ASYMMETRIC TENT MAP EXPANSIONS II. PURELY PERIODIC POINTS

J.C. Lagarias, H.A. Porta and K.B. Stolarsky

1. Introduction

The family of asymmetric tent maps $\mathrm{T}_{\alpha}:[0,1] \rightarrow[0,1]$ for $\alpha>1$ is

$$
\mathrm{T}_{\alpha}(x)= \begin{cases}\alpha x & \text { for } 0 \leq x \leq 1 / \alpha \tag{1.1}\\ \frac{\alpha}{\alpha-1}(1-x) & \text { for } 1 / \alpha \leq x \leq 1\end{cases}
$$

This family of mappings has been extensively studied as a simple family of one-dimensional dynamical systems, and as a one-dimensional lattice system in statistical mechanics. They give expansions of real numbers $x=[0,1]$, called T_{α}-expansions, which are analogous to the decimal expansion. These are:

$$
\begin{equation*}
x=\sum_{j \geq 0}(-1)^{j} \alpha^{-\left(n_{0}+\cdots+n_{j}\right)} \beta^{j} \tag{1.2}
\end{equation*}
$$

where $\beta=\alpha /(\alpha-1)$ and the nonnegative integers n_{j} are specified by the itinerary $I(x)=L^{n_{0}} R L^{n_{1}} R L^{n_{2}} \ldots$, which encodes the successive iterates $\mathrm{T}_{\alpha}^{(k)}(x)$ as being in the left interval $[0,1 / \alpha]$ (labelled L) or the half-open right interval ($1 / \alpha, 1$] (labelled R). For certain x the expansion (1.2) contains only finitely many R 's, and the corresponding itinerary is then $I(x)=L^{n_{0}} R$ $\cdots R^{n_{j}} R L^{\infty}$; these numbers x are exactly the preperiodic points of 0 , denoted $\operatorname{Per}_{0}\left(\mathrm{~T}_{\alpha}\right)$.

Part I studied the set $\operatorname{Per}\left(\mathrm{T}_{\alpha}\right)$ of the eventually periodic points of T_{α} and proved that for certain values of α, called special Pisot numbers, one has

$$
\operatorname{Per}\left(\mathrm{T}_{\alpha}\right)=\mathbb{Q}(\alpha) \cap[0,1]
$$

Special Pisot numbers are those real numbers α such that α and $\alpha /(\alpha-1)$ are both Pisot numbers. (Recall that α is a Pisot number if $\alpha>1$ is a real algebraic integer such that all algebraic conjugates $\sigma(\alpha)$ of α with $\sigma(\alpha) \neq \alpha$ satisfy $|\sigma(\alpha)|<1$.) Part I showed that there exist only a finite number of

Table 1. Special Pisot Numbers (α, β)

$\alpha=2$	$\beta=2$
$X-2$	$X-2$
$\alpha=1.75487$	$\beta=2.32471^{+}$
$X^{3}-2 X^{2}+X-1$	$X^{3}-3 X^{2}+2 X-1$
$\alpha=1.61803^{+}$	$\beta=2.61803^{+}$
$X^{2}-X-1$	$X^{2}-3 X+1$
$\alpha=1.46557^{+}$	$\beta=3.14789^{+}$
$X^{3}-X^{2}-1$	$X^{3}-4 X^{2}+3 X-1$
$\alpha=1.38027^{+}$	$\beta=3.62965^{+}$
$X^{4}-X^{3}-1$	$X^{4}-5 X^{3}+6 X^{2}-4 X+1$
$\alpha=1.32471^{+}$	$\beta=4.07959^{+}$
$X^{3}-X-1$	$X^{3}-5 X^{2}+4 X-1$

special Pisot numbers and exhibited eleven such numbers, which are listed in Table 1 below. Since α is a special Pisot number if and only if $\beta=\alpha /(\alpha-1)$ is also, Table 1 lists only the numbers with $1<\alpha \leq 2$, the remainder being given by the corresponding β 's.
In this paper we study the sets

$$
\begin{aligned}
\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right) & :=\left\{x: \mathrm{T}_{\alpha}^{(m)}(x)=x \text { for some } m>0\right\} \\
& =\{\text { purely periodic points }\} \\
\operatorname{Per}_{0}\left(\mathrm{~T}_{\alpha}\right) & =\left\{x: \mathrm{T}_{\alpha}^{(k)}(x)=0 \text { for some } k \geq 0\right\} \\
& =\left\{\text { points with terminating } \mathrm{T}_{\alpha} \text {-expansion }\right\},
\end{aligned}
$$

when α is a special Pisot number.
In $\S 2$ we first show that for all special Pisot numbers

$$
\begin{align*}
\text { Fix }\left(\mathrm{T}_{\alpha}\right) \subseteq & \left\{\gamma \in \mathbf{Q}(\alpha): \gamma \in[0,1] \text { and } \sigma(\gamma) \in \mathrm{A}_{\alpha}^{\sigma}\right. \\
& \text { for all embeddings } \sigma: \mathbf{Q}(\alpha) \rightarrow \mathbf{C} \text { with } \sigma(\alpha) \neq \alpha\}, \tag{1.3}
\end{align*}
$$

where each $\mathbf{A}_{\alpha}^{\sigma}$ is a compact subset of \mathbf{C} which is the attractor of a certain hyperbolic iterated function system (Theorem 2.1). Hyperbolic iterated function systems are defined in Barnsley and Demko (1985) and Barnsley (1988); see also $\S 2$. We examine when equality holds. We show for $\alpha=2$ that

