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MEAN LIPSCHITZ SPACES
AND BOUNDED MEAN OSCILLATION

DANIEL GIRELA

1. Introduction and statement of results

Let A denote the unit disc {z C: Izl < and T the unit circle { C: I1 }.
For 0 < r < 1 and g analytic in A we set

Mp(r, g) le, re’)l ao 0< p < cx,

Mo(r, g) max Ig(z)l.

For 0 < p < o the Hardy space HP consists of those functions g, analytic in A, for
which

Ilgll sup Mp(r, g) < .
0<r<l

The space BMOA consists of those functions f H whose boundary values
have bounded mean oscillation on T. We cite [2] and [9] as references for the main
properties of BMOA-functions.

If f is a function which is analytic in A and has a non-tangential limit f(eiO) at
almost every ei T, we define

(f_rr (eiO+t),o, f3 sup If feiO o > o, < p <
0<1tl58

too(,f)= sup (ess.suplf(ei(+t))--f(ei)[),0<ltl<
3>0.

Then tOp (., f) is the integral modulus of continuity of order p of the boundary values

f(eiO) of f.
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Given 1 _< p < o and 0 < ct < 1, the mean Lipschitz space Ap consists of those
functions f analytic in A having a non-tangential limit almost everywhere for which
tOp(d, f) O(8), as d 0. If p oo we write Aa instead of A. This is the
usual Lipschitz space of order ct. More precisely, a function f analytic in A belongs
to A if and only if it has a continuous extension to the closed unit disc A and its
boundary values satisfy a Lipschitz condition of order a.
A classical result of Hardy and Littlewood 11] (see also Chapter 5 of [8]) asserts

that for 1 _< p _< c and 0 < ct _< 1, we have Ap C Hp and

(1.1) Ap [f analytic in A: Mp(r, f’): O((1=,,_ ), asr 11.
Now, a well known result of Privalov [8, Th. 3.11] asserts that a function f analytic
in A has a continuous extension to the closed unit disc A whose boundary values are
absolutely continuous on T if and only if f’ H Consequently, we can state the
following.

THEOREM A. Let f be afunction which is analytic in A. Then, the threefollowing
conditions are equivalent:

(i) fA1"
(ii) f’ n1.
(iii) f has a continuous extension to the closed unit disc A whose boundary values

are absolutely continuous on T.

The author has recently proved in 10] that Theorem A is sharp in a very strong
sense showing thatno restriction on the growth ofM1 (r, f’) other than its boundedness
is enough to conclude that f is a normal function in the sense of Lehto and Virtanen
12]. We recall that a function f which is meromorphic in A is a normal function if
and only if

(1.2) sup(1 -Izl2) If’(z)l
za 1 + If(z)l

< o.

We refer to 1 and 18] for the theory of normal functions. More precisely, we have
proved the following result.

THEOREM B. Let be any positive continuous function defined in [0, 1) with
b(r) --> o, as r -, 1. Then, there exists a function f analytic in A which is not a
normalfunction and having the property that

MI (r, f’) < (r) for all r sufficiently close to 1.

Cima and Petersen proved in [7] that A/2 C BMOA. This result was extended
by Bourdon, Shapiro and Sledd who proved the following result in [6].



216 DANIEL GIRELA

THEOREM C. For 1 <_ p < o, lk/p C BMOA.

In this paper we shall show that Theorem C is sharp in a very strong sense. In
order to do so, let us introduce the generalized mean Lipschitz spaces.

Let to: [0, r] [0, o) be a continuous and increasing function with to(0) 0.
Then, for 1 < p < x, the mean Lipschitz space A(p, to) consists of those functions

f analytic in A which have a non-tangential limit almost everywhere and satisfy

tOp(g, f) O(to(8)), as --> 0.

