MICROLOCALIZATION OF \mathcal{O}_{X} ALONG DIHEDRAL LAGRANGIANS

GIUSEPPE ZAMPIERI

1. Introduction

Let X be a complex manifold, $T^{*} X \xrightarrow{\pi} X$ the cotangent bundle to $X, \sigma=\sigma^{\mathbb{R}}+$ $\sqrt{-1} \sigma^{\mathbb{I}}$ the canonical 2-form on $\dot{T}^{*} X, \Lambda_{1}, \Lambda_{2}$ two \mathbb{R}-Lagrangian conic submanifolds of $\dot{T}^{*} X$. We assume that the intersection $\Lambda_{1} \cap \Lambda_{2}$ is regular in a neighborhood of a point p, and that the tangent planes $\lambda_{i}(p): \stackrel{\text { def. }}{=} T_{p} \Lambda_{i}$ verify $\operatorname{codim}_{\lambda_{1}(p)}\left(\lambda_{1}(p) \cap \lambda_{2}(p)\right)=1$. According to [D'A-Z 3] (which improves [S]), one can then find a complex symplectic transformation χ_{1} which interchanges Λ_{1}, Λ_{2} with the conormal bundles $T_{M_{1}}^{*} X, T_{M_{2}}^{*} X$ to two hypersurfaces $M_{1}, M_{2} \subset X$ whose Levi-forms are positive-semidefinite at $q=\chi_{1}(p)$.

We prove here in Proposition 1.1 that we can find another symplectic transformation χ_{2} such that the Levi-form of one hypersurface is positive-semidefinite, whereas the other has one negative eigenvalue. The choice of the hypersurface which carries the negative eigenvalue is not arbitrary; it relies on intrinsic geometric properties of the pair Λ_{1}, Λ_{2}. In case the intersection $\Lambda_{1} \cap \Lambda_{2}$ is "clean" of codimension 1, the two cases occur according to the "positivity" $\Lambda_{1}>\Lambda_{2}$ (resp. $\Lambda_{2}>\Lambda_{1}$) in the sense of [D'A-Z 4]. In the first transformation χ_{1} this is characterized by the inclusion $\Sigma_{1} \supset \Sigma_{2}\left(\right.$ resp. $\left.\Sigma_{1} \subset \Sigma_{2}\right)$ (where Σ_{i} are the closed half-spaces with boundary M_{i} and inward conormal q. (In the second transformation χ_{2} the inclusions are reverted.)

We put $\lambda_{0}(p)=T_{p} \pi^{-1} \pi(p)$, assume that $\operatorname{dim}\left(\lambda_{i}(p) \cap \lambda_{0}(p)\right) \equiv$ const, and still suppose the intersection $\Lambda_{1} \cap \Lambda_{2}$ regular and clean. We denote by $\Lambda_{1}^{+}\left(\operatorname{resp} \Lambda_{2}^{+}\right)$one half-part of Λ_{1} (resp. Λ_{2}) with boundary $\Lambda_{1} \cap \Lambda_{2}$, and set $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$. In Theorem 1.2 we prove that Λ can be reduced to the conormal bundle $T_{Y}^{*} X$ to a C^{1}-manifold Y of X by one and only one of the tranformations χ_{1}, χ_{2}. This can be proved by a direct analysis of the shift of simple sheaves along the Λ_{i} 's under the action of quantizations of the χ_{i} 's.

We finally discuss the complex of microfunctions along Λ in the sense of [K-S 1], and show that its non-trivial cohomology ranges through an interval described by the numbers of negative Levi eigenvalues of the Λ_{i}^{+}'s. By these results we are able to state a strong improvement of our former theorem in [Z 2] on existence for $\bar{\partial}$ on dihedrons of \mathbb{C}^{n}.

Section 1

Let X be a complex manifold of dimension $n, \pi: T^{*} X \rightarrow X$ the cotangent bundle to $X, \alpha=\alpha^{\mathbb{R}}+\sqrt{-1} \alpha^{\mathbb{I}} \quad\left(\sigma=\sigma^{\mathbb{R}}+\sqrt{-1} \sigma^{\mathbb{I}}\right)$ the 1-form (2-form). We identify $T^{*}\left(X^{\mathbb{R}}\right) \simeq\left(T^{*} X\right)^{\mathbb{R}}$ with the aid of $\alpha^{\mathbb{R}}$. We let $H: T^{*} T^{*} X \xrightarrow{\sim} T T^{*} X$, (resp. $H^{\mathbb{R}}: T^{*} T^{*} X^{\mathbb{R}} \xrightarrow{\sim} T T^{*} X^{\mathbb{R}}$) be the Hamiltonian isomorphism associated to σ (resp. $\sigma^{\mathbb{R}}$). We take an \mathbb{R}-Lagrangian (i.e., Lagrangian for $\sigma^{\mathbb{R}}$) conic submanifold Λ in a neighborhood of a point $\left.p \in \dot{T}^{*} X \stackrel{\text { def. }}{=} T^{*} X \backslash T_{X}^{*} X\right)$, and put

