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SPECTRAL ASYMPTOTICS OF FOLIATED MANIFOLDS

James L. HerrscH! aND CONNOR Lazarov?

Introduction

In this paper we study the spectral distribution functions for the analytic
and combinatorial leafwise Laplacians on a foliated manifold admitting a
transverse invariant measure. We show (Theorem 4.1) that the dilational
equivalence classes near zero of the two spectral distribution functions are
the same. An immediate consequence is that this dilational equivalence class
is independent of the metric (in the analytic case) and the bounded triangula-
tion (in the combinatorial case) used to define it. Qur main result (Theorem
2.6) is that this dilational equivalence class is invariant under a measure
preserving leafwise homotopy equivalence. This result is equivalent to the
invariance of the dilational equivalence class near infinity of the trace of the
leafwise heat kernels.

Our results are motivated by those of [Ef-Sh], [G-Sh] and [Ef] concerning
the equivariant homotopy invariance of the asymptotic behaviour of the
spectral distribution function for Riemannian manifolds with a free isometric
action of a discrete group. We extend many of the ideas of these papers to
our situation. The main techniques used in the proof of the homotopy
invariance, however, are those developed in [H-L2] (where we prove the
leafwise homotopy invariance of the foliation betti numbers), the simplicial
techniques of [D] and [W], and those of [H-L1].

It is a pleasure to thank J. Dodziuk for several helpful conversations.

1. Introductory material: von Neumann algebras of foliations,
leafwise operators, triangulations and simplicial theory

Let F be a smooth oriented foliation of a compact oriented manifold M.
We first recall briefly some facts about transverse measures. For details see
[C], [M-S], chapter IV and [H-L1], §2.3. A transversal to F is a Borel subset
of M which intersects each leaf in a countable set. A smooth transversal is a
proper embedded submanifold of M which is also a transversal. The set of
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transversals forms a o-ring and a transverse measure v is a measure on this
o-ring. The transverse measure is called invariant if it is invariant under the
holonomy pseudogroup acting on smooth transversals. A Riemannian metric
g on M gives rise to a volume form A; on each leaf L of F. The family
A ={A;} and an invariant transverse measure v give rise to a measure
u = Adv on M ([C], [M-S] chapter IV).

Let E be a smooth vector bundle on M with smooth metric, E|L the
bundle restricted to the leaf L, and L, the leaf through the point x. Let
H,=L*L,, E|L,), the Hilbert space of L? sections of E|L, over L, with
inner product ( , ),. A section of the family {H,} is a function s: M —
U H, with s(x) € H,. A measurable structure on {H,} is a sequence {s,} of
sections such that for each x, {s,(x)} generates H, as a Hilbert space. See
[Dix], p. 161 for a complete discussion. The measurable structure we use is
given in the appendix of [H-L2]. A section s of {H,} is called measurable if
(s(x), 5,(x)), is a Borel function on M for all n. An inner product on the
measurable sections is given by

(5,6 = [ (s(x),1(x)) du(x).

A measurable section s is square integrable if ||s||> = (s, s) < ®. Let H be
the collection of square integrable sections with the inner product { , ),
and identify two sections if they are equal almost everywhere on M (with
respect to the measure w). H is then the direct integral of the family {H,}.

Let U and V' be foliation charts on M and y a leafwise path from U to V.
Let U X vV denote the subset of U X V consisting of those points (x, y)
such that x € domain of &, and y € h (P,). Here h,, is the holonomy map
corresponding to vy, P, is the placque of x in U and hy(Px) is the placque of
h,(x) in V. Let C§(U,V,v) denote the set of leafwise smooth, uniformly
bounded, measurable sections of the bundle E ® E* over M X M which are
compactly supported in U X yV. An element of C§(U,V,y) gives rise to a
measurable family of bounded operators on {H, } and hence a bounded
operator on H. W(F; E) is the von Neumann algebra of operators on H
generated by the C§(U,V,y) where U and V are in a fixed cover of M by
foliation charts and y ranges over the holonomy classes of leafwise paths
from U to V. (See [H-L1, 2}, [C], [M-S] and [Dix] p. 181.)

An invariant transverse measure v determines a trace, tr,, on W(F; E)
(C], [M-S], [H-L1]. For an element k € C§(U,V,v), k(x,y) € E, ® E}, so
tr k(x, x) is well defined and tr, k is given by

tr, k= [ trk(x,x)Adv.
M

We can replace the given family of metrics {g,} on the leaves by any other
family {w;} of leafwise smooth transversely measurable leafwise metrics
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provided that there are constants ¢, and c, so that
C18L S WL S (8.

for all L. Under such a change of metric, the Hilbert spaces H,, the square
integrable sections H and the von Neumann algebra W(F; E) are un-
changed. In particular, they are all independent of the metric g on M.

We will be primarily interested in the bundles E, = A kT*F ® C where
T*F is the cotangent bundle of F. The smooth sections of E,|L are the

smooth k forms on L. Denote by Cj(E,|L) the smooth sections of compact
support, and by

di: C3(E¢IL) > CF(E;44IL)

leafwise exterior differentiation. Using the leafwise metrics to construct inner
products on L2*(E,|L), we have the leafwise Laplacians

AL = db_db*, + dE*dE,

AL is an unbounded self adjoint non-negative operator on L?(E,|L). We
denote by A, d, and df the families {A%}, {df} and {d}*)}.

Now let M’ be a second compact oriented Riemannian manifold with
oriented foliation F’ and invariant transverse measure v'. Let f: M - M’ be
a continuous map which takes each leaf of F to a leaf of F'.

DerintTioN 1.1, f is measure preserving if for each transversal T of F
and T’ of F' for which the restriction f: T — T’ is one-to-one and onto, we
have v(T) = v'(T").

We assume that f is measure preserving and that it is a leafwise homotopy
equivalence. That is, there is a continuous map f’: M’ — M which takes
each leaf of F’ to a leaf of F and such that f'f and ff’ are homotopic to the
identity by homotopies which take each leaf of F (respectively F’) to itself.

In [H-L2], we construct a von Neumann algebra W,(f, f') containing the
von Neumann algebras W(F; E,) and W(F'; E;) where E, = A*T*F' ® C.
The assumptions on f and f' imply that there is a trace tr, g, on W, (f, ')
which restricts to the traces tr, and tr, on W(F; E,) and W(F'; E}). We
briefly describe this construction. For more details see [H-L2], §4.

