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MICROLOCALIZATION OF Oy
ALONG DIHEDRAL LAGRANGIANS

GIUSEPPE ZAMPIERI

1. Introduction

Let X be a complex manifold, 7*X 5 X the cotangent bundle to X, o = o® +
v= 1o the canonical 2-formon 7*X, A;, A, twoR-Lagrangian conic submanifolds
of T*X. We assume that the intersection AN A; is regularin a neighborhood of a point

p. and that the tangent planes A; (p): = T, A; verify codim, () (A1(p) NA2(p)) = 1.
According to [D’ A-Z 3] (which improves [S]), one can then find a complex symplectic
transformation x; which interchanges A, A, with the conormal bundles Ty X, Ty, X
to two hypersurfaces M;, M, C X whose Levi-forms are positive-semidefinite at
q = x1(p).

We prove here in Proposition 1.1 that we can find another symplectic transforma-
tion x, such that the Levi-form of one hypersurface is positive-semidefinite, whereas
the other has one negative eigenvalue. The choice of the hypersurface which carries
the negative eigenvalue is not arbitrarys; it relies on intrinsic geometric properties of
the pair A;, A;. In case the intersection A; N Aj is “clean” of codimension 1, the
two cases occur according to the “positivity” A; > A (resp. Az > A}) in the sense
of [D’A-Z 4]. In the first transformation y; this is characterized by the inclusion
31 D X (resp. 1 C X,) (where X; are the closed half-spaces with boundary M;
and inward conormal q. (In the second transformation x; the inclusions are reverted.)

We put Ao(p) = T,,n‘ln(p), assume that dim(A; (p) N A¢(p)) = const, and still
suppose the intersection A; N A; regular and clean. We denote by AT (resp A7) one
half-part of A (resp. A,) with boundary A;NA,,andset A = ATUAZ. In Theorem
1.2 we prove that A can be reduced to the conormal bundle 7} X to a C!-manifold Y
of X by one and only one of the tranformations x;, x2. This can be proved by a direct
analysis of the shift of simple sheaves along the A;’s under the action of quantizations
of the x;’s.

We finally discuss the complex of microfunctions along A in the sense of [K-S 1],
and show that its non-trivial cohomology ranges through an interval described by
the numbers of negative Levi eigenvalues of the A;’s. By these results we are able
to state a strong improvement of our former theorem in [Z 2] on existence for 8 on
dihedrons of C".
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162 G. ZAMPIERI
Section 1

Let X be a complex manifold of dimension n, w: T*X — X the cotangent bundle
to X,a = aR + /=1 (0 = oR + /=10") the 1-form (2—form). We identify
T*(XR) ~ (T*X)R with the aid of o®. We let H: T*T*X — TT*X, (resp.
HR: T*T*XR® =, TT*XR) be the Hamiltonian isomorphism associated to o (resp.

oR). We take an R-Lagrangian (i.e., Lagrangian for o®) conic submanifold A in a

neighborhood of a point p € T*X (d°=f' T*X \ Ty X), and put
b's

(L) e(p)=T,T*X v(p)=CH(@(p)) A(p)=T,A Ko(p) =T, "' m(p)
©w(p) = A(p) NV/=IA(P) 12 (p) = dimr(A(p) N Ao(p))
8,(p) = dimc(u(p)) Vi (P) = dimc(A(p) N v/=TA(P) N Ao(P)).

We often drop p in the above notations. We define
1.2) LA/Ao =o(u, vc)lu,ve)»gv

(where Ay = ((Ao N ut) + )/ with -+ denoting the symplectic orthogonal). Its
kernel being (A N Ao/ N Ao)C, one gets

(13) rank(L,\/Xo) =R —Crag — (SA + ZyA/Ao'
One also has

1
(1'4) Sgn(Ll/Xo) = Et()‘w \ 4 —'IA" A'0),

where t is the inertia index in the sense of [K-S 1]. We shall denote by sf/A , the
numbers of respectively positive and negative eigenvalues for L, ,,. Now let M be a
C?—submanifold of X, T} X the conormal bundle to M in X, p a point of T}, X, z,
the projection w(p). If p is a C2-function at z, with ¢| = 0 and d¢(z,) = p, then
for Ay = TTy; X, one gets

(1.5) Ly, jpo ~ 30¢l7cyy (TM =TM NV/—1TM),

where “~” means equivalence in signature and rank (cf. [S] and also [D’ A-Z 2] as for
codim M > 1). We shall write s,’{; instead of sfM Jro? and similarly set cpyr = c5, /20>
YM = Yau/ro» L = Li, 2, and so on. Let