$$
\operatorname{Fix}\left(\mathrm{T}_{2}\right)=\{p / q: 2+q \text { and } 2 \mid p \text { and } 0 \leq p<q\} ;
$$

in this case (1.3) is a strict inclusion, since its right side is $\mathbf{Q} \cap[0,1]$. However when α is a special Pisot number generating either a real quadratic field or a
non-totally-real cubic field, we prove that equality holds in (1.3). In particular, for $\alpha=(1+\sqrt{5}) / 2$, we have

$$
\begin{equation*}
\operatorname{Fix}\left(T_{\alpha}\right)=\left\{\gamma \in \mathbf{Q}(\sqrt{5}): 0 \leq \gamma \leq 1 \text { and } \frac{1-\sqrt{5}}{4} \leq \bar{\gamma} \leq \frac{1}{2}\right\} \tag{1.4}
\end{equation*}
$$

where $\bar{\gamma}$ denotes the algebraic conjugate of γ; a similar characterization applies to $\alpha=(3+\sqrt{5}) / 2$. We are unable to describe precisely the attractors $\mathrm{A}_{\alpha}^{\sigma}$ when α generates a non-totally real field; we conjecture however that each such attractor $\mathrm{A}_{\alpha}^{\sigma}$ is the closure of a bounded open set in \mathbf{C} having a "fractal" boundary. For the remaining two special Pisot numbers of degree 4 in Table 1 we do not know whether equality holds in (1.3) or not.

In §3 we study $\operatorname{Per}_{0}\left(\mathrm{~T}_{\alpha}\right)$ and related sets. We first show that $\operatorname{Per}_{0}\left(\mathrm{~T}_{2}\right)$ consists of the dyadic rationals in [0,1]. For the remaining special Pisot numbers with $\mathbf{Q}(\alpha) \neq \mathbf{Q}$, we consider the set of algebraic integer fixpoints

$$
I_{\alpha}:=\left\{\gamma: \gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right) \cap O_{K}\right\}
$$

where O_{K} is the ring of integers of $K=\mathbf{Q}(\alpha)$, and prove that I_{α} is finite. We define

$$
\operatorname{Per}^{*}\left(\mathrm{~T}_{\alpha}\right)=\bigcup\left\{\operatorname{Per}_{\gamma}\left(\mathrm{T}_{\alpha}\right): \gamma \in I_{\alpha}\right\}
$$

where $\operatorname{Per}_{\gamma}\left(\mathrm{T}_{\alpha}\right)$ denotes the preperiodic points of γ, and prove that

$$
\operatorname{Per}^{*}\left(\mathrm{~T}_{\alpha}\right)=O_{K} \cap[0,1]
$$

In particular $\mathrm{Per}^{*}\left(\mathrm{~T}_{\alpha}\right)$ is always closed under multiplication and under addition $(\bmod 1)$. Now I_{α} always contains 0 and in some cases $I_{\alpha}=\{0\}$, and then $\operatorname{Per}_{0}\left(\mathrm{~T}_{\alpha}\right)$ inherits this ring structure. This occurs for $\alpha=(1+\sqrt{5}) / 2$. Other special Pisot numbers have larger sets, e.g., $\alpha=(3+\sqrt{5}) / 2$ has $I_{\alpha}=\{0,(-1+\sqrt{5}) / 2\}$.

For comparison we mention some related results in the literature. First, the characterization (1.4) for $\operatorname{Fix}\left(T_{\alpha}\right)$ for $\alpha=(1+\sqrt{5}) / 2$ is analogous to that for real numbers whose continued fraction expansion is purely periodic. Second, K. Schmidt (1980) studied β-expansion maps $T_{\beta}^{*}(x)=\beta x(\bmod 1)$ and observed that $\operatorname{Per}_{0}\left(\mathrm{~T}_{\beta}^{*}\right)$ was closed under multiplication and addition $(\bmod 1)$ for certain special values of β. Solomyak (1991) recently showed that $\operatorname{Per}_{0}\left(\mathrm{~T}_{\beta}^{*}\right)=\mathbf{Z}[1 / \beta] \cap[0,1]$ for a certain class of Pisot numbers. Third, Moussa, Geronimo and Bessis (1984) characterize $\operatorname{Per}(T)$ for monic polynomials $T(X) \in \mathbf{Z}[X]$ acting on \mathbf{C} as being those algebraic integers such that they and all of their algebraic conjugates lie in the Julia set of T. Moussa (1986) extends this result further to polynomials T with algebraic coefficients. Compare this with Theorem 2.1 below.

There remain a number of open questions, including the following.
(1) Obtain the complete list of all special Pisot numbers.
(2) For special Pisot numbers both $\operatorname{Per}\left(\mathrm{T}_{\alpha}\right)$ and $\operatorname{Per} *\left(\mathrm{~T}_{\alpha}\right)$ are closed under multiplication and under addition $(\bmod 1)$. If we encode $\gamma \in \operatorname{Per}\left(\mathrm{T}_{\alpha}\right)$ (resp. $\operatorname{Per}{ }^{*}\left(\mathrm{~T}_{\alpha}\right)$) using binary sequences for the itinerary in the form (preperiod, period), do these addition and multiplication laws have any interesting structure?
(3) Theorem 2.1 and 2.2 show that for all special Pisot numbers the denominator of points $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$ go to infinity as the period length $p \rightarrow \infty$. What can one say about the distribution of period lengths among $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$ of denominator B ? Equivalently, for γ having period p, bound the denominator from above and below.
(4) Do there exist any α which are not special Pisot numbers, for which $\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)=\mathscr{F}_{\alpha}$, where \mathscr{F}_{α} is defined in Theorem 2.1 below?