For x € M, let

H! =L*L,; E/L,) ® L2(L’f(x); E“L,f("))
= H, ® Hf,,.
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Given a section s' of {H}}, let f*(s'X(x) = s'(f(x)). The measurable struc-
tures {s,} and {s,,} on {H,} and {H]} define a measurable structure {s,} U
{f*(s,)} on {H}}. An inner product on sections s = (s, s,) and ¢ = (¢, ¢,)
of {H}} is given by

(51> = [ ((31(2), 1(2)) + (52(3), £2(0)) ) dia( %)

Letf? " be the collection of all square integrable sections. Then H' =H®o
f*H' where f*H' denotes the set of square integrable f*(s’) where s’ is a
measurable section of {H;}. We now describe generators for W,(f, f') and
how they act on the amblent space H”. As elements of CA(U,V, ) define
bounded operators on H, they also give bounded operators on H” = H &
f *H' by acting as the zero operator on f* *H'. Similarly elements of
C§(U',V',y") define bounded operators on H' so also on f*H' which
extend to bounded operators on H”. Now let U be a foliation chart on M, U’
and V' foliation charts on M’ and y' a leafwise path from U’ to V. Let
U X,; V' be the subset of U X V' consisting of all (x,y) where x € U,
f(x) € domain of k., y € h (P;,,) where P, is the placque of U’ con-
taining f(x). Let C”(U V',v'f) consist of all leafwise smooth, transversely
measurable, bounded sections k(u,v) of E, ® E* over M X M’ which are
compactly supported on U X v V’'. Such a k deﬁnes a bounded operator
from f *H' to H given by

(k) (x)(w) = [ k(u,0)(s'(f(x))(0)) dX(v),

by (Pfx)

and so also a bounded operator on H". Similarly we define C&(U’,V, yf’)
where 1y is a leafwise path in M. Each k € C§(U",V, yf’ ) defines a bounded
operator from H to f *H' and so also a bounded operator on H".

W, (f, f') is the von Neumann algebra generated by the sets of bounded
operators C(U, V,y), C(U", V', v"), C(U, V', y'f) and C{(U',V, vf') where
U and V are in a fixed cover of M, U’ and V' in a fixed cover of M’ and y
and y’ range over the holonomy classes of leafwise paths.

We will also need the Sololev spaces associated to CO(EkIL) (D], §2,
[H-L2], §3). Let A%*(L) be the completion of Cj(E,|L) in the norm

w2 2 = ((1 + A%)"w, (1 + 8%)"*w).

The measurable family {45 *} where A4%* = A%* has a measurable structure
inherited from {L*(E,|L, )} Denote by A‘ k the direct integral of {A4%*} and
by || |5 its norm.
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In order to make use of the leafwise simplicial structure, we will need the
bounded leafwise triangulations K constructed in [H-L2], §2. K is a family
{K,}, where K, is a triangulation of the leaf L. The K; are leafwise smooth
and transversely measurable. They possess the crucial property that the
volumes and diameters of the simplices are uniformly (over all leaves)
bounded away from zero. We denote by S’K the rth standard subdivision of
a bounded triangulation K. Given a continuous map f: M — M’ taking
leaves to leaves and bounded leafwise triangulations K and K’, there is an
integer r and a Borel map g: M — M’ such that for each leaf L, g(L) c f(L)
and g restricts to a simplicial map from S"(K;) to K (L, Which is a simplicial
approximation to f. For details, see [H-L2], §2.

Given a bounded triangulation K of M, denote by CX(K,) the completion
of the finite simplicial cochains C*(K,;) in the inner product (g,h) =
¥,8(7)h(7r), the sum being over all k simplices in K,. The simplicial
coboundary operator gives rise to a bounded operator

CH(K.) —» C3*Y(KL).

We form the measurable family {C5(K,)} where C5(K,) = C5(K,). A
measurable structure on this family is given in the appendix of [H-L2]). We
can then form the direct integral CX(K). The map [: A**(K,) —» CX(K)),
(D), §3) given by (jwXo) = [,w and the Whitney map W: C5(K,) —
A**(Kp), (D], [W], p. 138), give rise to maps |: A% - CX(K) and W:
CX(K) - A%*, with [ - W = Id. Details of this construction can be found in

[H-L2]. As above for the foliation F’ on M’, these maps will be denoted by
[ and W'.

2. Definition of the spectral function

Let M, F and v be as above. Following [Ef-Sh], we introduce the spectral
functions N,(A). Fix an integer k and set E = E,, AL = AL, A* = A’x and

= {A*}. A* extends to an unbounded operator on Aj;" for all s and x.
Thus if 4 is a bounded Borel function on R, then A(A*) is a bounded
operator on A3 k for all s and x, and so defines a bounded operator h(A) on
A%k In partlcular h(A) is a bounded operator on H = A%*.

Let x, be the characteristic function of the interval [0, A].

THEOREM 2.1.  x,(A) lies in W(F; E) and tr,(x,(A)) < .

Lemma 2.2. If h is a bounded Borel function with compact support then
R(A™) is a smoothing operator on A®*(L) = L*(L, E|L) so the Schwartz
kernel k(x,y) of the operator h(A) on H is leafwise smooth. If h is the
pointwise limit of uniformly bounded smooth functions, then k(x, y) is measur-
able on M X M.
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Proof. Let ||h(AD)]lo,s be the norm of the operator A(AL): A%*(L) -
A%*(L). By the spectral theorem,

IA(AL) [lo,s < sup(1 + A)**h(A) < o,

so h(AL) is smoothing.
Now if k;(x, y) is the Schwartz kernel of #(AL), then the Schwartz kernel
k(x, y) of h(A) is

k;(x,y) ifx,yelL
k(x,y) = 0 X, y not on same leaf.
Let h(A) = lim, _,, h,(A) where the limit is pointwise, the %, are smooth
with uniform compact support and uniformly bounded. Let k,(x, y) be the
Schwartz kernel of 4,(A). Theorem (2.3.9) of [H-L1] says that k,(x,y) is
(leafwise smooth and) measurable on M X M.