1
drjre = E[Cx/xo +n — 8, —sgn(Ly,)].
By (1.3) one has dyjs, = Capng + Sijpe = Viso(= 1 = 8 + Vappe — sf/ko). Let

D*%(X) denote the derived category of the category of bounded complexes of sheaves
and D?(X; p), p € T*X, denote the localization of D®(X) by the null-system
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{F;SS(F) # p} (cf. [K-S 1] for the definition of the microsupport SS). Let x
be a germ of a contact transformation between neighborhoods of p and g = x(p)
and let ¢ be a quantization of x by a kernel K (i.e., a simple sheaf with shift n on
A the antipodal to the graph of x). Assume that x transforms A to A’. According
to [K-S 1], if F is simple along A with shift b at p, then ® g (F) is simple along
A’ with shift & — 3(sgn Ly/a,(p) — sgn Li/x, (@) = b + (@i/2,(p) — dija, (@) —
1@a/20(P) — cvnn (@) at g.

PROPOSITION 1.1.  Let Ay and A, be R-Lagrangian conic submanifolds of T*X
in a neighborhood of p. We assume that A, N A, is I-regular (i.e., regular for ")
and that

codimy, () (A1(p) NA2(p)) = 1.

We may then find two contact transformations x , from neighborhoods of p and q,
such that

(1.6) x(A) =Ty X, codimM;=1,i=1,2,
and with one satisfying

1.7 s, (@) =0, i=12,

and the other satisfying

(1.8) D5y, (@) =1, 534,(@) =0 or (i)sy,(q) =1, 55,(q) =0.
(Cf. [D’A-Z 3] for the point (1.7).)

Proof. As remarked by A. D’Agnolo in [D’A-Z 3], we must have an inclusion
M N V=IA C AN /=TAy or A; N4/—1A; D Ay N 4/=1A,. Assume we have
the first inclusion. Let (z,¢),z = x + /=1y, ¢ = & 4+ +/—1n be coordinates in
e =T,T*X,and let/; = {¢ = 0}. According to [T], the problem is reduced to find
a C-Lagrangian plane [y C e,y D v:

e =1y @1, lp N A; = v¥(the real line spanned by HR(aR))
sé/lo =01 = 1,2incase_(1.7) ) .
ity = L Say i, = 00185 0 = 1,5, = 0in case (1.8)

To this end we set . = (A; N v/—1A;) + v, and replace e by ¢’ = u*/u. This is the
same as assuming L/, is non-degenerate from the beginning. We then reason as in
[S] and reduce the above problem in C x C with A; = {(x; v/=1n)}, A2 = {(0; ¢)} if
AN/ =TAy # O(resp. Ay = {(x; ex++/—1n)} withe % 0if A;N/—1A; = 0). (Note
that the case listed as (a) in [S] cannot happen due to the I-regularity of A; N A5.)
In case A, = {(0; ¢)} one takes Iy = {(s¢;¢)}, s € RY (resp. s € R™) and gets
Sy, = 0 (resp. 1) with s, /=0 for both choices of s. This gives (1.7) (resp. (1.8)
(ii) ) in this case.
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In the other case one remarks that if - denotes the conjugation in A; + +/—1A;,
then (z; £)* = (Z; —¢), (z; €2+ &)™ = (Z; —¢ + €Z). Thusif Iy = {(s¢; ¢)}, and
ifu=(s¢; ) €lp, then

Ly/ip(u,u) = 25(* +n?)
Lyt (u,u) = (25 — 2es?)(E + ).

(For the second we just putu = (s¢; es¢ + (1 —es)¢).) If one takes s € RT, |s| « 1,
one gets (1.7). As for (1.8) distinguish these cases:

(i) When € > O one takes s € R*, |s| > 1 and gets s, ,, = 0,5, ,, = 1.
(i) When € < 0, one takes s € R™, |s| > 1, and gets s, ,,, = 1,55, = 0.

Q.E.D.

Let x be a germ of contact transformation between a neighborhood of p and a

neighborhood of g: def. x (p) which interchanges A; to A}, put d;(p) = dx, /2, (P),
di(q") = dx;/,\o(q’), and similarly define c;(p") = ci, (P, ¢i(@') = cl;/;vo(q’).
We recall that when ¢;(p’) and c;(q’) are constant for p’ and g’ close to p and g
respectively, then d; (p") — d/(q’) is also constant. Thus if x satisfies (1.6) and (1.7),
then
di(p) —di(¢g)=di(p)—1Vi=1,2 (q' = x(p).

