CANONICAL RING OF A CURVE IS KOSZUL: A SIMPLE PROOF

Giuseppe Pareschi and B. P. Purnaprajna

1. Introduction

In this article we prove, for canonical model of curves, a theorem illustrating the general principle that (to paraphrase Arnold) any homogeneous ring that has a serious reason for being quadratically presented is Koszul. In this case we give a new proof, which is both elementary and geometric, of a theorem of Finkelberg and Vishik [VF] (see also [Po]) which says that whenever the canonical ring of a smooth complex projective curve is quadratically presented, it is Koszul. Our method is different from [Po]. We use vector bundle technique, building upon the one used in [GL]. We would also like to mention here that our methods fit a more general principle as shown in [GP1], [GP2] and [GP3].
A. The Koszul conditions. Let k be a field. A (commutative) graded k-algebra of the form $R:=k \oplus R_{1} \oplus \cdots \oplus R_{n} \cdots$ is said to be Koszul if its Koszul complex is exact, or, equivalently, if $k=R / R_{>0}$ has a linear minimal resolution over R; namely

$$
\cdots \rightarrow E_{p} \rightarrow E_{p-1} \rightarrow \cdots \rightarrow E_{2} \rightarrow E_{1} \rightarrow E_{0} \rightarrow k \rightarrow 0
$$

with $E_{0}=R$ and $E_{p}=R(-p)^{\oplus r(p)}$ for any $p \geq 1$. Denote the syzygy modules by $R^{(p)}:=\operatorname{ker}\left(E_{p} \rightarrow E_{p-1}\right)$; this means that for any $p \geq 0$ the $R^{(p)}$'s are generated in degree $p+1$ (the minimal degree) as graded R-modules (we refer to the treatment of [BGS] for generalities on Koszul rings, in a much more general context).

When R is a commutative algebra "arising from algebraic geometry", e.g., $R_{E}=$ $\bigoplus_{i} H^{0}\left(X, E^{\otimes i}\right)$, where X is a projective variety and E some line bundle on X, the Koszul conditions have a convenient interpretation in terms of line bundles due to Lazarsfeld. To see this, it is useful to set the following notation: if F is a sheaf on X, M_{F} will denote the kernel of the evaluation map $H^{0}(X, F) \otimes \mathcal{O}_{X} \rightarrow F$. Note that if F is globally generated and locally free on X then M_{F} is locally free. However, if H is locally free then $H^{0}\left(M_{F} \otimes H\right)$ is the kernel of the multiplication map $H^{0}(F) \otimes H^{0}(H) \rightarrow H^{0}(F \otimes H)$. Therefore, as it is immediate to see, $R_{E}^{(1)}=$ $\bigoplus_{i} H^{0}\left(X, M_{E} \otimes E^{\otimes i}\right), R_{E}^{(2)}=\bigoplus_{i} H^{0}\left(X, M_{M_{E} \otimes E} \otimes E^{\otimes i}\right)$ and so on. Inductively, let us set $M_{E}^{0}:=E, M_{E}^{1}:=M_{E} \otimes E, M_{E}^{2}:=M_{M_{E}^{1}} \otimes E, \ldots, M_{E}^{p}:=M_{M_{E}^{p-1}} \otimes E$

1991 Mathematics Subject Classification. Primary 14J10, 14J25.
for any p. In this setting to be a Koszul algebra means that the multiplication map of global sections

$$
\begin{equation*}
H^{0}\left(M_{E}^{p}\right) \otimes H^{0}\left(E^{\otimes n}\right) \rightarrow H^{0}\left(M_{E}^{p} \otimes E^{\otimes n}\right) \tag{1}
\end{equation*}
$$

is surjective for any $p \geq 0$ and $n \geq 1$. We refer for instance to $[\mathrm{P}]$ for more details.
B. Primitive pencils. Let us recall the following terminology: a line bundle A on C is said to be primitive if both A and $K_{C} \otimes A^{\vee}$ are base point free. If moreover $h^{0}(A)=2, A$ is said to be a primitive pencil. It is well known that the existence of certain families of primitive pencils is a meaningful geometric condition. This is also a key point in Finkelberg and Vishik's proof. The following result is well known.