Next, assume for the moment that E is a one dimensional trivial bundle.
Let 8 be the & function at x € L. By the spectral theorem,

k,(x,y) = (h,(AF)8E,8E) » (h(AL)SE,8F) = k(x, y)
where the convergence is pointwise. In addition, |k,(x, y)| is bounded by
I+ Aty h, (ALY || JSEN -8 .

As |85 _; is (for fixed s > dim L /2) bounded independently of x and L
and

1 + %), (A% [lg,o < sup(1 + 1)’ R (1)

which is bounded independently of n, it follows that |k,(x, y)| is uniformly
bounded. Thus k(x, y) is measurable.

For arbitrary E, we merely replace 5, and 8] by the & sections §2* and
8% of the proof of (2.3.9) of [H-L1].

Note that f,, tr k,(x, x) du < « and that this integral converges to

f trk(x,x)du(x) asn—> o
M

by dominated convergence. As |tr k,(x, x)| is bounded, the latter integral is
finite and we may interpret it as tr,(h(A)) once we have the following.
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Lemma 2.3.  If h is a bounded Borel function with compact support which is

the pointwise limit of uniformly bounded smooth functions, then h(A) €
W(F; E).

Proof. Suppose that A is smooth. As in [Roe], write £ as a limit of smooth
uniformly bounded functions %4, whose Fourier transforms are compactly
supported. By Theorem 2.3.7 of [H-L1), 4,(A) € W(F; E). For each x € M,
h,(A*) > h(A*) strongly. If T and the sequence 7,, are decomposable opera-
tors on H with sup||7, || < o« for almost all x, and T,* converges strongly to
T* then T, converges strongly to 7 [Dix], p. 183. Thus 4,(A) — h(A)
strongly and h(A) € W(F; E).

For arbitrary A, write & as a pointwise limit of 4, where each A, is smooth
and compactly supported and the %, are uniformly bounded. Then for each
x €M, h,(A*) - h(A*) strongly. By Lemma 2.2, {h(A*)} is a measurable
family of uniformly bounded operators, hence it defines a bounded operator
h(A) on H. As h,(A) = h(A) strongly, h(A) € W(F; E).

DeriNITION 2.4, N¥(A) = tr (x,(A)). NX(A) is the (kth) spectral distri-
bution function of F and ».

Let &, be the set of orthogonal projections P on H which satisfy the
conditions

(i) PeW(F;E)
(i) Image of P c domain of A
(Gii)) P(A- MNP <O.

The proof of Theorem (3.1) of [Ef-Sh] in the context of W(F; E) shows
(2.5 NK(A) = suptr,(P)

where the sup is taken over P € &,.

Following [Ef-Sh] and [Ef], we consider non-decreasing functions F(A) on
R which vanish on (—,0). We write F << G if there is C > 0 and A, > 0
such that F(A) < G(CA) for A < Ay.If F < G and G < F,we say F and G
are dilationally equivalent near zero.

Let (M, F,v) and (M', F’, ') be as in section one. One of our main results
is the following foliation version of the main result of [G-Sh].

THEOREM 2.6. Suppose there is a measure preserving leafwise homotopy
equivalence between (M, F,v) and (M', F',v'). Then the spectral distribution
functions N¥(\) and N¥()) are dilationally equivalent near zero.
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As in [Ef-Sh], we can reformulate this result in terms of the leafwise heat
kernels e~*A. For non-increasing functions on R*, we write f < g if there is
¢ > 0 and ¢, > 0 such that f(¢) <g(ct)for t > t,. If f < g and g < f, we
say f and g dilationally equivalent near o,

For a non-decreasing function N, let ©(¢) = [Fe~* dN(A). In [Ef-Sh], it is
observed that N, is dilationally equivalent to N, near zero if and only if O,
is dilationally equivalent to ®, near «. As above we fix k and write N,(A) for
N¥(A) and ©,(t) for

®k(t) = fRe‘“ dN,(A).

Lemma 2.7. 0O,(t) = tr,(e™").

Proof. N,(A) = tr,(x,(A) = [y tr k,(x, x) du(x) where k, is the
Schwartz kernel of x,(A). As in the proof of Lemma 2.2, we have |tr k,(x, x)|
< C - (1 + A)* for sufficiently large s and C independent of x and A. Thus

N(A) <C- (/ dp,)(l +2a)°
M
and we may integrate by parts to obtain
®,(t) = 1[ e N, (1) dA
R
=t [ e trky(x, x) dp(x) dA.
R'M

Let kX(x,y) be the Schwartz kernel of e~'*". Then kX(x, x) =
[re Md(tr kE(x, x)) where kL is the kernel of y,(AL). Thus

tr,(e™") = fM[Re‘“d(tr ki(x,x))du(x)

= t[M[Re““ tr(ky(x, x)) drdu(x).

As kE(x, x) = k,(x, x), Tonelli’s theorem gives the result.

CoRrOLLARY 2.8. Under the hypothesis of Theorem (2.6), we have

tr,(e ) and tr (e **)
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are dilationally equivalent near » (here X is the leafwise Laplacian on leafwise
k forms on M"). In particular the dilational equivalence class of tr,(e~"*) is an
invariant of (M, F,v) and does not depend on the metric on M.

Let B, = B be the kth foliation betti number of F (see [H-L2], §1). From
[H-L1], (2.3.11), we have lim, _,,, ©®,(¢) = B,. A similar argument shows that
lim, _, o+ N,(A) = B,. The main theorem of [H-L2] states that B, is invariant
under measure preserving homotopy equivalence. The argument of [Ef-Sh],
Proposition 5.3 shows.

CoROLLARY 2.9. Let a > 0. N/(A) — B, is dilationally equivalent to \*
near zero if and only if tr (e'®) — B, is dilationally equivalent to A™* near .
The dilational equivalence classes are invariant under measure preserving leaf-
wise homotopy equivalence.

The Hodge decomposition on each leaf yields

L*(L,; E;IL,) = ker(A}) ® im(d}_,) ® im(d})*

where dji_; and (d;)* are the usual operators on the leaf L,. Denote by
d,_, and dj the induced operators on H. Now A, is a self adjoint operator
on H and we have a Hodge decomposition.

H=kerA, ®imd,_, ®imd} .