With this notation we have Ap A(p, 8).
The question of finding conditions on to so that it is possible to obtain results on

the spaces A (p, to) analogous to those proved by Hardy and Littlewood for the spaces
Ap has been studied by several authors (e.g., [4], [5] and 13]). We shall say that w
satisfies the Dini condition or that w is a Dini-weight if there exists a positive constant
C such that

dt < Cw(8) 0 < <(1.3)

Given 0 < q < , we shall say that w satisfies the condition bq or that w bq if
there exists a positive constant C such that

w(t) w(d)
0 61.4) dtC , < <

In [5, Th. 2.1], Blasco and de Souza proved the following extension of (1.1).

THEOREM D. Let to: [0, r] [0, o) be a continuous and increasingfunction
with to(O) O. Ifto is a Dini-weight and satisfies the condition b then,

(1.5) A(p, to)= f analytic in A" Mp(r,f’)= O\ 1-r ,asr--

The main results in this paper are contained in the following two theorems.

THEOREM 1. Let 1 < p < Cx and let to: [0, zr] - [0, cxz) be a continuous and
increasingfunction with to(O) O. Suppose that

(1.6) to is a Dini-weight,

(1.7) to 6 b,

and

(1.8)
to(g)

o as --+ O.
8lip

Then there exists afunction f A(p, to) which is not a Blochfunction.
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THEOREM 2. Let < p < cx and let p: [0, zr --> [0, o) be a be a continuous
and increasing function with p(O) O. Suppose that (1.6), (1.7) and (1.8) are true
with p in the place ofco and that

(1.9) pl/2 b+/-.
2p

Then there exists afunction f A(p, p) which is not a normalfunction.

We recall that a function f analytic in A is a Bloch function if

sup(1- IZl2)lf’(z)l < c.
zEA

Since it is well known that any BMOA-function is a Bloch function and a Bloch
function is normal, Theorem 1 and Theorem 2 together with Theorem C (see also 10,
Th. 2]), prove the sharpness of Theorem B. In particular, if co is as in Theorem then
A (p, co) BMOA. It is natural to expect the conclusion of Theorem 2 to remain
true without assuming condition (1.9). However our methods do not yield this.
We remark that if n is a positive integer and 3 > 0 then the function co of Theorem

1 can be taken to be

co(t) l/p lg" log -n times

for sufficiently close to 0.

2. Proof of Results

The arguments that we are going to use in the proof of our results are related to
those used in [10]. in particular, we shall make use of certain sequences defined
by K. I. Oskolkov. We start by stating certain properties of the weights co and the
Oskolkov’s sequences associated with them, but first let us remark that from now on
we shall be using the convention that C will denote a positive constant (which may
depend on co, , p and p but not on s, t, 8 or n) and which may be different at each
occurrence.

LEMMA 1. Let co: [0, zr --> [0, x) be a continuous and increasingfunction with
co(O) O. Ifco satisfies the condition bl then there exists a positive constant C such
that

(2.1)
co(t) co(s)
<C, 0<s<t<l.

s
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ProofofLemma 1. We have

" dx C
>-- 0<t<l

x2 zr- t’

and then, since co is increasing and satisfies (1.4) with q 1, we easily see that if
0 < s < then

co(t)
< Cco(t) < C dx < C dx <C

x2 x2 x2 s

Definition 1. Let co: [0, r] [0, oct) be a continuous function with co(0) 0
and

(2.2)
co(8)

--+ c as 8 -- 0.

Take a fixed number ) with 0 < ) < and let us consider the sequence of numbers
{8. }.__0, defined inductively as follows:

(2.3)
8,+1 min 8 [0, 1)" max

i.o(,, ,o(

Then {8. }.=0 will be called the .-Oskolkov sequence associated with co.

The sequence {8.} was defined by K. I. Oskolkov in [14], [15], [16] and [17] under
the hypothesis that co is a modulus of continuity, that is, increasing and subadditive
(see Proposition 2.1 of [3]). However, it is clear that the definition of {8.} makes
sense in our setting. In the following lemmas we shall list the main properties of the
sequence {8. which will be used in the sequel.