2. Purely periodic points

Associated to the mapping T_{α} are the two affine maps on \mathbf{R} :

$$
\begin{align*}
& L_{\alpha}(x)=\alpha x \tag{2.1a}\\
& R_{\alpha}(x)=\frac{\alpha}{\alpha-1}(1-x) \tag{2.1b}
\end{align*}
$$

Suppose that α is an algebraic number. Then for each embedding σ : $\mathbf{Q}(\alpha) \rightarrow \mathbf{C}$ such that $\sigma(\alpha) \neq \alpha$ we have affine maps on \mathbf{C} :

$$
\begin{align*}
L_{\alpha}^{\sigma}(x) & =\sigma(\alpha) x \tag{2.2a}\\
R_{\alpha}^{\sigma}(x) & =\frac{\sigma(\alpha)}{\sigma(\alpha)-1}(1-x) \tag{2.2b}
\end{align*}
$$

Since embeddings preserve field operations, if $\left\{S_{i}\right\}$ denotes any sequence of the operators L_{α}, R_{α} and $\left\{S_{i}^{\sigma}\right\}$ the corresponding sequence of operators $L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}$, then for any $x \in \mathbf{Q}(\alpha)$,

$$
y=S_{1} S_{2} \cdots S_{k}(x)
$$

implies that

$$
\begin{equation*}
\sigma(y)=S_{1}^{\sigma} S_{2}^{\sigma} \cdots S_{k}^{\sigma}(\sigma(x)) \tag{2.3}
\end{equation*}
$$

For any set of affine maps $\mathscr{\rho}=\left\{L_{1}, \ldots, L_{k}\right\}$ on \mathbf{R}^{n} define the set $\overline{\operatorname{Fix}(\mathscr{\rho})}$ to be the closure of the set of fixed points of all finite products of the members of $\mathscr{\rho}$. In general the set $\overline{\operatorname{Fix}(\mathscr{\rho})}$ is unbounded. However if the mappings L_{i}
are all strict contractions, i.e., if

$$
\left\|L_{i}(\mathbf{x})-L_{i}(\mathbf{y})\right\|<\delta\|\mathbf{x}-\mathbf{y}\| \text { for some } \delta<1
$$

then $\overline{\operatorname{Fix}(\mathscr{\rho})}$ is compact. In that case $\mathscr{\rho}$ is a hyperbolic iterated function system (hyperbolic IFS) in the sense of Barnsley (1988), and

$$
\overline{\operatorname{Fix}(\mathscr{\rho})}=A(\mathscr{\rho})
$$

where $\mathrm{A}(\mathscr{\rho})$ is the attractor of the hyperbolic IFS, which is characterized as the unique compact subset of \mathbf{R}^{n} satisfying the functional equation

$$
\begin{equation*}
\mathrm{A}=\bigcup_{i=1}^{k} L_{i}(\mathrm{~A}) \tag{2.4}
\end{equation*}
$$

cf. Hutchinson (1981), Theorem 1. The name attractor refers to the property that for any $\varepsilon>0$, the iterates of any point x_{0} of \mathbf{R}^{n} under any sequence of maps from $\mathscr{\rho}$ are all within distance ε of A from some point on.

Theorem 2.1. For any real algebraic number $\alpha>1$,

$$
\begin{array}{r}
\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right) \subseteq \mathscr{F}_{\alpha}:=\left\{\gamma: \gamma \in \mathbf{Q}(\alpha) \cap[0,1] \text { and } \sigma(\gamma) \in \overline{\operatorname{Fix}\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}}\right. \\
\text { for all embeddings with } \sigma(\alpha) \neq \alpha\} \tag{2.5}
\end{array}
$$

Proof. If $\gamma=\mathrm{T}_{\alpha}^{(k)}(\gamma)$ then γ is a fixed point of some $S_{1} S_{2} \cdots S_{k}$ drawn from $\left\{L_{\alpha}, R_{\alpha}\right\}$, and (2.3) then implies that $\sigma(\gamma)$ is a fixed point of $S_{1}^{\sigma} S_{2}^{\sigma} \cdots S_{k}^{\sigma}$ hence is in $\overline{\operatorname{Fix}\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}}$.

Special Pisot numbers are characterized by the properties:
(i) α and $\alpha /(\alpha-1)$ are algebraic integers which are real and greater than one.
(ii) For each embedding σ with $\sigma(\alpha) \neq \alpha$, both R_{α}^{σ} and L_{α}^{σ} are contracting maps on \mathbf{C}; i.e.,

$$
|\sigma(\alpha)|<1 \text { and }\left|\frac{\sigma(\alpha)}{\sigma(\alpha)-1}\right|<1
$$

A consequence of property (ii) is that $\left\{R_{\alpha}^{\sigma}, L_{\alpha}^{\sigma}\right\}$ forms a hyperbolic IFS for all embeddings $\sigma: \mathbf{Q}(\alpha) \rightarrow \mathbf{C}$ with $\sigma(\alpha) \neq \alpha$. In particular the attractor $\mathrm{A}_{\alpha}^{\sigma}$ $:=\overline{\mathrm{Fix}\left(\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}\right)}$ is compact, consequently any purely periodic point γ of T_{α} has γ and all its conjugates bounded.