As in [G-Sh], (3.4), we define the functions, F¥(1) and G*(A) where F*(A) =
sup tr,(P) where the sup is taken over the subset @, | of &, consisting of
those P with

image P cim df = (kerd,)™" .

Similarly G¥(A) = sup tr ,(P) where the sup is over the subset of &, consist-
ing of those P with

image P cimd,_, = (kerd?_,)" .
The proofs of [G-Sh] extend to our situation to give

Nf(A) = GJ(A) + By + Ff())

and

Ef(X) = GFHH(A).
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As B} is an invariant under measure preserving leafwise homotopy equiva-
lence, we need only prove theorem (2.6) for F¥(A).

It is convenient to have a second definition of_F,,"()t), as in [Ef]. Namely, let
S, be the set of orthogonal projections P on H such that

(D PeW(F;E)
(i) image P c (kerd,)* NE,

where E, = image x,(A;).
ProrposiTioN 2.10. FX¥(A) = sup tr,(P) where the sup is over P € §,.

_Proof. We again drop the k. x,(A) is a bounded smoothing operator on
H so E, c A% for all s > 0 and E, C domain A. Observe that for w € E,,
(Aw,w) < Alwll>. Thus S, € &, | .

LemmMa 2.11.  Let Q be projection onto (ker d)* . Then Q € W(F; E).

Proof. Denote the characteristic function of (0, ) by y. Then Q = Qx(A).
Choose f, € C;(R) so that

1. support f, c[1/(n + D,n + 1],
2. 0<f, <1,

3. fuloymm =1

Then for each x, f,(A*) converges strongly to x(A*) and |If,|l < 1. As Q isa
uniformly bounded operator on each leaf, Q*f,(A*) converges strongly to
Q*x(A*) = Q*. Thus we need only show that Qf,(A) € W(F; E). Let x|, .,
be the characteristic function of [A, ), A > 0 and note that on the image of
Xir,op @ = d*dA~'. Let h, ,, be a sequence of functions as in the proof of
(2.3) converging to f,. By (23.7) of [H-L1], A, ,(A) is a finite sum of
elements of the C4(U,V,y). As d*d is a measurable leafwise differentiable
operator, d*dh,, ,,(A) is also such a finite sum, i.e., d*dh, ,(A) € W(F; E).
Set g,(x) = (1/x)f,.,(x). By (2.3), g,(A) € W(F; E). Thus

8.(8)d* dh, ,(A) = d* dg,(A)h, (D)
= d*df, . ,(8)8,(8)h, (B)
=d* dg, 5(8) fus2(B) R, (D)
= Of+2(8)h,,,(A) € W(F E).

For each x, h, ,,(A*) converges strongly to f,(A*). Q*f, ,(A*) is uniformly
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bounded so Q*f,.,(A%)h, ,(A*) converges strongly to Q*f,,,(A*)f,(A%).
Thus

Ofn+2(8) () € W(F; E).
But
Ofn+2(8) f,(A) = OF(4).

Let P, be projection onto (kerd)* NE,. As P, = x,(A)Q, (see below),
P, € W(F;E), so P, €S,. We claim that for P € &, ,, tr,(P) takes its
supremium on P,. The Proposition then follows. To see the claim, note that
dA = Ad implies that

E, = (E, Nkerd) ® (E, N (kerd)™).

Thus x,(A)|(ker d)* is the projection onto (ker d)* NE,.Given PE &, |,
set V, = image P. Then x,(A)|y, is 1 — 1. If not, there is a nonzero w € V;
such that w € image x )‘,w)(A), where x(, ., is the characteristic function of
(A, ). Now A preserves this space and its restriction to it is invertible with
inverse bounded by 1/A. Thus

(w,w) = (A" Aw, w) = (AT1AY 2w, A 2p)

< AU IAY2WI? < 5 (A 2w, A/2w) = +-Caw, ).

So (Aw,w) > Mw,w). As w € Vp, (Aw,w) = A{w,w). But this is impossi-
ble since on each leaf, x(, ;,, -,(A") converges strongly to x, (A"). Set
Wi = X +1/n,(A"IW and write

wk =wk +wk.

Then W- —> 0 as n — © and (Awl,w}r) =0 = (wk,wr) as W, € image
X, r+1/n(AF). Then

(Afwh,wh) = (A'wl + AW, wr + w))
= (Afwrl,wf) + (ALw,f,w,,L)
> (A + %)(w,f,w,f) + AWl wr)
> A(wE + whowh +wh) = A(wh,wh).

The strict inequality follows from the fact that for n large, (WL, wl) # 0.
Thus (Aw,w) > A{w,w) a contradiction to w € V.
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Since x,(A) and P are in W(F; E), P, = projection onto the closure of
x,(A)Vp) is in W(F; E). If we write x,(A)P = Ulx,(A)P|, the polar decom-
position, we have P = U*U and P, = UU*. It follows that tr,(P) = tr,(P,).
But image P, c (kerd,)* NE, so tr,(P,) < tr,(P,).

We finish this section with two remarks. First, for P € &, , , we may
replace condition (iii) of (2.4) by

(i) llawll < VA llwl| for all w € image P

(see [G-Sh]). Second, note that for w € (kerd)* N E,, (Aw,w) = lldw|%.
Thus for such w,

lawll < VAliwll.

3. Proof of Theorem 2.4

_The main part of the proof consists of constructing maps A% (M) 2
A%*(M’) which, composed with appropriate projections, give rise to isomor-
phisms which lie in the von Neumann algebra W(f, f'). This is based on the
constructions of [H-1.2].

Let s be a fixed integer, s > dim M, dim M’.

TueoreM 3.1.  Given bounded triangulations K and K' of M and M', there
exist bounded operators

G: A>K(M) — A% (M")
G':/i's’k(M') __)A's,k(M)
satisfying d'G = Gd, dG' = G'd’, and bounded operators
T: A's,k+1(M) __)/i's,k(M)
T A’s,k+1(Mr) __)A's,k(M/)

such that
G'G = W[+dT+ Td
GG = W'f' +dT +T4d.