LEMMA 2. Let co: [0, zr] -- [0, o) be a continuous function with co(O) 0
which satisfies (2.2). Let 0 < ) < 1 and let oo{Sn}.=0 be the )-Oskolkov sequence
associated with co. Then {Sn is a decreasing sequence of positive numbers with

8n O, as n o. Moreover,for all n > O, we have

(2.4) co(Sn+l) <_ ,kco(8,),

(2.5) 8,+1 _< .28n,

(2.6) co(Sn+l)Sn+l _< ,3co(Sn)Sn

(2.7)
co(Sk)

< ,k,_k
co(8.)

0 <_ k <_ n,

(2.8) co(St,) <_ k-nco(Sn), k > n.
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ProofofLemma 2. First let us notice that (2.4) and (2.5) are direct consequences
from the definition of the sequence {Sn} and then (2.6) and the fact that 8n tends
monotonically to zero follow trivially.

The definition of {dn implies that

to (k) to(k+l)
<,k, k>0,

dk
and then (2.7) follows. On the other hand, (2.8) follows from (2.4).

LEMMA 3. Let to, . and {Sn }n=0 be as in Lemma 2. Suppose also that to is
increasing and satisfies (1.6) and (1.7). Then there exists a positive constant C such
that

n <C, n>0.(2.9)
$,+i

ProofofLemma 3. If to were a modulus of continuity then (2.9) would follow
from Remark 2, pp. 145-146 of [17]. However, it is not difficult to see that (2.9)
remains true in our setting. Indeed, take n N. Notice that at least one of the two
relations

w(,) o(,+)
(2.10) (R1) W(gn+l) ,kW(in), (R2) n tn+l
holds. If (R1) holds, then, using (1.6) and the fact that to is increasing, we obtain

Co(,) _> rs/" to(/’)

+1

and hence

n tn
dt > to(tn+l) log Zto(Sn) log

tn+l

6n C
(2.11) log <

3n+l .
On the other hand, if (R2) holds, then (1.7) and Lemma show that

to(t) to (n) n
Cto((n+l) > 8n+l 7 dt > Cn+l’ 6" log Lto(3n+l)log 6---L-n

+l tn+
which, again, gives (2.11). Consequently, we have proved (2.9). This finishes the
proof of Lemma 3.

ProofofTheorem 1. Let p and to be as in Theorem 1. Notice that, since p > 1,
(1.8) implies (2.2) and so we see that to satisfies the conditions of Lemma 3. Take a
fixed Z 6 (0, 1) and let {3, o}n=0 be defined by (2.3) We set

to(j)
(2.12) f (z)

(1 z 4;- j)i/p’
z G__ A,,
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Clearly, this series converges uniformly on each compact subset of A and therefore
it defines a function which is analytic in A. We have

(2.13) f’(z)
1

P

and, hence, for 0 < r < 1, we have

(2.14) Mp(r, f’) < C j=o tO(3j)
l1 + 3j reilp+l

l/p

-< CoW(Y) I1- e O +

o 1
< CE to(3J)

j=0 I1 --_< C
--3j--r"..

Set

(2.15) rn 1-3n, n> 1.

Then (2.14) implies

(2.16) Mp(rn+l, f’) < C
.=

n>0.

Using (2.7), we obtain

(2.17)
j=O 3j -1- 3n+ 3n j=O 3j + 3n+
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On the other hand, (2.8) and (2.9) imply

< C----
o( .__2_",j-n <C
tn tn+lj=n+l

o)()
tn j=n+l

<C
() yxk c,()

tn k=0

which, with (2.17) and (2.16), implies

O(’n)
(2.18) Mp(rn+, f’) < C, n > O.

tn

Now, since Mp (r, f’) is an increasing function of r, using Lemma 1 we deduce that

Mp (r, f’) < Mp(rn+l, f’) < C
to(3.) w(1 r)

<C, rn < r < r,+l, n> 1.
3n 1 r

Hence

(2.19) Mp(r, f’) <C
to(1 -r)

0<r < 1,

which, together with (1.5), shows that f 6 A(p, to).
Now, using (2.13) we easily see that

1 to(d.)
If’(r,)l > C

p (2dn)l+ + n>l,

which, using (2.15), implies

(1- rn)lf’(rn)l > C ;,’/’--7-’ n > 1.