Note that while the fixed point sets satisfy

$$
\operatorname{Fix}\left(\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}\right)=\sigma\left(\operatorname{Fix}\left\{L_{\alpha}, R_{\alpha}\right\}\right)
$$

holds for all embeddings $\sigma: \mathbf{Q}(\alpha) \rightarrow \mathbf{R}$, this property is not necessarily preserved for the closures of the fixed point sets; i.e.,

$$
(\mathbf{Q}(\alpha)) \cap \overline{\operatorname{Fix}\left(\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}\right.} \neq \sigma\left[\mathbf{Q}(\alpha) \cap \overline{\operatorname{Fix}\left\{L_{\alpha}, R_{\alpha}\right\}}\right]
$$

may occur.
We remark that there exist infinitely many real algebraic numbers $\alpha>1$ which are not algebraic integers, such that condition (ii) above holds and all the attractors $\mathrm{A}_{\alpha}^{\sigma}$ with $\sigma(\alpha) \neq \alpha$ are compact.

Now we study Fix $\left(\mathrm{T}_{\alpha}\right)$ for special Pisot numbers. The simplest case is $\alpha=2$ and Theorem 2.1 gives $\operatorname{Fix}\left(\mathrm{T}_{2}\right) \subset \mathbf{Q} \cap[0,1]$. In fact this inclusion is strict.

Theorem 2.2. For $\alpha=2$ one has

$$
\begin{equation*}
\operatorname{Fix}\left(\mathrm{T}_{2}\right)=\left\{\frac{p}{q}: 0 \leq p<q \text { and } 2 \mid p, 2+q\right\} \tag{2.6}
\end{equation*}
$$

Proof. Set

$$
\mathscr{G}=\left\{\frac{p}{q}: 0 \leq p<q \text { and } 2 \mid P, 2+q\right\}
$$

Given $x \in \operatorname{Fix}\left(T_{2}\right)$ write its fixed point equation as

$$
x=L_{2}^{j_{1}} R_{2} L_{2}^{j_{2}} R_{2} \ldots L_{2}^{j_{m}}(x)
$$

where all $j_{i} \geq 0$. Then

$$
x=(-1)^{m-1} 2^{m+j_{1}+j_{2}+\cdots-j_{m}} x+\sum_{k=1}^{m-1}(-1)^{k-1} 2^{k+j_{1}+\cdots+j_{k}}
$$

so that $x=p / q$ where

$$
\begin{aligned}
& p=\sum_{k=1}^{m-1}(-1)^{m+k-1} 2^{k+j_{1}+\cdots+j_{k}} \\
& q=2^{m+j_{1}+\cdots+j_{m}}+(-1)^{m}
\end{aligned}
$$

It is easy to see that $2 \mid p$. Also $2+q$ and $0 \leq p<q$, since the terms in the sum defining p alternate in sign, strictly increase, the first term is ≥ 2, and
the last is at most $q+1$. On reducing p / q to lowest terms the conditions $2 \mid p, 2+q$ are preserved. Hence $\operatorname{Fix}\left(\mathrm{T}_{2}\right) \subseteq \mathscr{G}$.

To show the other inclusion, let $y=p / q \in \mathscr{G}$ be given in lowest terms. Then $\mathrm{T}_{2}(y)=2 p / q$ or $2(q-p) / q \in \mathscr{G}$ has the same denominator, so y must be eventually periodic with period $f \leq(q-1) / 2$. Now we argue by contradiction. If $y \notin \operatorname{Fix}\left(T_{2}\right)$ then there would exist some $T_{2}^{(j)}(y) \notin \operatorname{Fix}\left(T_{2}\right)$ with $y^{\prime}=T_{2}^{(j+1)}(y) \in \operatorname{Fix}\left(T_{2}\right)$. Then y^{\prime} would have two distinct preimages in \mathscr{G}, namely $T_{2}^{(j)}(y)$ and $T_{2}^{(f-1)}\left(y^{\prime}\right) \in \operatorname{Fix}\left(T_{2}\right) \subseteq \mathscr{G}$. Now we claim that any $z \in \mathscr{G}$ has exactly one preimage in \mathscr{G}, which will give a contradiction showing that $y \in \operatorname{Fix}\left(\mathrm{~T}_{2}\right)$. To prove the claim, write $z^{\prime}=2 p^{\prime} / q^{\prime} \in \mathscr{G}$, with $0 \leq p^{\prime} / q^{\prime}<1 / 2$ and observe that the preimages of z are p^{\prime} / q^{\prime} and ($\left.q^{\prime}-p^{\prime}\right) / q^{\prime}$, and since q^{\prime} is odd, exactly one of p^{\prime} and $q^{\prime}-p^{\prime}$ is even.

All remaining special Pisot numbers have $\mathbf{Q}(\alpha) \neq \mathbf{Q}$. We show that equality holds in (2.5) for many of them.

Theorem 2.3. Let α be a special Pisot number such that $\mathbf{Q}(\alpha)$ is a real quadratic field or a non-totally-real cubic field. Then

$$
\begin{array}{r}
\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)=\mathscr{F}_{\alpha}:=\left\{\gamma: \gamma \in \mathbf{Q}(\alpha) \cap[0,1] \text { and } \sigma(\gamma) \in \mathrm{A}_{\alpha}^{\sigma}\right. \text { for all } \\
\text { embeddings with } \sigma(\alpha) \neq \alpha .\} \tag{2.7}
\end{array}
$$

Proof. Let \mathscr{F}_{α} denote the right side of (2.7), and suppose that $\gamma \in \mathscr{F}_{\alpha}$. We show that $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$ by an argument similar to that of Theorem 2.2.