(The above equality also holds fori = 1 (resp. i = 2), when y satisfies (1.6) and (1.8)
(i) (resp. (1.8) (ii)). We now assume that AT, A'{ are R-Lagrangian manifolds with

boundary ¥ in a neighborhood of p which intersect along £, and put A = A} UAJ;
we call A a dihedral Lagrangian manifold. We extend A;" to A;, defined from both

sides of ¥, and set AT = (A; \ A7) US, A = A¥\ X

THEOREM 1.2. Let A = AT U A;’. Assume that c;(p’) = constVp' € A;, and
that

(1.9 A1 N Ajis [-regular, clean, of codim 1 in A;.

(i) Then we may find a contact transformation x between neighborhoods of p and
q = x(p) such that

(1.10) X(A) =Ty X whereY isa C'-hypersurface.

MoreoverY is the union of two half-hypersurfaces M {* U MQL with the M;’s satisfying
(1.7) or (1.8).

(ii) Let F be a simple sheaf with shift %cl in zo\f“ which satisfies SS(F) C A. By
quantizing x with a kernel K, we get
Zyld\(p) — 11 for (1.7) or (1.8) (i)

1.11 @ ~
o < [Zyldl(p)—Z] for (1.8) Gii).
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Proof. For x satisfying (1.7), we put R = 71r(T,{‘,I XNTy X), TA*,'.X"' = X1(A?),
M = n(Ty X)*, q' = x1(p'); we also denote by Ty, X~ and M;" the other compo-
nents of Tpy X \ (T, X N TM2X ) and M; \ R respectively. For yx, satisfying (1.8) we
shall use similar notations R, T* Xt M *, g - ... Werecall that 53, @) — s;l‘ @) is
constant for ¢’ € Ty; X near q, and that

(1.12) Smy ~ Sg, #Su, — Sy

Clearly either M;" U M3 or M U M (resp. Mj U My or M U M) is a C'-
hypersurface Y (resp. ¥). But by (1.12), Zy is transformed, by a quantization of
X200 X1 , to a complex whose shifts are different in the two components of T X\
(T* Xn T* X) Thus by [K-S 1, Prop. 6.2.1], in the extension stated in [D’ A-Z 1],

we have X2 0 Xi I(TY X) # T}’,*X In conclusion x = x; or x = yx satisfies (i).

As for (ii), if &g, (resp. Pg,) is a quantization of x; (resp. x2), then either
SS(®k, (F)) = Ty X or SS (Pk,(F)) = T;X. A direct computation of shifts then
gives (1.11). Q.E.D.

Remark 1.3. Given AT, Af, A; with AT N A} smooth I-regular of codim 1
in Af, it is easy to see that in order to transform both A} U AJ and AT U A (by
different x) to Ty X with Y € C!, the cleaness of A; N A; is necessary.

Remark 1.4.  'When the intersection Ty, X N Ty, X (M; hypersurfaces) is clean of
codimension 1, then one easily checks that the order of contact of M; and M, along
R = Jf(TA*}lX N TA*,ZX) is exactly 2. In fact if for real coordinates t = (¢4, 15, t'),
onewrites M\ = {t{ =0, R={ti =6, =0}, M, = {t; = h(tr)} (h = O(t ),
p = (0;dry), one gets Ay, = {u; ty,02h ua,...): uy = 0}. Then Ay, N Ay, C
T(R xu, Ty, X) means 92h 3 0. Thus R = M; N M, and if one denotes by X;,
i = 1,2, the closed half-spaces with boundary M; and interior conormal g, one has
T D X or £; C Z,. Notice that in passing from (1.7), to (1.8) the inclusions are
reverted; thus in (1.7), £; D X; (resp. ¥; C X,) corresponds to (ii) (resp. (i)) of
(1.8). We also mention that the inclusion X; D ¥, or X; C X5 in (1.7), is related to
an intrinsic notion of “positivity” A; > A or A; < A, defined in [D’A-Z 4].

Remark 1.5. Let Ay = Tj;X, A, = T¢X where S, M are C2-submanifolds of
X with S C M; then the intersection A; N A is always clean. We also assume
=1 p & TgX (ie. S xy Ty X regular) and codimy S = 1. Then the orientation
of S in M, which determines the positive and negative components Q* of M \ §
and A1 of A; \ (A1 N Ay), determines also, via the Hamiltonian isomorphism, the
components A2 of Az \ (A; N Ajy). (Note that in our general notations the sign £
in A has no geometric meaning.) Then if A = AT U AJ (resp. A = A+ U A7) the
complex F which satisfies SS(F) C A and Wthh is simple with shift 5 codim M
along M is Zg+ (resp. Zg+). For these complexes Th. 1.2 applies.
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Section 2

Let M, i =1,2be C2-hypersurfaces of X ~ C" with boundary R which verify
TM\|g = TM;|g,andlet p € R X M; TA’;'_X, w(p) = 2.