Then (1.8) shows that (1 rn)lf’(rn)[ cx, as n -- cx. Consequently, f is not a
Bloch function. Since f e A(p, to), this finishes the proof of Theorem 1.

ProofofTheorem 2.
loss of generality that

(2.20)

Define

(2.21)

Let p and p be as in Theorem 2. We may assume without

p() > (l/p, 0 < < 1.

to(t) tl- p(t) 1/2, 0 < <_ yr.
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Clearly, to is a positive, increasing and continuous function in [0, r with to(O) 0
which satisfies

to(t)
(2.22) lim cx and to(t) > for all [0, 1].

t-O

Furthermore, since p is a Dini-weight, using Htilder’s inequality we obtain

fo fo’p(t)l/2 fo’(-)to(t)
dt dt

2-’

(fo, P(t) )1/2<__ dt (f0’ dt)
Cto(6), 0<6 < 1.

1/2 dt

t1/2(-l
1/2

_< cl-p()

Hence,

(2.23) to is a Dini-weight.

On the other hand, (1.9) implies

f f6:rr 1/2 1/2r to(t)
dt P(t) dt <_ C p(6) C, 0 < < 1,

tl+
so that

(2.24) to e bl.

Consequently, we have shown that to satisfies the conditions of Lemma 3. Take
0 < ) < and let n }n=0 be the )-Oskolkov sequence associated with to.

The function f that we are going to construct to prove Theorem will be of the
form f(z) B(z)F(z) where B will be a Blaschke product while the function F will
be given by a series of analytic functions in A which converges uniformly on every
compact subset of A. We start with the construction of the function F. We set

o()
(2.25) F (z)

Z -Jr" torkoj ]ojx’
Z - m.

j=l

Clearly, this series converges uniformly on each compact subset of A and therefore
it defines a function which is analytic in A. We have

F’(z)
( z + o)22)’

ZEA,
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and therefore we conclude that, for 0 < r < 1,

(2.26) Mp(r, t’) <_ C to(j)j
11 -" to(j)tj rei12P

C 2p
.= (1 "4-to(tj)tj)2 rei[x 1 1-4-(,o(tj )j

to(j)j
C

(1 + to(dj)dij)2 2-(1- +toij)j )
o()<_C .

(1 r + to(tj)tj)2-

Set r. n (n >_ 1). Then (2.26) implies

lip

1/p

oOj)j
(2.27) Mp(rn+l, F’) <_ C

2 ’’ n >_ 1.
j=l (tn+l "4- to(tj)tj) -Now, recalling that to is in the conditions of Lemma 3 and using (2.22), (2.7) and

(2.9), we obtain

(2.28)

to(j)j
21

j=l (tn+l + to(j)j) -’
(J)<C

2
j=l (tn+l + to(tj)tj) -,2(n-j)< C

8n j=l (an+ + o@)) -(to(n)2 n

C , tn / ,2(n-J)

<C
to(tn)2

3-+/- En k=0

to (tn)2
=C n>l.

n3-+/-p
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Also, using (2.22), (2.8) and (2.9), we see that

O) (tn)2
--< --__T "=n+ .2(j-n)

tn

tO (tn)2 o

2-+/- E ,2k
n k=O

<C
O)(tn)2

3_+/- n>_l,

which, with (2.28), (2.27) and (2.21), shows that

p(,.)mp (rn+ F’) <_ C
3n

n >

which, since p e b, using Lemma 1 and arguing as in the proof of (2.19) implies

p(1 -r), q<_r<l.(2.29) Me(r, V’) <_ C
1 r

Using (2.25) and the definition of r,,+, we obtain

(2.30) M(rn+l, F) <
+

n>l.