First, \mathscr{F}_{α} is closed under T_{α}. To see this, recall by (2.4) that

$$
\mathrm{A}_{\alpha}^{\sigma}=L_{\alpha}^{\sigma}\left(\mathrm{A}_{\alpha}^{\sigma}\right) \cup R_{\alpha}^{\sigma}\left(\mathrm{A}_{\alpha}^{\sigma}\right)
$$

hence if $\sigma(\gamma) \in \mathrm{A}_{\alpha}^{\sigma}$ then $\mathrm{T}_{\alpha}^{\sigma}(\sigma(\gamma)) \in \mathrm{A}_{\alpha}^{\sigma}$.
Second, we claim that each element $\gamma \in \mathscr{F}_{\alpha}$ has at least one T_{α}-preimage which is in \mathscr{F}_{α}. Here we use the hypotheses on the field $\mathbf{Q}(\alpha)$. To prove the claim, observe first that for a fixed embedding σ with $\sigma(\alpha) \neq \alpha$, since

$$
\begin{equation*}
\mathrm{A}_{\alpha}^{\sigma}=L_{\alpha}^{\sigma}\left(\mathrm{A}_{\alpha}^{\sigma}\right) \cup R_{\alpha}^{\sigma}\left(\mathrm{A}_{\alpha}^{\sigma}\right) \tag{2.8}
\end{equation*}
$$

and $\sigma(\gamma) \in \mathrm{A}_{\alpha}^{\sigma}$ there is some $\delta^{\prime} \in \mathrm{A}_{\alpha}^{\sigma}$ with either $L_{\alpha}^{\sigma}\left(\delta^{\prime}\right)=\sigma(\gamma)$ or $R_{\alpha}^{\sigma}\left(\delta^{\prime}\right)=$ $\sigma(\gamma)$. For definiteness suppose $L_{\alpha}^{\sigma}\left(\delta^{\prime}\right)=\sigma(\gamma)$. (The proof for $R_{\alpha}^{\sigma}\left(\delta^{\prime}\right)=\sigma(\gamma)$ is similar.) Now $\delta^{\prime} \in \sigma(\mathbf{Q}(\alpha))$ so set $\delta^{\prime}=\sigma(\delta)$ for some $\delta \in \mathbf{Q}(\alpha)$. Applying all automorphisms of $\mathbf{Q}(\alpha)$ to this linear equation gives

$$
\begin{equation*}
L_{\alpha}^{\sigma}(\tau(\delta))=\tau(\gamma) \text { for all embeddings } \tau \tag{2.9}
\end{equation*}
$$

To show $\delta \in \mathscr{F}_{\alpha}$ we must check that $\tau(\delta) \in \mathrm{A}_{\alpha}^{\tau}$ for all τ. This always holds if τ is the identity, for both R_{α}^{-1} and L_{α}^{-1} map [0,1$]$ into [0,1], hence
$\delta=L_{\alpha}^{-1}(\gamma) \in[0,1]$. Thus, if $\mathbf{Q}(\alpha)$ is a real quadratic field, $\delta \in \mathscr{F}_{\alpha}$. If $\mathbf{Q}(\alpha)$ is a non-totally real cubic field, then the two embeddings with $\sigma(\alpha) \neq \alpha$ are complex conjugates, call them σ and $\bar{\sigma}$, and applying complex conjugation to (2.8) shows that the attractor $\mathrm{A}_{\alpha}^{\bar{\sigma}}$ is the complex-conjugate of the attractor $\mathrm{A}_{\alpha}^{\sigma}$. Hence

$$
\sigma(\delta) \in \mathrm{A}_{\alpha}^{\sigma} \Leftrightarrow \bar{\sigma}(\delta) \in \mathrm{A}_{\alpha}^{\bar{\sigma}} .
$$

This shows that $\delta \in \mathscr{F}_{\alpha}$, proving the claim.
Third, we consider a sequence of preimages $\gamma, \gamma_{-1}, \gamma_{-2}, \ldots$ with $\mathrm{T}_{\alpha}\left(\gamma_{-i}\right)=\gamma_{-i+1}$ such that all $\gamma_{-i} \in \mathscr{F}_{\alpha}$. We just showed that such a sequence exists, but is not necessarily unique. We claim that the set $\left\{\gamma_{-i}: i \geq 0\right\}$ is finite. If so, it has some $\gamma_{-i}=\gamma_{-j}$, with $i>j$, hence γ is in the cycle $\left\{\gamma_{-i}, \gamma_{-i+1}, \ldots, \gamma_{-j}\right\}$, and $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$, proving the theorem. Incidentally this implies that each $\gamma \in \mathscr{F}_{\alpha}$ has exactly one preimage under T_{α} in \mathscr{F}_{α}, for if it had two, one would not be in a cycle.

To prove this claim, we use the fact, proved in part I , that if α is a special Pisot number with $\mathbf{Q}(\alpha) \neq \mathbf{Q}$ then both α and $\alpha /(\alpha-1)$ are units in the ring of integers of $\mathbf{Q}(\alpha)$. Consequently if we define the denominator of $\gamma \in \mathbf{Q}(\alpha)$ to be the smallest positive $d \in \mathbf{Z}$ such that $d \Pi_{\sigma}(X-\sigma(\gamma)) \in$ $\mathbf{Z}[X]$, then

$$
R_{\alpha}^{-1}(x)=\frac{1}{\alpha} x \quad \text { and } \quad L_{\alpha}^{-1}(x)=\frac{\alpha-1}{\alpha}(1-x)
$$

both do not increase denominators. Hence denominator $\left(\gamma_{-i}\right)$ for all $i \geq 0$ is bounded above by $d_{0}=$ denominator (γ). Finally since membership in the set \mathscr{F}_{α} bounds a number $\delta \in \mathbf{Q}(\alpha)$ and all of its conjugates, \mathscr{F}_{α} only contains finitely many $\delta \in \mathbf{Q}(\alpha)$ having denominators $\leq d_{0}$. For the lead coefficient of the minimal polynomial in $\mathbf{Z}[X]$ for δ is $\leq d_{0}$ and the other coefficients are bounded since all roots $\sigma(\delta)$ are bounded. This proves the claim and the theorem.