We defer the proof of (3.1) to the end of this section.
_As above, we denote the image of a projection P onto a closed subspace of
H by Vp. If P € W(F; E), dim, (V) is by definition tr,(P). G|V, will be
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denoted G,. For P € §,, we have V,, C E, C A>*(M) for all 5. For w € Vj,

2 2
Iwllo < liwlls = {w, w)s

=((1+ 2)%w, (1 + 8)"?w) < (1 + 1) Iwl}.

Hence, || llo and || |l are equivalent norms on V,. Let || |l always
denote || o and || ||. this norm restricted to (kerd)*. Similarly,
I lls, . will denote || |l on (kerd)*. Let Q and Q' denote projection

onto (ker d)* and (kerd’)*.
We now prove the analogue of proposition (4.1) of [G-Sh].

THEOREM 3.2. There exist constants C > 0 and Ay > 0 such that for
a€Vp, PES,,
la@ + 5)2G(a)| < cVX (1 + 8)2G(e) ],
for A € (0, ). The map
Q'(1+ N)/*Gp: Vp— (kerd')*
= A%*( M')mod(ker d')

is injective with image a closed subspace.

Proof. First we recall a result from the proof of (3.14) of [H-L2]. Given a
bounded triangulation K of M, there is a constant C; such that for any
standard subdivision S"(K) and any a € A5>*(M),

(Woj—l)a

where 7, is the mesh of S”(K), C, is independent of r, and W, is the
modified Whitney map corresponding to the bounded triangulation S"(K).
This fact is based on (7.19) of [D-P]. With some minor care in the construc-
tion, we may use a smooth Whitney map in place of W,. Let A, > 0 be fixed.
Choose r large enough so that Cim,(1 + A,)° < 1/4. We assume A < A, in
the subsequent discussion. Replace K by S'K and let W be a Whitney map
for which (3.3) holds. Let G, G’, T, and T’ be as in (3.1). Using the facts that
G is bounded and d preserves E,, we have for any a € V,,

34 e+ x8)76(a)ll=la6(a)l,
= IGdell, < |Gllldells
= IGIL|(1 + 4)"* de| < IGI,(1 + A,) lldall
< IGIs(1 + A;) VA llall.

(3.3) .

< ﬂrcllla"s
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Write G(a) = o), + &, where o), € kerd', o} € (kerd')* in the
metric. From (3.1) we have

s s
G'G(a) =a+ (Wf ~ I)a +dTa + Tda
and as G’'G(a) = G'(a}) mod(ker d) we have
a=G(d) - (Wf - I)a — Tda mod(ker d).

Now a € (kerd)* so

lleell =|.Q(G'(a;) - (Wf —I)a - Tda)

1

sllG’(a’l) - (Wj -~ I)a - Tda

<|G ()| +||(Wf —I)a

+ [[Tdall.

Also

(7 - 1)e

< n,Cillells < 7,C(1 + A1) lall < Hall,
and

ITdalls < Tl ldells < ITI(1 + A)ldall < ITI(1 + A)*VAlall.
Choose Ay < A; so that
ITIs(1 + A)°VA < 4 for0 <A <A,
As [|G'(@)Il < IG(@)ls < IG5l lls we have for A < A,

lell < Gl lls + 3llell,

or
”a” < 2”G,"s”a’1 "s = 2“G’”s"G(a)"s, 1.

It is easy to see that [|G(a)ll5, L = II(1 + A)Y/2G(a)ll . . Thus

(3.5) lell < 210G 1](1 + &)’ G(a) ] . -
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This combined with (3.4) gives the first part of the theorem. As

la + &y c(e)ll =loa + )6,
(3.5) gives the second part.
THEOREM 3.6. Let P € S, and P' be the projection onto the image of
Q'(1+ X)*Gpc (kerd')™ .
Then
P e W(F';E'Y and dim,Vp, = dim, Vp.

A similar statement holds for P' € ;.

We defer the proof of this as it involves the construction in the proof
of (3.1).

TueEOREM 3.7.  For A € (0, Ay), F¥(A) < FX(C?\) where C is the constant
in Theorem 3.2.

Proof. Let P € S, and P’ as in (3.6). By (3.6), P’ € W(F'; E') with
image P’ c (kerd')" = im d* c dom d'*.
Let o' € image P’ and set
o = Q1+ 4X)"*G(a) fora € V.
As a € domd, (1 + A)*/?G(a) € dom d'. Now
(1- Q)1+ X)"*G(a) € kerd' c dom d'.

Thus o' € dom d’, so image P’ C dom A'.
As Q' is projection onto (ker d')* we have

da = d'(Q(1+ X)"*G(a)) = d'(1 + &)/*G(a).
Now I(1 + &)>G(a)ll . = 1Q(1 + 4)*/*G(a)| 50 (3.2) implies that

ld'o'll < VC2llll.

Thus P’ € &2, , and as dim, V}, = dim,, V}» we are done.
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By symmetry, FX(A) < F,,"(C'ZA) for some constant C' so we have proven
Theorem (2.4).

Proof of 3.1. We recall the constructions of §3 of [H-L2]. Choose j large
enough so that for each simplex o € S/(K,), and each leaf L of F, st(o) is
contained in the first regular neighborhood of a simplex of K, . Next, choose
I large enough so that each simplex o' € S'(K}) lies in the first regular
neighborhood of a simplex of K; and so that there is a measurable leafwise
simplicial approximation g’ of f’,g": S¥(K') - S/(K). Choose k large
enough so that there is a measurable leafwise simplicial approximation g of
f,g: S¥(K) - S'(K'). Then G is the composition

As* (M) AN CZ(K) - C3(S'K) — C*(S’K’)
e (k) L Ay

and G’ is the composition

’

Ay L 3Ky 2 Ex(SKT) =5 GH(SK)
5, (k) I Ao ().
Here =, and w, are the induced leafwise simplicial maps from canonical

maps S’K — K and S'K’ —» K'. S' and S* are induced from the natural

chain maps. From [H-L2], §3 we have the formula, at the chain level on each
leaf,