Now, (2.22) and (2.7) imply

(2.31)
n+l -[- O0(j)j

tO (Sn) n

< Zj-n
tn j=l

o(.) o

< E,k=ctn k=O

(,.)
n>l.
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Also, (2.8) and (2,9) imply

(2.32)

o(a)
< C-------, n>l.

Then (2.30), (2.31) and (2.32) imply

w(.)
M(r,+,F)<_C, n> 1,

which, using (2.24), Lemma 1, arguing as in the proof of (2.19) and having in mind
(2.21) gives

co(1 r) p(1 r) 1/2
(2.33) M(r, F) <C C rl <_ r < 1.

-r (1 -r)

Notice that for every j,

r + o(j)j
is a positive increasing function of r in (0, 1) and hence, using the Lebesgue’s Mono-
tone Convergence Theorem, we deduce that

j o()(2.34) lim F(r) lim oo.
r--l- r---l- r 4- O0(6j)6j".._

To finish the proof of Theorem 2 we shall use the following result which may be
of independent interest.

THEOREM 3. Let 4 be any positive and continuous function defined in [0, 1) with
qi(r) x as r -- 1. Then there exists an interpolating Blaschke product B with
positive zeros having the property that

(2.35) M1 (r, B’) O(qb(r)) as r -+ 1.

We recall (see Chapter 9 of [8]) that a Blaschke product B is said to be an inter-
polating Blaschke product if its sequence of zeros {ak} is a universal interpolation
sequence or, equivalently, uniformly separated, that is, if there exists a number , > 0
such that

ak--aj > y forallk.
j=l 1--’ffjak
j#
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Once Theorem 3 has been stated, we continue the proof of Theorem 2. We take

(2.36) (r)
p(1 r)e/z

O<r<l.
(1 -r) 1/z

Since (1.8) is true with p in the place of to, we see that is as in the conditions
of Theorem 3. Hence, there exists a Blaschke sequence {ak}i=l C (0, 1) which is
uniformly separated such that the Blaschke product

ak--Z, Z E A,(2.37) B(z)
aizk=l

satisfies (2.35).
Now,

(2.38) Mp(r, B’) < Ml(r, B’)l/pMo(r, B’) 1-’, 0 < r < 1.

Since B is a Blaschke product, IIBII 1 and then IB’(z)l _< (1 Iz12)- for all
z E A(see e.g., Lemma 1.2 of [9]). Consequently, we have

M(r, B’) < for all r [0, 1),
1-r

which, with (2.35), (2.36) and (2.38), shows that

p(1 r) 1/2 1
(2.39) Mp(r, B’) < C

(1-r) (1-r)l-
for all r sufficiently close to 1.
Now we define

=C
p(1 r) /2

(1 r)

(2.40) f(z) F(z)B(z),

Then f’= F’B + FB’ and hence

ZA.

Me (r, f’) < Me (r, F’)M(r, B) +M(r, F)Me (r, B’)

which, using (2.29), the fact that M(r, B) < for all r, (2.33) and (2.39) gives

Me(r’f’)= O(p(1-r))l-r-’" asr---> 1,

or, equivalently,

(2.41) f A(p, p).

Since the sequence {a is uniformly separated, there exists y > 0 such that

(2.42) (1 -lakl2)lB’(ak)l-- I-I
j----I

aj ak

ajak
>y for allk.
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Since B(ak) 0, computing the spherical derivative of f at ak yields

(1 [ak [2) If’(ak)l
1 + If(at)l2

(1 -lakl2) IF’(ak)B(ak) + F(ak)B’(ak)l
1 + IB(ak)F(ak)l2

(1 --lakl2)lB’(ag)llF(a)l

which, using (2.42) and (2.34), implies

(1- [ak[2) If’(al)l -- o as k - o+ If(ak)l2

and, hence, we see that f is not a normal function which, with (2.41), finishes the
proof of Theorem 2.

