1 _< i, j < m, where ij is the Kronecker delta. Then o induces an
isomorphism q5 of dr,’(fl) to the Siegel upper half space

m {Z fi Mm(C)lz ---tz, Im z >> 0}
(see [10, 11.8]).

Let G be a semisimple Lie group and let K be a maximal compact
subgroup of G. We assume that the symmetric space D G/K has a
G-invariant complex structure. Let p: G Sp() be a homomorphism and
let -: D - dr’(/3) be a holomorphic map such that

,r( gz) p( g)’( z)

for all g fi G and z fi D. Then p determines the semidirect product G <p

in which the multiplication is given by
V

(g,, u1)" (g2, V2) (gg2, P( gl)U2 + U1)

for all g 1, g2 fi G and v 1, U2 fie V. The group G Ixo V acts on D V by

(g,v) (x,w) (gx, p(g)w + v)

for (g, v) fi G o V and (x, w) fi D x V.
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Let u(x)= (Ul(X),...,Uk(X)) be a global complex analytic coordinate
system of the bounded symmetric domain D. Define the map z: D V Cm

by

z(x,w) (’r’(x), l)Eq(w),

where -’ q5 . and

I 0 m2m(R)

This induces the map Ix" D V Ck+m given by

,(x,w) (u(x),z(x,w)).

Thus /x is a diffeomorphism of D V onto u(D) Cm. If J is the natural
complex structure on u(D) Cm, then -= -l(j) defines a complex
structure on D V with global coordinates

PROPOSITION 2.1.
the action of G < V.

The complex structure -on D V is invariant under

Proof We shall give the proof of this proposition for later purpose
although it is essentially contained in [3]. If (g, v) G p V and (x, w) D

V, then we have

(g,v) (x,w) (gx, p(g)w + v).

Since D is assumed to have a G-invariant complex structure, Ul(gX),ooo
Uk(gX) are holomorphic functions of ul,..., uk, and similarly Ul,..., uk are
holomorphic functions of u o(g, v),...,uk o(g,v). On the other hand, we
have

z((g,v) (x,w)) =z(gx, p(g)w + v)
(’r’(gx),l)Eq(p(g)w + v)
(’r’(gx),l)E(p’(g)q(w) + q(v)),

where p’ is the symplectic representation of G on R2m determined by p and
q. Hence we have

z((g,v) (x,w)) (’r’(gx),l)tp’(g)-lEp(w) + (,r’(gx),l)Eq(v).
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If

then we have

P’(g)= c’ d’

"r’(gx) p’(g).r’(x) (a"r’(x) + b’)(c"r’(x) + d’) -1.

Since "r’(x) and "r’(gx) are symmetric and

we have

(’r’(gx), 1) =t (c"r’( x) + d’)-l(,r’( x), l)tp’( g).

Hence we have

(z’(gx),l)’p’(g)-E(w) =t(c’r’(x) + d’)-l(,’l"(x),l)E(w)
.-t(c’,l"(x) d- a’)-lz(x,w).

Thus it follows that

z((g v) (x w)) (c"l"(X) q- d’) -1 "/"z(x,w) + ((gx),l)Ep(v).

Since r’ is holomorphic and the complex structure on D is G-invariant, the
right hand side of the above relation is a holomorphic function of (x, w)
D V. The same relation also indicates that Zl,..., z, are holomorphic
functions of Zl (g, U), Zm (g, U). Thus it follows that

Ul o( g, V),..., Uk o( g, V), Z o( g, V),..., Zm o( g, V)

are again global complex coordinates of D V.

Let L be a lattice in V and let F be a torsion-free cocompact discrete
subgroup of G such that p(F)L c L. Then the semidirect product F p L
operates on D V properly discontinuously, and by proposition 2.1 the
complex structure o- on D V determined by the holomorphic map -"
D ,X’(/3) induces a complex structure on the manifold F p L \D V.
We denote by the complex manifold F < L \D V obtained this way.
Then the projection map D V D induces a fiber bundle 7r: X
known as a Kuga fiber variety over the complex manifold X F \ D whose
fibers are complex tori of dimension rn (see [3] and [10, Chapter 4] for
details; see also [4, 1], [6]).



MIXED SIEGEL MODULAR FORMS 697

3. Mixed Siegel modular forms

In this section we define mixed Siegel modular forms which generalize
usual Siegel modular forms. Let ffm be the Siegel upper half space of
degree rn > 1 on which the symplectic group Sp(m, R) operates. We define
the automorphy factor

j: Sp(m,R) X am -"> C X

by

j(tr, z) det(cz + d),

where

a b) R).zaW and tr= Sp(m
c d

Let G be a semisimple Lie group such that the quotient G/K of G by a
maximal compact subgroup K is isomorphic to m. Thus G can be written
as a product Sp(m, R) Gc with Gc compact, and the groups F, G and
Sp(m,R) act on g,m. We denote by p the natural projection of G onto
Sp(m, R). Let p: G Sp(m, R) be a homomorphism and let to: m m
be a holomorphic map such that

for all z m and y F.