Next we study the attractors for the numbers covered by Theorem 2.3. The only two real quadratic special Pisot numbers are $(1+\sqrt{5}) / 2$ and $(3+\sqrt{5}) / 2$, and in this case the attractors $\mathrm{A}_{\alpha}^{\sigma}$ have a simple description. For a real quadratic field, let $\bar{\gamma}$ denote the algebraic conjugate of γ.

Corollary 2.3a. For $\alpha=(1+\sqrt{5}) / 2$,

$$
\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)=\left\{\gamma \in \mathbf{Q}(\alpha): \gamma \in[0,1] \text { and } \bar{\gamma} \in\left[\frac{1-\sqrt{5}}{4}, \frac{1}{2}\right]\right\}
$$

For $\alpha=(3+\sqrt{5}) / 2$,

$$
\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)=\left\{\gamma \in \mathbf{Q}(\alpha): \gamma \in[0,1] \text { and } \bar{\gamma} \in\left[\frac{-1-\sqrt{5}}{2}, 0\right]\right\}
$$

Proof. It suffices to show that the attractors $\mathrm{A}_{\alpha}^{\sigma}$ for $\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}$ for the two values of α are exactly the specified intervals. This follows by verifying that (2.4) holds for these intervals.

Next we consider the attractors for non-totally real cubic special Pisot numbers.

Conjecture 2.4. For special Pisot numbers such that $\mathbf{Q}(\alpha)$ is a non-totally real cubic field, the complex conjugate attractors $\mathrm{A}_{\alpha}^{\sigma}$ and $\mathrm{A}_{\alpha}^{\bar{\sigma}}$ are the closure of their interiors and $\partial \mathrm{A}_{\alpha}^{\sigma}=\mathrm{A}_{\alpha}^{\sigma}-\operatorname{Int}\left(\mathrm{A}_{\alpha}^{\sigma}\right)$ has Hausdorff dimension strictly between one and two.

This conjecture implies that $\partial \mathrm{A}_{\alpha}^{\sigma}$ is a "fractal" curve of infinite length. As evidence we exhibit computer plots of some of these attractors $\mathrm{A}_{\alpha}^{\sigma}$. Figure 2.1 shows the attractor $\mathrm{A}_{\alpha}^{\sigma}$ for α a root of $X^{3}-2 X^{2}+X-1$ with the choice $\sigma(\alpha) \doteq .12256+.74486 i$. Figure 2.2 shows a magnification of part of this attractor near 0 by a factor of ten. Certainly this $\mathrm{A}_{\alpha}^{\sigma}$ is not simply connected. It appears to have positive Lebesgue measure. It is not clear whether the set of "holes" is dense in $\mathrm{A}_{\alpha}^{\sigma}$, but we think they are not dense. Figure 2.3 shows the attractor A_{β}^{σ} for the corresponding β to the above, which is a root of $X^{3}-3 X^{2}+2 X-1$, with the corresponding conjugate $\sigma(\beta) \doteq .33764-$ $.56228 i$. The attractor A_{β}^{σ} appears visually different from A_{α}^{σ}, but appears consistent with the conjecture.

Under a plausible hypothesis we show that such sets $\mathrm{A}_{\alpha}^{\sigma}$ have Hausdorff dimension two. Any finite set of similitudes $\mathscr{\rho}=\left\{L_{i}(\mathbf{x})=\alpha_{i} O_{i} \mathbf{x}+\beta_{i}: 1 \leq\right.$ $i \leq m\}$ of \mathbf{R}^{n} such that each O_{i} is a rotation and $0<\alpha_{i}<1$ for all i is a hyperbolic IFS with an attractor $A(\mathscr{\rho})$. Such a set $\mathscr{\rho}$ satisfies the open set condition if there is an open set U in \mathbf{R}^{n} such that:
(1) $\cup_{i=1}^{m} L_{i}(U) \subseteq U$.
(2) For $i \neq j, L_{i}(U) \cap L_{j}(U)=\emptyset$.

Hutchinson (1981) showed that for any finite set $\mathscr{\rho}$ of similitudes as above which satisfies the open set condition the Hausdorff dimension d of its

Fig. 2.1 The attractor $\mathrm{A}_{\alpha}^{\sigma}$ for $\sigma(\alpha)=.12251+.74486 i$ a root of $X^{3}-2 X^{2}+X-1$. (The box is a square of side 4 centered at zero in \mathbf{C}.)
attractor $\mathrm{A}(\mathscr{\rho})$ is the unique positive solution of

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i}^{d}=1 \tag{2.10}
\end{equation*}
$$