LEMMA 2.1. LetY = Mj" U M\ be a C'-hypersurface, denote by ¥ the closed
half-space with boundary Y and interior conormal p, and assume

2.1 s1,(p) = sx(p) + 1.
Then
(2.2) HyL(Ox) o, =0.

Proof. Because of (2.1), R must be “generic”; i.e., in our case, dim(T€R) =

n —2. We take complex coordinates z = x ++/—1y, z = (21, 22, Z') such that z, = 0
and

sT+1 sT+st+1
M, {z: -y =y + Zy? - Z ¥+ o(~)zl,
i=3 i=s—+2
R = (z€ My y, =¢(Z,7) + 0()},
where ¢ is real valued, = O(|z’|)? and where - denotes all arguments but y;
(resp. y1, y2) in the first (resp. second) line. We also suppose that p = —dy; and

M;k = {z € My: £y, > ¢+0(-)?). Fixzz = - - - = O and in the (z;, z2)—plane define
the sets

—12
I = [}’1=€, —5<}’25t}U{)’2=t,T<)’156}
t
J = {—8<y2<t,e—§(y2+8)<y1<e},

with § = nt, € = %2,y small, t — 0. Set By = {|(x1, %2)| < ct}, W = X \ Z; then
WNC? D B, x I for any large c. By [K, Th. 5] the restriction

21,22

Ox(Bg x J) = Ox(Ba x Dlpg xans),

is surjective. In particular (Oyx),, — l_ir_)nOX (BNW). Q.E.D.
B>z,

PROPOSITION 2.2.  (Cf.[Z 4].) Let W be a dihedron of C" with C'-boundaryY =
M{UM, each “face” M;" a C*-manifoldwith boundary R = M;" (M. Letz, € Y,
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denote by p, the exterior conormal to W at z,, and set S~ = sup sy, (p') fori =
1,2 and for p' € (M;" xx T;; X) N B (B a neighborhood of p,). Then

(2.3) @Hf(wnB,ox)=o IR

B>z,

Proof. We choose coordinates such that z, = 0, p, = (1,0, ...). We can then
describe Y (resp. W) as a graph x; = g(-) (resp. as a subgraph x; < g(-)) with
g(-) = o(-) where “.” denotes all arguments but x;. We put

¢ = —log(g — x1) + clz|?,

and denote by 54 (2) the number of negative eigenvalues of the Levi-form 53¢ (2).

Let § = {z = z* + Rp,| z* € R}, and let V?’i be the components of W \ S. Clearly
g, ¢ € CEH(W\ S)NCY(W) and for z = z* + rp, € W; we have

339 (2)' (W, w)=(g—x1)> (3(g—x1)-wd (g—x1)- W) —(g—x1) "' 9dg (") (W, w)+clw|*.

Thus if the projection w’ of w on TCM satisfies —ddg(z*)'w'w’ > 0 and if c is large
enough, then for suitable ¢/,

309 (2) (W, w) > c'|w|%.
It follows that
24) 5@ = sy () Vze W,
We make now a C°-change of holomorphic derivatives 9,, such that

TES = Span{d,,,...,d,,} VzeS.

We also write 3’ instead of 5z, ey 52,,_'. By noticing that W is foliated by the (C!)
level surfaces Y, = {g — x; = r} r € R*, one concludes that for ¢; = lw,
0¢1ls = I¢als,

which implies
3'3¢y|s = 3'3¢ls.
The argument which leads to (2.4) implies sT@¢) = s~ (@ a/¢ilcg‘;ﬂ _|) and

st@9'¢) =n—1—s" (5’_ d'¢:); in_particular, 8'd'¢; is non-degenerate. It fol-
lows that we can diagonalize 09¢,; (or d9¢»,) by a change of holomorphic derivatives
preserving Span{d’'}. Thus in a suitable basis of the d,,’s,

53¢’1|W.» 53¢2|W2 are diagonal.
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Thus from (2.4) (possibly by a permutation of the 3,,’s) we get
@.5) > 8,0, 0@iw; — Y ,0,6@wi = c@)w"?

ij<n i<S-

(w” = (Wp—s-+1, - - ., Wy)). Once (2.5) is established, we can adapt the calculus of
L2-norms with weight e~¢ by [H, Ch. 4-5], and get the conclusion (cf. [Z 4 Th. 2.2
and Remark 2.4]). Q.E.D.