Now it only remains to prove Theorem 3. We remark that even though it is not
explicitely stated there, Theorem 3 is essentially proved in the proof of Theorem 1
of 10]. However, we shall include here the proof for the sake of completeness but
before embarking into it, let us remark that the function to and the sequences {n and
{rn that we are going to use to construct the Blaschke product are not the same that
those used before. We believe that this will not cause any confusion.

ProofofTheorem 3. Clearly, we may assume without loss of generality that

q (r) > for all r [0, 1).

Let us define

41(r) rain 4(r),
(1 r) 1/2

0 <_ r < 1,

and let 4 denote the highest increasing minorant of 4h; that is,

q2(r) inf tl (S), 0 _< r < 1.
r<s<l

Then, it is clear that 42 is a positive, continuous and increasing function in [0, 1)
which satisfies

(2.43) <q2(r) <q(r), O_<r < 1,

(2.44) b2(r) --> oo as r - 1,

and

(2.45) (1 --r)q2(r) 0

Let to: [0, --+/ be defined as follows

(2.46) [ to(O) O,

I to() u(1 d),

as r --- 1.

0<3<1.
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Hence,

co(1 -r)
(2.47) r2(r)--, 0<r < 1.

1-r
Using (2.45), it is easy to see that co is positive and continuous in [0, 1 ]. Moreover,

(2.48)
co(g)

oo as/ 0,

and

(2.49) co() > for all [0, 1].

Hence we see that co is in the conditions of Definition 1 and Lemma 2. Take a fixed
number . with 0 < . < 1 and let {din oo}n=0 be the .-Oskolkov sequence associated
with co. Since co(dn) 0, as n o, there exists a positive integer N such that
co(dn) < 1, if n > N. Define

(2.50) an 1- ;nco(Sn), n > N.

Then an (0, 1) for all n and (2.6) implies that the sequence {an o}n=v satisfies the
Blaschke condition; that is, ’nV(1 lan I) < oo. Even more, (2.6) implies that
the sequence {an} is uniformly separated (see Chapter 9 of [8]). Let B denote the
Blaschke product whose zeros are {an o}n=t, that is,

an-Z, z.A.(2.51) B(Z)
-anz

Then B is an interpolating Blaschke product. We set

(2.52) rn=l-dn, n>N.

Protas proved in 19, p. 394] that

IB’(rei)l dO < 8re
1 -lakl

r k 1--r+l--lakl’
0<r<l.

Using this inequality and the definitions of rn and an, for every n > N we have

(2.53) M (rn+l, B’) < C
k=N n+l + kco(k)

Now, (2.7) and (2.49) show that, for n > N, we have

co(n) ,n-kco (k)k
<(2.54)

k=S 8+ - kco(k) n k=N

co (tn) o co (tn)
< n k=0 n
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On the other hand, using (2.8) and the fact that dn is decreasing, we see that, for
n>N,

oo
tO lk tk O) n)

oo tn3k
8n+l " 8kOg(Sk) 8n k=n+lk=n+l 8n+l -{- 8kOg(Sk)

tn z__, tn+k=n+l

o() o(.)
< ;k _<C,8n k=O 8n

which, with (2.54), (2.53), (2.52) and (2.47), implies

(2.55) Ml(rn+l, B’) < Cqb2(rn), n > N.

Since M (r, B’) and 42(r) are increasing functions of r, arguing as in the proof of
(2.19), we see that (2.55) implies that M (r, B’) < C42(r) for all r sufficiently close
to 1. In view of (2.43), this implies (2.35) and finishes the proof of Theorem 3.