This dimension d is then also equal to the box dimension of $\mathscr{\rho}$ and to the Lyapunov dimension of $\mathcal{\rho}$; see Geronimo and Hardin (1989). Falconer (1987) indicates that the formula (2.10) determining d is sometimes valid even when the open set condition doesn't hold. Now for a non-totally real cubic special Pisot number α, the let $\mathscr{S}_{\alpha}=\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}$ is a hyperbolic IFS consisting of similitudes on \mathbf{C} with $\alpha_{1}=|\sigma(\alpha)|$ and $\alpha_{2}=|\sigma(\beta)|$. Also $\alpha_{1}=|\alpha|^{-1 / 2}, \alpha_{2}=|\beta|^{-1 / 2}$ because α and β are units in a non-totally real cubic field and

$$
1=\left|N_{\mathbf{Q}(\alpha) / \mathbf{Q}}(\alpha)\right|=|\alpha \sigma(\alpha) \bar{\sigma}(\alpha)|=|\alpha||\sigma(\alpha)|^{2}
$$

Since $1 / \alpha+1 / \beta=1$ this gives

$$
\alpha_{1}^{2}+\alpha_{2}^{2}=1
$$

Fig. 2.2 The attractor $\mathrm{A}_{\alpha}^{\sigma}$ in Figure 2.1 magnified by ten. (The box is of side 0.4 centered at zero in C.)

Comparing this with (2.10), we conclude that if $\mathscr{\rho}_{\alpha}$ satisfies the open set condition, then $\mathrm{A}_{\alpha}^{\sigma}$ has Huasdorff dimension two.

Theorems 2.2 and 2.3 cover all special Pisot numbers in Table 1 except for two numbers of degree 4 . For these two numbers the attractors $\mathrm{A}_{\alpha}^{\sigma_{i}}$ consist of one real attractor and a complex conjugate pair of attractors. The hyperbolic IFS associated to these α do not satisfy the open set condition, because the corresponding equations (2.10) have no solution $d \leq 1$ in the real case and no solution $d \leq 2$ in the complex case. We do not know if the equality $\operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)=\mathscr{F}_{\alpha}$ holds for these α or not.

For comparison with the attractors $\mathrm{A}_{\alpha}^{\sigma}$ we mention a set \mathscr{M} constructed by Rauzy (1982) which he calls a "morecellement." The set \mathscr{M} is the attractor of an affine hyperbolic IFS associated to the non-totally-real cubic Pisot number $\alpha=1.8392^{+}$satisfying $X^{3}-X^{2}-X-1=0$. Rauzy constructs \mathscr{M} in connection with the fixed point of the substitution sequence $1 \rightarrow 12$, $2 \rightarrow 13,3 \rightarrow 1$. Other sets that $\mathrm{A}_{\alpha}^{\sigma}$ may resemble are the dragon-fractals in \mathbf{C} constructed in Gilbert (1982).

Finally, we remark that differences between Figures 2.1 and Figure 2.3 might be taken as evidence that the conjugating map taking T_{α} to T_{β} is singular, when α is the real root of $X^{3}-2 X^{2}+X-1$. Recall that T_{α} is

Fig. 2.3 The attractor $\mathrm{A}_{\alpha}^{\sigma}$ for $\sigma(\beta)=.33764-.56628 i$ a root of $X^{3}-3 X^{2}+2 X-1$. (The box is a square of side 4 centered at zero in \mathbf{C}.)
topologically conjugate to T_{γ} for all γ, but Proppe, Byers and Boyarsky (1983) showed that the conjugating map is singular whenever γ does not equal α or β.

3. Preperiodic points

There is a nice characterization of certain sets of preperiodic points of T_{α} for special Pisot numbers α. We begin with the case $\alpha=2$.

Theorem 3.1. For $\alpha=2$, one has

$$
\begin{equation*}
\operatorname{Per}_{0}\left(\mathrm{~T}_{2}\right)=\left\{\frac{m}{2^{n}}: n \geq 0 \text { and } 0 \leq m \leq 2^{n} \text { with } m \in \mathbf{Z}\right\} \tag{3.1}
\end{equation*}
$$

Proof. Let \mathscr{P} denote the right side of (3.1). We examine all numbers in $\operatorname{Per}\left(\mathrm{T}_{2}\right)=\mathbf{Q} \cap[0,1]$. The map T_{2} applied to p / q with $(p, q)=1$ gives a rational with denominator q if $2+q$ and $q / 2$ if $2 \mid q$. Theorem 2.2 shows that the only purely periodic point having denominator dividing a power of 2 is $\{0\}$. Since all rationals are eventually periodic, $\mathscr{P} \subseteq \operatorname{Per}_{0}\left(\mathrm{~T}_{2}\right)$.

The same observation shows that any odd $q>3$ dividing a denominator is preserved under iteration by T_{2}, hence $\operatorname{Per}_{0}\left(\mathrm{~T}_{2}\right) \subseteq \mathscr{P}$.

Corollary 3.1a. $\operatorname{Per}_{0}\left(\mathrm{~T}_{2}\right)$ is closed under multiplication and under addition $(\bmod 1)$.