(3.8) TiS"g84S¥ () — wES™ (1) = 3(¥S™rDS*)(I7])
+(¥S™rDS*)a(I7])

where 7/: $™*/K — K and w*: $"*kK — K are canonical simplicial maps,

D takes singular i simplices to singular i + 1 prisms, r takes singular i + 1

prisms to singular i + 1 chains, ¥ takes singular simplic_es supported in the

first regular neighborhood of K to simplices of K, and =/ and * are chosen

so that mji(p) = ¥(lp|) for each simplex p, and similarly for 7w*. The #

indicates the induced map on chains. On S'K, S’wz + is chain homotopic to
the identity, so we may write S’~n-2 4=1+Dd+ aD' for some D'. Thus

(39) 1, 48wS' T 4848 — 1 4848pS* =y 48u(D'9 + D) g,S".
In (3.8), use miS™ =7, , and mfS™** = I and add (3.8) to (3.9) to obtain

(3.10) (71,4858 ) (72, 4848*) — I = 9T, + Td
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where T, = y$™rDS* + m, ,8,D'g,S*. Now combine the cochain version
of (3.10) with W, W’, [ and ['. Since ['W' = I, we have

(3.11) (Wskg#qrg‘[ )( WSl #f) =wf+ d(WTOf) + (WTof)d.
We observe that from the constructions in §3 of [H-L2], the operator T, and
hence T = WT, [ are bounded operators whose operator norms are uniformly

bounded over all leaves. Passing to the direct integral we have G'G = W[ +
dT + Td. By an identical construction we have GG’ = W'’ + d'T’' + T'd'.

Proof of 3.6. We recall from [H-L2], (4.2) that tr,, tr,, and f (since f is
measure preserving) give rise to a trace, trace, g, on W(f, f') which restricts
to tr, and tr,, on the appropriate subalgebras. For a projection P € W(F; E),
it follows from [Dix], p. 187 that P is decomposable, P = {P,} for x € M.
Similarly for P’ € W(F', E’). Thus any projection P € W(F; E) determines a
projection P € W(f, f') and tr, g, (P) = tr,(P). Similarly P’ € W(F'; E')
determines P' e W(f, '), since f is a leafwise homotopy equivalence, and

I,e,(P') = tr (P).

Now let P € S,. Then G(V;) C A**(M"), and W, = Q'(1 + A)*/2G(V}) is
a closed subspace of A% =H'. Wp determines a closed subspace, also
denoted W,, of f*(H'). Let P’ be the projection onto W, in H’. We have a
decomposition

H' =V,® V,* oW, & Wyt
where V" is the orthogonal complement of V, in H and W,* that of Wp in
f*(H’). Let P,, P,, P;, P, be the projections onto these subspaces. P, = P €
W(F; E) so P; and also P, lie in W(f, f'). Denote Q'(1 + A’)‘/2GP1 by Ap.
From (3.2) we have |la|l < Cll4p(a)|| for a € V. Hence Ap' = (Aplyp) 1P,
is well defined and bounded. We define
T, B7 > A
by
Tp(xy5 X5, X3, X4) = (A;l(x3), x5, Ap(xy), x4).

We will show that P;, P,, A, P, and Ap'P,, and hence Tp, lie in W(f, f").

As P,e W(f,f), P'=P,€ W(F';E'). Since T;! = T,, it follows (see
[H-L2], (4.6)) that

trv(P) = trv$v’(Pl) = trv@v'(TPPITI:I)
= trv$v'(P3) = trv'(Pl)‘

Now tr,(P) = dim,(V}) and tr,,(P’) = dim (V) so the theorem follows.
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To prove Ap € W(f, f'), we appeal to (4.5) of [H-L2]. There it is shown
that for k € C§(U,,V,,v,), Gk is a finite sum of elements of the
CHU',V,yf"). For s even, (1 + A)*/? is a measurable leafwise differential
operator, so (1 + A)/2Gk is also such a finite sum. It follows that (1 +
X)*/2GP, € W(f, f'). By Lemma (2.11), Q' is in W(F'’; E'), so also in
W(f, f'), and so Ap and ApP, are in W(f, f').

To prove that P, and P, € W(f, f'), write Ap = U|A|, the polar decom-
position. Let f,(x) = 1/x for x > 1/n and f(x) = 1/n otherwise. Then for
each x € M, A}f,(l4%]) has U* as strong limit [R-S, p. 247, no. 20]. As
l4,£,(A4pDIl < 1, it follows that U, U* and UU* = P, and so also P, lie in
w(f, f').

Finally to show A;! and so also A;'P; lies in W(f, f'), first note that
restricted to V, ® V- @ Wi, P f,(|A,DU* and A! are zero. For B € W,
Apf,(|ApDU*(B) converges in norm to B = Ap A7 '(B). Let

By = fa(l4p1)U*(B) — AF'(B).

Since Ap(B,) = ApP(B,) — 0 in norm, and ||4,P(B,)Il = const|P,(B,)II
we have [IP(B)I — 0. Hence [IP,f,(I4,DU*(B) — Az (Bl - 0 and
P, f,(IApDU* converges strongly to A3, so A;' and A4;'P, lie in W({, f7).

4. The combinatorial spectral distribution functions

In this section we introduce the combinatorial spectral distribution func-
tions N> *(A) and prove our second main result, namely:

Tueorem 4.1. For all k, the analytic and combinatorial spectral distribu-
tion functions, NV"(A) and NS *(\) are dialationally equivalent near zero.

To begin, we construct the combinatorial analog W°(F; E) of the von
Neumann algebra W(F; E). Let K be a bounded triangulation for the
foliated manifold M, F. Then W(F, E) is the von Neumann algebra of
operators on the direct integral space C‘f(K ) generated by the sets
CH(U,V,v) described below. Here U and V are sets in the open cover of M
which is associated to K [H-L2, p. 324] and v is a leafwise path from U to V.
Let A = A(3,,...,3;) and B = B(Z),...,3)) be measurable families of
simplices in K as in [H-L2], p. 326, 330, with A c U, BC V, and let h be a
measurable function on the placques of U. Then h, A and B determine an
element of C4(U,V,y) denoted h4 ® B as follows. Given x € U, denote the
unique (if its exists) simplex in A4 contained in P,, the placque of x, by 4,.
Then for o € CX(K),

((h4 @ B)a)(x) = h(x)(A;,0;)B

v(x)*
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Here we identify A, and B,,,, with their dual simplicial cochains and ( , )
is the inner product given in Section 1.