$$
\begin{gather*}
e(p)=T_{p} T^{*} X \quad v(p)=\mathbb{C} H(\alpha(p)) \quad \lambda(p)=T_{p} \Lambda \quad \lambda_{0}(p)=T_{p} \pi^{-1} \pi(p) \tag{1.1}\\
\mu(p)=\lambda(p) \cap \sqrt{-1} \lambda(p) \quad c_{\lambda / \lambda_{0}}(p)=\operatorname{dim}_{\mathbb{R}}\left(\lambda(p) \cap \lambda_{0}(p)\right) \\
\delta_{\lambda}(p)=\operatorname{dim}_{\mathbb{C}}(\mu(p)) \quad \gamma_{\lambda / \lambda_{0}}(p)=\operatorname{dim}_{\mathbb{C}}\left(\lambda(p) \cap \sqrt{-1} \lambda(p) \cap \lambda_{0}(p)\right)
\end{gather*}
$$

We often drop p in the above notations. We define

$$
\begin{equation*}
L_{\lambda / \lambda_{0}}=\left.\sigma\left(u, v^{c}\right)\right|_{u, v \in \lambda_{0}^{\mu}} \tag{1.2}
\end{equation*}
$$

(where $\lambda_{0}^{\mu}=\left(\left(\lambda_{0} \cap \mu^{\perp}\right)+\mu\right) / \mu$ with ${ }^{\perp}$ denoting the symplectic orthogonal). Its kernel being $\left(\lambda \cap \lambda_{0} / \mu \cap \lambda_{0}\right)^{\mathbb{C}}$, one gets

$$
\begin{equation*}
\operatorname{rank}\left(L_{\lambda / \lambda_{0}}\right)=n-c_{\lambda / \lambda_{0}}-\delta_{\lambda}+2 \gamma_{\lambda / \lambda_{0}} \tag{1.3}
\end{equation*}
$$

One also has

$$
\begin{equation*}
\operatorname{sgn}\left(L_{\lambda / \lambda_{0}}\right)=\frac{1}{2} \tau\left(\lambda, \sqrt{-1} \lambda, \lambda_{0}\right) \tag{1.4}
\end{equation*}
$$

where τ is the inertia index in the sense of [K-S 1]. We shall denote by $s_{\lambda / \lambda_{0}}^{ \pm}$the numbers of respectively positive and negative eigenvalues for $L_{\lambda / \lambda_{0}}$. Now let M be a C^{2}-submanifold of $X^{\mathbb{R}}, T_{M}^{*} X$ the conormal bundle to M in X, p a point of $\dot{T}_{M}^{*} X, z_{o}$ the projection $\pi(p)$. If ϕ is a C^{2}-function at z_{o} with $\left.\phi\right|_{M} \equiv 0$ and $\mathrm{d} \phi\left(z_{o}\right)=p$, then for $\lambda_{M}=T T_{M}^{*} X$, one gets

$$
\begin{equation*}
\left.L_{\lambda_{M} / \lambda_{0}} \sim \partial \bar{\partial} \phi\right|_{T^{\mathbb{C}} M} \quad\left(T^{\mathbb{C}} M=T M \cap \sqrt{-1} T M\right) \tag{1.5}
\end{equation*}
$$

where " \sim " means equivalence in signature and rank (cf. [S] and also [D'A-Z 2] as for $\operatorname{codim} M>1$). We shall write $s_{M}^{ \pm}$instead of $s_{\lambda_{M} / \lambda_{0}}^{ \pm}$, and similarly set $c_{M}=c_{\lambda_{M} / \lambda_{0}}$, $\gamma_{M}=\gamma_{\lambda_{M} / \lambda_{0}}, L_{M}=L_{\lambda_{M} / \lambda_{0}}$, and so on. Let

$$
d_{\lambda / \lambda_{0}}=\frac{1}{2}\left[c_{\lambda / \lambda_{0}}+n-\delta_{\lambda}-\operatorname{sgn}\left(L_{\lambda / \lambda_{0}}\right)\right]
$$