Remark 2.3. Let W be a dihedron with transversal faces M;", M;, and suppose
TW is non-convex. In this case, if we define S™ = sup(Supy oSy, » SUPN (w)oe Sy, »
SUpy wyaSg + 1), where N(W)° is the exterior conormal cone to W, then (2.3) still
holds true for this new S~. In factif we set S; = {z € W;z —z* € R xu, Ty X},
then ¢ = —logé +c|z|* is C' on W and C? on W;. Moreover s; < S~ by the same
argument as in Proposition 2.2. Thus [Z 4] still applies.

Let A,?L, i = 1, 2 be R-Lagrangian submanifolds of 7*X with boundary X which
intersect along X, let A = AT U AJ, and let ¢; = c;,,. Recall the bifunctor
whom(., ) from [K-S 1].

THEOREM 2.4. Let ¢; = const in A; and suppose Ay N A, is regular (for )

clean of codim 1 in A;. Let F be simple with shift %cl in IO\T and satisfy SS(F) C A.
Then

(2.6) H/ hom(F, Ox), =0 Vj ¢ [di(p), sup di(p")] with p' € A} N~ (B).
i,p'

Proof. Let x be the contact transformation between neighborhoods of p and ¢
defined in Theorem 1.2. We have x(A) = Ty X where Y = M{" UM isa C'-
hypersurface with the M/s satisfying (1.7) or (1.8). By quantization we transform

~ [Zyldy — 11 in(1.7) and in (1.8) (i)
() — {Zy[dl —2] in(1.8) Gi).
If X is the closed half-space with boundary Y and interior conormal g, then
whom(F, Ox) >~ RI's(Ox)[—d, + 1] (or [—d; + 2]).

Now H/RT'5(Ox)[+1] =0Vj < 0 and even ¥j < 0 in (1.8) (due to Lemma 2.1).
Thus we get 0in (2.6) Vj < d;(p). As for the vanishing for large j, we remark that
forq’ = x(p'),

su,(q) = di(p') — di(p) (resp. = di(p') — di(p) + 1)

if Sy, (q) = 0 (resp. S, (@) = 1). The conclusion then follows from Proposition 2.2.
Q.E.D.
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For A C X locally closed, we put 4 (F) def. phom(Z,, F).

COROLLARY 2.5. (Cf.[D’A-Z3].) Let S C M be (C?)-submanifolds of X with
codimy S = 1, /—1p ¢ T¢X, let Q (2) be an open (closed) component of M \ S,
and put Ay = T, X, Ay = T X. Then

Hipo(Ox), = 0 Vj ¢ [di(p), sup, di(p) V (sup, dy(p') — )]
(p' € Af nnl(B))

Q@7) Hug(Ox), = 0 Vj ¢ [da(p), sup; , d:(p)] (P € A N~ (B)).
PROPOSITION 2.6. (Cf. [Z].) Let W C X =~ C" be a dihedron with transversal

faces M, MY and with generic “edge” R = M{ N MY in a neighborhood of
2o € OW. Denote by N(W)°® the exterior conormal cone to W and put

_ infpen,, (wye sz (P) if TW is convex
infyen, (wye sSg(p") + 1 if TW is non-convex

Then if B ranges through a fundamental system of neighborhoods of z,, we have

(2.8) l_ignHj(WnB,Ox)=0 Vj<sT,

B>z,

(and lim H%B, Ox) —» ll_n)‘l HOY(W N B, Oy) is surjective if s~ > 1).

Proof. Assume first TW is convex. Let p;, p, be the unitary conormals to
M;, M, at z, exterior to W; one has uw (Ox) —> Mot (Ox)[+1]atp;i = 1,2,and

uw (Ox) — ur(Ox)[2] atp € Nza(W)"”/R*, P # pi, p2. From the distinguished
triangle in D?(X),

(Ox)w — RTw(Ox) = Ra.uw(Ox),

one concludes that (2.8) is O for j < s7, j # 0, and that (Ox)y — RI'w(Ox) is
surjective when s~ > 1.

Now let TW be non-convex. In this case one has uy (Ox) ~ Mt (Ox)[1] at
pi»i = 1,2, and uw(Ox) =~ ur(Ox)[+1] at p € N, (W)** /R, p # py, p2. By
Corollary 2.5 we get the conclusion in the same way as in the preceding case. Q.E.D.
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