The invariant transverse measure v defines a trace on W°(F; E) which is
given on generators by

tr,(hA ® B) = jT h(x)( Ay Byy) du(x)

where Ty, is a transversal in U. 3 3
Note that the simplicial coboundary &: CX¥(K) — C4*1(K) and the inner

product give rise to the combinatorial Laplacian A: CX(K) — C5(K) which
is a bounded self adjoint element of W(F; E).

DerINITION 4.2. NS5(A) = tr,(x,(A%). N&*()) is the kth combinatorial
spectral distribution function of F and ».

Let x, be the characteristic function of 0 € R.

DeriNITION 4.3, BS* = tr (xo(A9)) is the kth combinatorial foliation
betti number of F.

We shall show below that for all k, B&* = gk, }

Let @5 | be the set of orthogonal projections P on CX(K) which satisfy:
(i) Pe WSF;E),

(ii)) image P c (kerd)*,

(i) for all @ € image P, [I5all < VA llall.

Set FS%(A) = suptr,(P) where the sup is over @4 .. As in the analytic
case, we similarly define G *(A) and we have

NSH(A) = GRA(A) + Bk + FPE (M),

and
Fok(A) = GoF1(A).

In fact the proofs are easier in this case since the simplicial coboundary 4, its
adjoint 8* and the Laplacian A° are all bounded operators. Thus we need
only prove that F*(A) is dialationally equivalent to F¥(\) near zero.

First we show that we may replace the bounded triangulation K by any
standard subdivision (and W°(F, E) by its analog) in computing F**(A). Let
S’K be the rth standard subdivision of K and denote the associated
simplicial complex and von Neumann algebra by CX(S’K) and W°(F; E)
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respectively. Note that the natural cochain maps
7w C¥(K) —» CX(S7k)
§7: C¥(S'K) » C¥(K)
are bounded maps satisfying

Sl =1
7w'S"=1+ D& + 6D

where D is a bounded cochain map
D: C¥(S’K) — C¥Y(S'K).

See [HL-2]. The fact that we may replace K by S’K then follows from the
proof of Prop. 4.1 of [G-Sh] and the material below.

Let W be the von Neumann algebra acting on CX(K) & CX(S’K) gener-
ated by W° (acting by zero on the second factor), W, (acting by zero on the
first factor), and the sets C§(U, V', y) and C§(U", V, y) where U and V are as
above for K, U’ and V' are associated to S’K, and vy is a leafwise path from
U to V' (U to V respectively). An element hA ® B' € C§(U,V’,y) is
defined just as before, except that B’ is a measurable family of simplices in
S’K. Similarly, h4' ® B defines an element in C§(U’,V,y) where A’ is a
measurable famlly of 51mphces in S’K. Each hA ® B’ defines a bounded
map from CX¥(K) to C5(S’K) and similarly for k4’ ® B. Note that if ; is
projection of CHK) ® Cf(S’K) onto the ith factor, T Wr, =We and
172W7r2 W, Also note that 7" and §" are in w.

Let Q° be orthogonal projection onto (ker8)* in C5(K) and Q° the
projection onto (ker §)* in C"(S’K) (ker 8)* = (ker 8*8)* is a spectral
space of the bounded self adjoint operator 6*8. As 6*6 € W*, so is Q°.
Similarly Q¢ € W,°. Given an orthogonal projection P° € W°, let P’ be
orthogonal projection onto the closure of the image of Qfw"P°. Similarly,
given an orthogonal projection P° € W, let P° be orthogonal projeAction
onto the closure of the image of QCS’P‘ Given P¢, Qim'P° € W, so
Pfe W so also in W and image P° C (ker §)*. Similarly, given PS,
P” € W, so also in W° and image P‘ c (ker §)1. Now suppose A is
sufficiently small. Then the proof of Prop. 4.1 of [G-Sh] implies that given
Pce®5 |, P e ®; | (for WS)and given PF € &5 ,, P°€ G5 | .

The invariant transverse measure v defines a trace, tr,,, on W, extending
the traces on W*¢ and W,°. We need to prove tr,(P¢) = tr,(PS). To do so, we
proceed as in the proof of 3.6 and show that tr,,e,,(P‘) ,,e,,(Pc) Given
P¢, what is required is a bounded isomorphism A: 1mage P°¢ — image Pf
with bounded inverse 4~! and AP and A~'P¢ € W. It follows from [G- Sh]
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and the proof of 3.6 that 4 = Q¢w’"|image P° provides just such a map.
Similarly, given P¢, 4 = Q°S”|image P‘: image P’ — image {’” is a bounded
isomorphism with bounded inverse and AP and 4~'P° € W. Thus we may
replace K by S$’K for any r.

Next, we remark that we may replace F*()) by an equivalent function, also
denoted F,,k()t), computed from the complex of Hilbert spaces

~ d, -
. _____)As,k ____)‘As,k+1____> e

Let W* = W*(F; E) be the von Neumann algebra W(F; E) acting on A%*
generated by the sets C§(U, V, y). There is a trace, denoted tr,, deﬁngd on
W* just as before. The results of section 2 remain valid if we replace H* by
A:"", Wby Ws,and{ , >by( , ). In what follows we will work with
A%* where s is fixed and sufficiently large (e.g., s > 2dimL).

We shall show that for A sufficiently small and r sufficiently large, there
are constants c¢;,c, > 0 so that each P € S, determines an element P° €
©¢,), . and that each P° € @5 | determines P € ©_, , . Finally, we shall
show that for two such associated projections, tr,(P) = tr,(P¢). This will give
Theorem 4.1.

Recall the maps
Ak %7’ CE(S'K).

Then dW = W$, 8f = [d, [W =1, and W and | (for s large) are bounded
maps. Given P € §,, let P¢ be orthogonal projection on the closure of the

image of Q°/P. Given P¢ € &5 | , let P be orthogonal projection onto the
closure of the image of QWP*.

ProposITION 4.4. There exists constants cq,c, > 0 such that, for A suffi-
ciently small and r sufficiently large, if P° € @5 |, then P€ & , | and if
PES, thnP°e€©_, .

Proof. Given P¢, we need to show that for w € image P,

llawlls < yedliwlls

and that P € W(F, E). We defer the latter proof to the end of this section.