Now we turn to the remaining special Pisot numbers α having $\mathbf{Q}(\alpha) \neq \mathbf{Q}$. Let O_{K} denote the ring of integers of $K=\mathbf{Q}(\alpha)$ and $\operatorname{Per}_{\gamma}\left(\mathrm{T}_{\alpha}\right)$ denote the set of preperiodic points of a purely periodic point $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$. We define

$$
\operatorname{Per}^{*}\left(\mathrm{~T}_{\alpha}\right):=\bigcup\left\{\operatorname{Per}_{\gamma}\left(\mathrm{T}_{\alpha}\right): \gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right) \cap O_{K}\right\}
$$

and have the following result.
Theorem 3.2. Let α be a special Pisot number with $K=\mathbf{Q}(\alpha) \neq \mathbf{Q}$. Then

$$
I_{\alpha}:=\left\{\gamma: \gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right) \cap O_{K}\right\}
$$

is a finite set which always includes 0 and

$$
\begin{equation*}
\operatorname{Per}^{*}\left(\mathrm{~T}_{\alpha}\right)=O_{K} \cap[0,1] \tag{3.2}
\end{equation*}
$$

Proof. We showed in part I that for special Pisot numbers α with $\mathbf{Q}(\alpha) \neq \mathbf{Q}$ both α and β are units in O_{K}. Hence denominator $\left(\mathrm{T}_{\alpha}(\gamma)\right)=$ denominator (γ) for all $\gamma \in \mathbf{Q}(\alpha)$. Since $\operatorname{Per}\left(\mathrm{T}_{\alpha}\right)=\mathbf{Q}(\alpha) \cap[0,1]$ and $O_{K}=$ $\{\gamma \in \mathbf{Q}(\alpha)$: denominator $(\gamma)=1\}$ this proves (3.2).

To see that the set I_{α} is finite, observe that any $\gamma \in \operatorname{Fix}\left(\mathrm{T}_{\alpha}\right)$ has γ and all its conjugates bounded by Theorem 2.1, since $A_{\alpha}^{\sigma}=\overline{\operatorname{Fix}\left(\left\{L_{\alpha}^{\sigma}, R_{\alpha}^{\sigma}\right\}\right)}$ is compact for special Pisot numbers. Since O_{K} contains finitely many elements having all conjugates in any bounded set, (cf. the end of the proof of Theorem 2.3), I_{α} is finite.

Corollary 3.2a. For all special Pisot numbers α, $\operatorname{Per} *\left(\mathrm{~T}_{\alpha}\right)$ is closed under multiplication and addition $(\bmod 1)$.

Proof. For $\alpha \neq 2$ this holds by (3.2) and for $\alpha=2$ it holds by Corollary 3.1a, since $I_{2}=\{0\}$.

One can determine each I_{α} by a finite computation. The quadratic special Pisot numbers reveal an asymmetry.

Corollary 3.2b. For real quadratic special Pisot numbers, if $\alpha=$ $(1+\sqrt{5}) / 2$ then $I_{\alpha}=\{0\}$, while if $\alpha=(3+\sqrt{5}) / 2$, then $I_{\alpha}=\{0,(-1$ $+\sqrt{5}) / 2\}$.

Proof. Set $\gamma=(a+b \sqrt{5}) / 2$ with $a \equiv b(\bmod 2)$, and use Corollary 2.3a. For $\alpha=(1+\sqrt{5}) / 2$ one must have

$$
\begin{aligned}
0 & \leq a+b \sqrt{5} \leq 2 \\
\frac{1-\sqrt{5}}{2} & \leq a-b \sqrt{5} \leq 1
\end{aligned}
$$

These imply that

$$
\begin{align*}
\frac{1-\sqrt{5}}{2} & \leq 2 a \leq 3 \\
-1 & \leq 2 b \leq \frac{3+\sqrt{5}}{2} \tag{3.3}
\end{align*}
$$

Now (3.3) with $a \equiv b(\bmod 2)$ has solutions $(a, b)=(0,0),(1,1)$ and the second is extraneous, so $I_{\alpha}=\{0\}$.

For $\alpha=(3+\sqrt{5}) / 2$ one must have

$$
\begin{aligned}
0 & \leq a+b \sqrt{5} \leq 2 \\
-1-\sqrt{5} & \leq a-b \sqrt{5} \leq 0
\end{aligned}
$$

and one easily deduces $I_{\alpha}=\{0,(-1+\sqrt{5}) / 2\}$.
Similar asymmetries occur for some other special Pisot numbers.
Acknowledgment. Allan Wilks computed the pictures of attractors in Figures 2.1-2.3.

References

1. M. Barnsley, Fractals everywhere, Academic Press, San Diego, 1988.
2. M.F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser A 399 (1985), 243-275.
3. K.J. Falconer, The Hausdorff dimension of some fractals and attractors of overlapping construction, J. Stat. Phys. 47 (1987), 123-132.
4. J.S. Geronimo and D.P. Hardin (1989), An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constr. Approx. 5 (1989), 89-98.
5. W.J. Gilbert, Fractal geometry derived from complex bases. Math. Intelligencer 4 (1982), 78-86.
6. J.E. Hutchinson, Fractals and Self Similarity, Indiana Univ. Math J. 30 (1981), 713-747.
7. J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric Tent Map Expansions I. Eventually Periodic Points, J. London Math. Soc. (2) 47 (1993), pp. 542-556.
8. P. Moussa, "Diophantine properties of Julia sets" in Chaotic dynamics and fractals, M. Barnsley and S. Demko, Eds., Academic Press, New York, pp. 215-228.
9. P. Moussa, J.S. Geronimo and P. Bessis, Ensemble de Julia et propriétés de localisation des familles itérée d'entiers algébriques, C. R. Acad. Sci. Paris 299 (1984), 281-284.
10. H. Proppe, W. Byers, and A. Boyarsky, Singularity of topological conjugates between certain unimodal maps of the interval, Israel J. Math. 44 (1983), 277-288.
11. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178.
12. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278.
13. B. Solomyak, Finite β-expansions and spectra of substitutions, Univ. of Washington, 1991, preprint.

AT \& T Bell Laboratories
Murray Hill, New Jersey
University of Illinois at Urbana-Champaign
Urbana, Illinois
University of Illinois at Urbana-Champaign
Urbana, Illinois