THEOREM 1. A curve C of genus $g \geq 5$ has a primitive pencil of degree $g-1$ if and only if it is not hyperelliptic, trigonal or isomorphic to a smooth plane quintic.

For non bielliptic curves this is generally proved using the Martens-Mumford's Theorem, which ensures that the general element of every component of the BrillNoether variety $W_{g-1}^{1}(C)$ parametrizes a primitive pencil (see e.g. [ACGH], pp. 3723). For bielliptic curves there is one component of $W_{g-1}^{1}(C)$ parametrizing primitive pencils (see e.g. [S], [W] and [CS]). The "only if" part of the theorem can be found in [ACGH].

We would like to remark at this point that the statement in [VF] leaves open the case of bielliptic curves. However it is easy to see that the arguments, presented here and in [VF], also work for bielliptic curves.

The second author would like to thank David Eisenbud for his constant encouragement and advice.

2. Some filtrations

In this section we will prove a generalization of a result of [GL] which will be the main technical tool used in the proof.

Let A be a primitive pencil of degree $g-1$. Hence $K_{C} \otimes A^{\vee}$ is a primitive pencil too. Clearly $M_{A}=A^{\vee}$ and $M_{K_{c} \otimes A^{\vee}}=K_{C}^{\vee} \otimes A$. Moreover let $D=p_{1}+\cdots+p_{d}$ be a general divisor in the linear system $|A|$. Since we are over the complex field we can assume that the points p_{i} are distinct. It is also clear that for every effective divisor D^{1} strictly contained in D we have $h^{0}\left(\mathcal{O}\left(D^{1}\right)\right)=1$ since otherwise A would have base points. Therefore, by Riemann-Roch, $h^{0}\left(K_{C}\left(-D^{1}\right)\right)=g-\operatorname{deg} D^{1}$; i.e., any proper effective subdivisor of D imposes independent conditions to the canonical system $H^{0}\left(K_{C}\right)$. Let us write $D=D^{1}+D^{2}$ and, for any two points $p, q \in D^{2}$, let $D^{3}=D^{2}-p-q$.

Lemma 2. In the above situation assume that $0 \leq \operatorname{deg} D^{1} \leq g-3$. Then we have the exact sequences

$$
\begin{gather*}
0 \rightarrow A \rightarrow M_{K_{C}\left(-D^{\prime}\right)} \otimes K_{C} \rightarrow \Lambda \rightarrow 0 \tag{2}\\
0 \rightarrow K_{C}(-p-q) \rightarrow \Lambda \rightarrow \bigoplus_{p_{i} \in D^{3}} K_{C}\left(-p_{i}\right) \rightarrow 0 \tag{3}
\end{gather*}
$$

Proof. This lemma is proved in [GL] in the case $D^{1}=0$. The present proof is a straightforward generalization of the argument in [GL] and we include it for sake of self-containedness. First of all let us observe that $K_{C}\left(-D^{1}\right)$ is base point free: since $K_{C} \otimes A^{\vee}$ is base point free the only possible base points are the points of D^{2} but if this was the case we would have a divisor strictly contained in D not imposing independent conditions to $H^{0}\left(K_{C}\right)$. We have a commutative exact diagram