REFERENCES

1. J.M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normalfunctions, J. Reine
Angew. Math. 270 (1974), 12-37.

2. A. Baernstein, "Analytic functions ofbounded mean oscillation" inAspects ofContemporary Complex
Analysis, Academic Press, San Diego, 1980, pp. 3-36.

3. R.D. Berman, L. Brown and W. S. Cohn, Moduli of continuity and generalized BCH sets, Rocky
Mountain J. Math., 17 (1987), 315-338.

4. S. Bloom and G. Soares de Souza, Weighted Lipschitz spaces and their analytic characterizations,
Constr. Approx., 10 (1994), 339-376.

5. O. Blasco and G. Soares de Souza, Spaces of analytic functions on the disc where the growth of
Mp(F, r) depends on a weight, J. Math. Anal. Appl., 147 (1990), 580--598.

6. P. Bourdon, J. Shapiro and W. Sledd, "Fourier series, mean Lipschitz spaces and bounded mean
oscillation" in Analysis at Urbana 1, Proceedings of the Special Year in Modern Analysis at the
University oflllinois, 1986-87, Cambridge Univ. Press, Cambridge, 1989, pp. 81-110.

7. J.A. Cima and K. E. Petersen, Some analyticfunctions whose boundary values have bounded mean
oscillation, Math. Z., 147 (1976), 237-347.

8. P.L. Duren, Theory ofHP spaces, Academic Press, New York, 1970.
9. J.B. Garnett, Bounded analyticfunctions, Academic Press, New York, 1981.
10. D. Girela, On a theorem ofPrivalov and normalfunctions, Proc. Amer. Math. Soc., to appear.
11. G. H. Hardy and J. E. Littlewood, Some properties offractional integrals, II, Math. Z., 34 (1932),

403-439.
12. O. Lehto and K. J. Virtanen, Boundary behaviour and normal meromorphicfunctions, Acta Math., 97

(1957), 47-65.
13. G. D. Levshina, Coefficient multipliers of Lipschitz functions, Mat. Zametki, vol. 52 (1992), no. 5,

pp. 68-77 (Russian); English transl, in Math. Notes, vol. 52, no. 5-6, pp. 1124-1130 (1993).
14. K. I. Oskolkov, An estimate of the rate of approximation ofa continuous function and its conjugate

by Fourier sums on a set of total measure, Izv. Acad. Nauk SSSR Ser. Mat., vol. 38 (1974), no. 6,
pp. 1393-1407 (Russian); English transl, in Math. USSR Izv., vol. 8 (1974), no. 6, pp. 1372-1386
(1976).



230 DANIEL GIRELA

15. Uniform modulus ofcontinuity ofsummablefunctions on sets ofpositive measure, Dokl.
Akad. Nauk SSSR, vol. 229 (1976), no. 2, pp. 304-306 (Russian); English transl, in Sov. Math. Dokl.,
vol. 17 (1976), no. 4, pp. 1028-1030 (1977).

16. Approximation properties ofsummable functions on sets offull measure, Mat. Sbornik,
n. Ser., vol. 103(145) (1977), pp. 563-589 (Russian); English transl, in Math. USSR Sbornik, vol. 32
(1977), no. 4, pp. 489-514 (1978).

17. On Luzin’s C-property for a conjugate function, Trudy Mat. Inst. Stelklova, vol. 164
(1983), pp. 124-135 (Russian); English transl, in Proc. Steklov Inst. Math., vol. 164 (1985), pp. 141-
153.

18. Ch. Pommerenke, Univalentfunctions, Vandenhoeck und Ruprecht, Gtittingen, 1975.
19. D. Protas, Blaschke products with derivative in HP and BP, Michigan Math. J., 20 (1973), 393-396.

Departamento de Anilisis Matemitico, Facultad de Ciencias, Universidad de Milaga,
29071 Milaga, Spain
Girela@anamat.cie.uma.es