Following [G-Sh], we let a € image P°¢ C ker(8)* be such that w = QWa.
Then

lawll, = ldQWall, = ldWall, = |Wsall, < IWllIsall < IWIVAllall.



674 JAMES L. HEITSCH AND CONNOR LAZAROV

In A%* we write
Wa = w, + wy,w, € (kerd)™” ,w, € kerd.
Then ||QWall; = |lw,lls and as §/w, = [dw, = 0 and a € (ker §)*
a =Qca=Q°fWa=Q°fw1.
Thus

lell =

o fo] <l
<)t =] frewen.
Setting ¢, = [IWI*lIf1I*> we have

ldwlls < ye;Alwlls.

CoroLLARY 4.5. If P° € @5 |, then QW is injective on image P° with
closed image and bounded inverse.

To prove the second half of Prop. 4.4, we use the inequality

(33) ”w -W[w “ < e, lIwlly

where w € A%* (s sufficiently large), ¢ is independent of r, and 7, is the
mesh of S’K. We assume in what follows that r is so large and A is so small
that
n=cn(1+1)°<1 and (1+2)°<2.
Recall that for w € E,,
Iwll? < Iwll < (1 + A)°liwll.
Now we have the analog of Lemma 3.3 of [Ef].

Lemma 4.6. Ifw € E,, then

Iwl
lowll < 72

o |
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Proof. By (3.3) and the above remarks, the operator
B = (1— Wf)x,\(A): H-H
is bounded by 1. Thus ||QB|| < n, and we have

Iowl =| (W w + 5]

<|low [w| + llgBwl

<|| oW [w| + IQBIlIiwl

<|ow[w| + IoBlliQwl.
Since W(ker 8) C ker d,

o] =Jewte ]

<|woefu] < 1w

.

Q‘fw

CoroLLARY 4.7. If P € S, and n < 1, then Q¢ is injective on image P
with closed image and bounded inverse.

Now for P € S, we need to show that for ¢ € image P,

Idall < yecyAllell.

Let w € image P C (kerd)* N E, with a = Q°/w. Then
o]
]

<) ]t < 7w 2yt

6l = SQwa

=[x +a)liowl

IA

[ GEAL
Set &, = 2111w /G = .

Q‘]w“.
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Finally, we show that given P € §,, then P° € W,°(F, E) and given P¢ €
G5 ., then P € W(F, E) and tr,(P) = tr(P°). To do so, we construct as
before a von Neumann algebra W containing W and W,° and a trace on W
extendlng those on W and W/ B

Let W be the von Neumann algebra acting on A%* @ Cé‘(S’K ) generated
by W (acting by zero on the second factor), W, (acting by zero on the first
factor), and the sets C§(U, V', y) and C§(U’,V, y) described below. U and V
are foliation charts on M, U’ and V' are foliation charts on M associated to
S’K, and v is a leafwise path from U to V' or U’ to V. An element 4 ® B of
Cy(U, V', vy) is given by a leafwise smooth, measurable, bounded dual k form
h with support in U, and a measurable family of simplicies B in S'K as above
with B C V'. This defines a bounded map from A** to C5(S"K) which on a
k form ¢ is given by

(he BY@)(x) = | [ M) (8() | B

where P, is the placque of x in U.

Similarly, an element 4 ® g € C4(U',V,y) is given by a measurable
family of simplices 4 c U’, and a leafwise smooth, measurable, bounded k
form g with support in V. This defines a bounded map from C k(S"K) to
A®>* is an obvious way. Note that if r; is projection of A%* & CX(S’K) onto
the ith factor, then W = ﬁn-lW‘rr, and W = 71-2W172 and that the maps [ and
W are in W. .

We define a linear functional tr,,, on generators of W as follows. For
keW or WS, tr,g,(k)=tr(k). For k € CY{(U,V',y) or C¥U',V,7v),
tr,e,(k) = 0. An argument similar to the proof of Theorem 4.2 of [H-L2]
shows that tr, 4, extends to a trace on W.

To finish the proof of Theorem 4.1, we once again proceed as in the proof
of 3.6. Let A be sufficiently small and r sufficiently large. Given P¢ € @i 1
QWPC € Wso P € W and so also in @c A, 1 - By Corollary 4.5, QW (Wthh is
in W) provides a bounded 1somorph1sm between the image of P¢ and the
image of P with bounded inverse. Thus

tru(l)c) = trVGV(PC) = trvev(P)
= tr,(P).
Similarly, given P € §,, P° € @Cz)n L and Q°f € w provides the requisite

isomorphism between image P and image P¢, and we are done.
Finally we prove the following.

THEOREM 4.8. The analytic and combinatorial betti numbers B* and B&*
are the same.
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Proof. Let Q,: A%* — ker A and Q: CX(S'K) — ker A° be the projec-
tions. It is not difficult to show that tr, Qg is independent of r and ker A is
obviously independent of s. Now Q, and Qf € W so Q,W: ker A° — ker A
and Qf/: ker A — ker A° are also in W. Both ker A and ker A° are closed
subspaces of A** and C5(S’K) respectively. By Theorem 3.9 of [H-L2], the
inclusion ker A —» H* into the kth de Rham cohomology group is a Hilbert
space isometry. A similar proof shows that the inclusion ker A° — Hc" into
the kth simplicial cohomology group is also a Hilbert space isometry. By
Theorem 3.15 of [H-L2], the induced maps W: H* —» H* and [: H* > H*
are bounded Hilbert space isomorphisms, which are inverses of each other.
But Q W is the composition

ker A = H* 2 ik = ker A
and Qg [ is the composition
kerA = A* -1 H* = ker A°.

Thus these maps provide the required isomorphisms between ker A and
ker A° and

Bllf = trv QO = trv Qg = ;‘,k.

Remarks. Note that the results of this paper as well as those of [H-L2]
remain valid if we substitute L*(L,, r*(E|L,)) for L(L,, E|L,) where L, is
the holonomy cover of L, and r: L, — L, the covering map. The proofs
given here and in [H-L2] carry over mutatis mutandis with the role of M X M
being played by the holonomy groupoid. Note also that the spectral invariants
and the betti numbers in the second case (i.e., using L,) are not necessarily
the same as those in the first (i.e. using L), contrary to our remark on p. 323
of [H-L.2], as was pointed out to us by John Roe.
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