(4)
where $V_{K_{C}\left(-D^{1}\right), D^{2}}=H^{0}\left(K_{C}\left(-D^{1}\right)\right) / H^{0}\left(K_{C}(-D)\right)$ and $\Sigma_{K_{C}\left(-D^{1}\right), D^{2}}=$ $\operatorname{ker}\left(V_{K_{C}\left(-D^{1}\right), D^{2}} \otimes \mathcal{O}_{C} \rightarrow K_{C}\left(-D^{1}\right)_{\mid D^{2}}\right)$. Moreover, $K_{C}\left(-D^{1}+p+q\right)$ is base point free too (arguing as above) and then there is also a diagram like (4) taking $K_{C}\left(-D^{1}+p+q\right)$ instead of $K_{C}\left(-D^{1}\right)$ and D^{3} instead of D^{2}. Therefore we get a commutative exact diagram

where:
(a) the middle column is the last column of diagram (4);
(b) the last column is the last column of the above mentioned diagram like (4) with $K_{C}\left(-D^{1}+p+q\right)$ instead of $K_{C}\left(-D^{1}\right)$ and D^{3} instead of D^{2};
(c) the first column is $V \cong H^{0}\left(K_{C}\left(-D^{1}-D^{3}\right) / H^{0}\left(K_{C}\left(-D^{1}-D^{2}\right)\right.\right.$ and the third vertical arrow is evaluation, which is surjective since a section $s \in H^{0}\left(K_{C}\left(-D^{1}-\right.\right.$ D^{3})) which does not vanish on $D=D^{1}+D^{2}$ cannot vanish at either of p and q.

Therefore since $\operatorname{dim} V=1$, the kernel is $\mathcal{O}_{C}(-p-q)$.
Next, let us observe that $\Sigma_{K_{C}\left(-D^{1}\right), D^{2}}$ is isomorphic to $\bigoplus_{p_{i} \in D^{3}} \mathcal{O}_{C}\left(-p_{i}\right)$. Indeed, since $\operatorname{dim} V_{K_{C}\left(-D^{1}\right), D^{3}}=\operatorname{deg} D^{3}:=n$, the evaluation map $V_{K_{C}\left(-D^{1}\right), D^{3}} \otimes \mathcal{O}_{C} \rightarrow$ $K_{C}\left(-D^{1}\right)_{\mid D^{3}}$ decomposes in n surjective maps $V_{i} \otimes \mathcal{O}_{C} \rightarrow K_{C}\left(-D^{1}\right)_{\mid p_{i}}$, whose kernels are $\mathcal{O}\left(-p_{i}\right)$. The lemma follows taking as sequence (2) and (3) the first rows of diagrams (4) and (5) tensored by K_{C} (recall that $M_{K_{C}(-D)}=K_{C}^{\vee} \otimes A$).

THEOREM [VF]. If C is a non-hyperelliptic, non-trigonal curve which is not a plane quintic then the canonical ring of C is Koszul.

3. The proof

We keep the notation of the previous sections. The strategy will be to prove the theorem of Finkelberg and Vishik by verifying conditions (1) for $E=K_{C}$ and in order to do that one repeatedly uses Lemma 2. To this purpose let us introduce the following slight variation on the notation of Section 1.A: if E is a sheaf on C we let $\tilde{M}_{E}^{0}:=E, \tilde{M}_{E}^{1}:=M_{\tilde{M}_{E}^{0}} \otimes K_{C}$ and inductively define $\tilde{M}_{E}^{j}:=M_{\tilde{M}_{E}^{j-1}} \otimes K_{C}$ for any j. For C, A and D as in the previous sections we will prove:

Proposition 3. Let D^{1} be any effective or zero divisor contained in D such that $0 \leq \operatorname{deg} D^{1} \leq 2$. Then the map $H^{0}\left(\tilde{M}_{K_{C}\left(-D^{1}\right)}^{j}\right) \otimes H^{0}\left(K_{C}^{\otimes n}\right) \rightarrow H^{0}\left(\tilde{M}_{K_{C}\left(-D^{1}\right)}^{j} \otimes K_{C}^{\otimes n}\right)$ is surjective for any $j \geq 0$.