DEFINITION 3.1. A holomorphic map 0" am-’) C is a mixed Siegel
modular form of type (k, l) associated to F, to and p if

.A( /Z) j( p( ), z) kj( p(’’) to(z))ll(Z)
for all y F and z m.

We shall denote by ./k,t(F, to, p) the space of mixed Siegel modular forms
of type (k, l) associated to F, to and p.

4. Kuga fiber varieties determined by subgroups of symplectic groups

In this section, as in 3, G is a semisimple Lie group whose quotient G/K
by a maximal compact subgroup K is isomorphic to m. Thus G can be
written as a product G Sp(rn, R) Gc with Gc compact, and both G and
Sp(m, R) act on the Siegel upper half space g,m. Let p: G Sp(m, R) be a
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homomorphism and let to: am -- (m be a holomorphic map such that
to(gz) p(g)to(z) for all z m and g G. If L is a lattice in RTM and if
F is a torsion-free cocompact discrete subgroup of G with p(F)L c L, then,
as described in 2, p and to determine a Kuga fiber variety 7r: Yo - X over
the complex manifold X whose fibers are complex tori of dimension m.

THEOREM 4.1. If k m(m + 1)/2 dim m, then the space
H(Yo, 1)k+’) of holomorphic (k + m)-forms on the Kuga fiber variety Yo is
canonically embedded in the space /{m+ 1,1(F, to, p) of mixed Siegel modular
forms of type (m + 1, 1) associated to F, to and p.

Proof. Let H(Yo,k+m) be a holomorphic (k + m)-form on Ieo.
Then is a holomorphic (k + m)-form on ,m X Cm that is invariant under
the action of F tp L, where L is a lattice in Cm. Thus can be written in
the form

g/ f(u, z) du A A duk Adz A A dZm,

where Ul,... Uk, Z1,... Zm are the global coordinates of m X Cm con-
structed in 2. Given x e X, descends to a holomorphic m-form on the
fiber Yo,,x over x. The fiber Y,o, is a complex torus of dimension m, and
hence the dimension of the space of holomorphic m-forms on Yo,, is one.
Since any holomorphic function on a compact complex manifold is constant,
the restriction of f(u, z) to the complex torus Yo, x is constant. Thus f(u, z)
depends only on u; and hence $ can be written in the form

d f(u) dul A A dug Adz A /k dZm,

where f is a holomorphic function on om. To consider the invariance of
under the group F to L, we set

du du A A duk and dz dz A A dzm,

and let (y, v) F <o L. Then we have

du (’y, u) j( p(’g), u) -(m+ l) du,

where p is the natural projection of G onto Sp(m, R) (see e.g., [9, {}1.6]). On
the other hand, as in the proof of Proposition 2.1, we have

dz o(y,v) d[t(coo(u) + do)-iz + (o(3,u),l)Ev],
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where

E= I 0 M2m(R) and p(T) cp dp

here o plays the role of z’ in the proof of Proposition 2.1. Hence we obtain

qt o(T,V ) =f(’yu)j(p(’y),v)-(m+l)det[t(cpoo(u) + dp) -1] du Adz

f(yu)j(p(y),U)-(m+l)j(p(y),to(u)) -1 du Adz.

Thus we have

f(]/U) =j(p(’),u)m+lj(p(T),(.O(U))f(u),

and it follows that

f(u) .m+l,l(F, o, p).

Therefore the assignment tO f(u) determines a canonical embedding of
Ho(y,o, "k+m) in "g’m+ 1, I(F, t0,/9). [-’1

Now we consider fiber products of Kuga fiber varieties. Let 7r: Y X be
the Kuga fiber variety constructed above. For each positive integer n, we
consider the n-fold fiber product

of Y, over X. We shall use yn to denote this fiber product and rn: yn X
to denote the fibration induced by

THEOREM 4.2. The space H(Y [’k+mn)o,, of holomorphic (k + mn)-forms
on Y is canonically embedded in the space ’m/ 1. n(F, 00, p) of mixed Siegel
modular forms of type (m + 1, n) associated to F, oo and p.

Proof If tO is a holomorphic (k + mn)-form on yn, then q can be
considered as a holomorphic (k + mn)-form on m X (cm)n that is invari-
ant under the action of F < L. Thus, as in the proof of Theorem 4.1, there
is a holomorphic function f(u)on m such that

d/--f(u)dy Adz(1) A Adz(n),

where u (Ul, Uk) Z(j) (zj), (J) are the canonicalz, ), and (u, zu))
coordinates of m X Cm for each j with 1 _< j _< n considered in 2. Using
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the results given in the proof of Theorem 4.1, for each (y, v) F <p L, we
obtain

(y, v) f( yu)j( p(’y), u) -(m+ 1)j( p(3/), (.0(U))
du A dz() A A dz(’).

Thus we have

f(yu) j(P(T), u) m+ lj(p(T), (o(u))nf(u),
and it follows that

f(u) "’m+ 1,,,( F, 0, p).

Therefore the assignment f(u) determines a canonical embedding of
Ho(y.,, "k+mn) in "//m + 1, n(F, tO, p). [-]
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