In view of Section 1.A, the case $D^{1}=0$ of the proposition is the theorem (since $\tilde{M}_{K_{c}}^{j}=M_{K_{c}}^{j}$. To prove Proposition 3 it is convenient to use the following ad hoc terminology:

Definitions. Given three vector bundles E, E_{1} and E_{2} on C we will say that E is cohomologically the direct sum of E_{1} and E_{2}, and we will write $E \equiv E_{1} \oplus E_{2}$, if there is an extension $0 \rightarrow E_{i} \rightarrow E \rightarrow E_{j} \rightarrow 0$, exact on global sections, with $1 \leq i, j \leq 2, i \neq j$. Inductively, we will say that $E \equiv \bigoplus_{i=1}^{m} E_{i}$ if $E \equiv F \oplus G$ and $F \equiv \bigoplus_{i \in X_{1}} E_{i}$ and $G \equiv \bigoplus_{i \in X_{2}} E_{i}$ with $X_{1} \amalg X_{2}=\{1, \ldots, m\}$. In this case we will also say that E is cohomologically a direct sum of copies of certain bundles F_{1}, \ldots, F_{k} if every E_{i} is isomorphic to some F_{j}.

The proof of the following lemma is by induction on m and left to the reader:
LEMMA 4. Suppose that E_{i} are globally generated sheaves for $i=1, \ldots, m$ and that $E \equiv \bigoplus_{i=1}^{m} E_{i}$. Moreover let K be a locally free sheaf on C and assume that the
multiplication maps $H^{0}\left(E_{i}\right) \otimes H^{0}(K) \rightarrow H^{0}\left(E_{i} \otimes K\right)$ are surjective. Then $M_{E} \otimes K \equiv$ $\bigoplus_{i=1}^{m} M_{E_{i}} \otimes K$ and the multiplication map $H^{0}(E) \otimes H^{0}(K) \rightarrow H^{0}(E \otimes K)$ is surjective.

We are now ready to prove Proposition 3. To simplify the notation we will prove the statement only for $n=1$, since the general case is similar but easier. The key point is the following:

Lemma 5. Under the hypotheses of Proposition 3, for any $j \geq 1, \tilde{M}_{K_{C}\left(-D^{1}\right)}^{j}$ is cohomologically a direct sum of copies of $A, K_{C} \otimes A^{\vee}$, and line bundles of the form $K_{C}\left(-D^{1}\right)$, with D^{1} again as in the statement of Proposition 3 (i.e., D^{1} contained in D and $0 \leq \operatorname{deg} D^{1} \leq 2$).

Proof of Lemma 5. Induction on j : the case $j=1$ follows from Lemma 2. The only thing to show is that sequences (2) and (3) are exact at the global sections level, and this holds since on the one hand $h^{0}\left(M_{K_{C}\left(-D^{\prime}\right)} \otimes K_{C}\right) \leq h^{0}(A)+h^{0}(\Lambda)=2+(g-$ $\left.3-\operatorname{deg} D^{1}\right) h^{0}\left(K_{C}\left(-p_{i}\right)\right)+h^{0}\left(K_{C}(-p-q)\right)=g^{2}-(g-1) \operatorname{deg} D^{1}-3 g+3$ (we have $h^{0}\left(K_{C}\left(-p_{i}\right)\right)=g-1$ and $h^{0}\left(K_{C}(-p-q)\right)=g-2$ since C is not hyperelliptic), and on the other hand $h^{0}\left(M_{K_{C}\left(-D^{\prime}\right)} \otimes K_{C}\right) \geq g^{2}-(g-1) \operatorname{deg} D^{1}-3 g+3$ since it is the dimension of the kernel of the multiplication map $H^{0}\left(K_{C}\left(-D^{1}\right) \otimes H^{0}\left(K_{C}\right) \rightarrow\right.$ $H^{0}\left(K_{C}^{\otimes 2}\left(-D^{1}\right)\right.$. This also proves that such multiplication maps are surjective, a well known and easy fact. If the statement is true at $j-1$ then it is true at j. This follows applying Lemma 4 to $M_{\tilde{M}_{K_{C}\left(-D^{1}\right)}^{j-1}} \otimes K_{C}:=\tilde{M}_{K_{C}\left(-D^{1}\right)}^{j}$. In fact all of A, $K_{C} \otimes A^{\vee}$ and line bundles of type $K_{C}\left(-D^{1}\right)$ as above are globally generated, and, moreover, the multiplication maps $H^{0}(A) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(K_{C} \otimes A\right), H^{0}\left(K_{C} \otimes\right.$ $\left.A^{\vee}\right) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(K_{C}^{\otimes 2} \otimes A^{\vee}\right)$ are obviously surjective, while the multiplication maps $H^{0}\left(K_{C}\left(-D^{1}\right)\right) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(K_{C}^{\otimes 2}\left(-D^{1}\right)\right)$ are surjective by the previous step. Then, by Lemma $4, \tilde{M}_{K_{C}\left(-D^{1}\right)}^{j}$ is cohomologically a direct sum of copies of A, $K_{C} \otimes A^{\vee}$ and of bundles of type $\tilde{M}_{K_{C}\left(-D^{1}\right)}$, again with $0 \leq \operatorname{deg} D^{1} \leq 2$. The statement at j then follows since, by the initial step, the bundles $\tilde{M}_{K_{C}\left(-D^{\prime}\right)}$ with $0 \leq \operatorname{deg} D^{1} \leq 2$ are in turn cohomologically direct sum of copies of $A, K_{C} \otimes A^{\vee}$ and line bundles of type $K_{C}\left(-D^{1}\right)$ as above. This proves Lemma 5.

Finally, Lemma 5 and the last part of the statement of Lemma 4 prove the Theorem.

References

[ACGH] E. Arbarello, M. Cornalba, Ph. Griffiths, and J. Harris, Geometry of algebraic curves, Vol. I, Springer-Verlag, New York, 1985.
[BGS] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, preprint.
[Bu] D. Butler, Normal generation of vector bundles over a curve, J. Diff. Geom. 39 (1994), 1-34.
[CS] C. Ciliberto, and E. Sernesi, Singularities of the theta divisor and congruences of planes, J. Alg. Geom. 1 (1992), 231-250.
[GP1] F. Gallego, and B. P. Purnaprajna, Normal presentation on elliptic ruled surfaces, preprint.
[GP2] , Syzygies of Surfaces and Calabi-Yau threefolds, preprint.
[GP3] , Cohomology vanishings and syzygies of $K 3$ surfaces and Fano varieties, preprint.
[GL] M. Green, and R. Lazarsfeld, "A simple proof of Petri's theorem on canonical curves" in Geometry today, E. Arbarello and C. Procesi, eds., Birkaüser, 1985, pp. 129-142.
[K] G. Kempf, "Projective coordinate rings of abelian varieties" in Algebraic analysis, geometry and number theory, J. I. Igusa, ed., Johns Hopkins Press, 1989, pp. 225-236.
[P] G. Pareschi, Koszul algebras associated to adjunction bundles, J. Algebra 157 (1993), 161-169.
[Po] A. Polishchuk, On the Koszul property of the homogeneous coordinate ring of a curve, J. Algebra 178 (1995), 122-135
[S] V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math. 65 (1981), 209-219.
[VF] Finkleberg Vishik, The coordinate ring of a general curve of genus ≥ 5 is Koszul, J. Algebra 162 ('93)
[W] G. Welters, The surface C - C on Jacobi varieties and second order theta functions, Acta Math. 157 (1986), 1-22

Giuseppe Pareschi, Dipartimento di Matematica "Guido Castelnuovo", Universitá di Roma "La Sapienza", P.le A. Moro 5, I-00145 Roma, Italy

Bangere Purnaprajna, Department of Mathematics, Oklahoma State University, Stillwater, OK 74078
purna@math.okstate.edu