By (1.3) one has $d_{\lambda / \lambda_{0}}=c_{\lambda / \lambda_{0}}+s_{\lambda / \lambda_{0}}^{-}-\gamma_{\lambda / \lambda_{0}}\left(=n-\delta_{\lambda}+\gamma_{\lambda / \lambda_{0}}-s_{\lambda / \lambda_{0}}^{+}\right)$. Let $D^{b}(X)$ denote the derived category of the category of bounded complexes of sheaves and $D^{b}(X ; p), p \in \dot{T}^{*} X$, denote the localization of $D^{b}(X)$ by the null-system
$\{\mathcal{F} ; \operatorname{SS}(\mathcal{F}) \not \supset p\}$ (cf. [K-S 1] for the definition of the microsupport SS). Let χ be a germ of a contact transformation between neighborhoods of p and $q=\chi(p)$ and let ϕ_{K} be a quantization of χ by a kernel K (i.e., a simple sheaf with shift n on Λ_{χ}^{a} the antipodal to the graph of χ). Assume that χ transforms Λ to Λ^{\prime}. According to [K-S 1], if \mathcal{F} is simple along Λ with shift b at p, then $\Phi_{K}(\mathcal{F})$ is simple along Λ^{\prime} with shift $b-\frac{1}{2}\left(\operatorname{sgn} L_{\lambda / \lambda_{0}}(p)-\operatorname{sgn} L_{\lambda^{\prime} / \lambda_{0}}(q)\right)=b+\left(d_{\lambda / \lambda_{0}}(p)-d_{\lambda^{\prime} / \lambda_{0}}(q)\right)-$ $\frac{1}{2}\left(c_{\lambda / \lambda_{0}}(p)-c_{\lambda^{\prime} \cap \lambda_{0}}(q)\right)$ at q.

Proposition 1.1. Let Λ_{1} and Λ_{2} be \mathbb{R}-Lagrangian conic submanifolds of $\dot{T}^{*} X$ in a neighborhood of p. We assume that $\Lambda_{1} \cap \Lambda_{2}$ is \mathbb{I}-regular (i.e., regular for $\sigma^{\mathbb{I}}$) and that

$$
\operatorname{codim}_{\lambda_{1}(p)}\left(\lambda_{1}(p) \cap \lambda_{2}(p)\right)=1
$$

We may then find two contact transformations χ, from neighborhoods of p and q, such that

$$
\begin{equation*}
\chi\left(\Lambda_{i}\right)=T_{M_{i}}^{*} X, \quad \operatorname{codim} M_{i}=1, i=1,2 \tag{1.6}
\end{equation*}
$$

and with one satisfying

$$
\begin{equation*}
s_{M_{i}}^{-}(q)=0, i=1,2 \tag{1.7}
\end{equation*}
$$

and the other satisfying

$$
\begin{equation*}
\text { (i) } s_{M_{2}}^{-}(q)=1, s_{M_{1}}^{-}(q)=0 \quad \text { or } \quad \text { (ii) } s_{M_{1}}^{-}(q)=1, s_{M_{2}}^{-}(q)=0 \tag{1.8}
\end{equation*}
$$

(Cf. [D'A-Z 3] for the point (1.7).)
Proof. As remarked by A. D'Agnolo in [D'A-Z 3], we must have an inclusion $\lambda_{1} \cap \sqrt{-1} \lambda_{1} \subset \lambda_{2} \cap \sqrt{-1} \lambda_{2}$ or $\lambda_{1} \cap \sqrt{-1} \lambda_{1} \supset \lambda_{2} \cap \sqrt{-1} \lambda_{2}$. Assume we have the first inclusion. Let $(z, \zeta), z=x+\sqrt{-1} y, \zeta=\xi+\sqrt{-1} \eta$ be coordinates in $e=T_{p} T^{*} X$, and let $l_{1}=\{\zeta=0\}$. According to [T], the problem is reduced to find a \mathbb{C}-Lagrangian plane $l_{0} \subset e, l_{0} \supset v$:

$$
\left\{\begin{array}{l}
e=l_{0} \oplus l_{1}, l_{0} \cap \lambda_{i}=v^{\mathbb{R}}\left(\text { the real line spanned by } H^{\mathbb{R}}\left(\alpha^{\mathbb{R}}\right)\right) \\
s_{\lambda_{i} / l_{0}}^{-}=0 i=1,2 \text { in case }(1.7) \\
s_{\lambda_{2} / l_{0}}^{-}=1, s_{\lambda_{1} / l_{0}}^{-}=0 \text { or } s_{\lambda_{1} / l_{0}}^{-}=1, s_{\lambda_{2} / l_{0}}^{-}=0 \text { in case }(1.8)
\end{array}\right.
$$

To this end we set $\mu=\left(\lambda_{1} \cap \sqrt{-1} \lambda_{1}\right)+\nu$, and replace e by $e^{\prime}=\mu^{\perp} / \mu$. This is the same as assuming $L_{\lambda_{1} / l_{0}}$ is non-degenerate from the beginning. We then reason as in [S] and reduce the above problem in $\mathbb{C} \times \mathbb{C}$ with $\lambda_{1}=\{(x ; \sqrt{-1} \eta)\}, \lambda_{2}=\{(0 ; \zeta)\}$ if $\lambda_{2} \cap \sqrt{-1} \lambda_{2} \neq 0$ (resp. $\lambda_{2}=\{(x ; \epsilon x+\sqrt{-1} \eta)\}$ with $\epsilon \neq 0$ if $\lambda_{2} \cap \sqrt{-1} \lambda_{2}=0$). (Note that the case listed as (a) in [S] cannot happen due to the \mathbb{I}-regularity of $\Lambda_{1} \cap \Lambda_{2}$.) In case $\lambda_{2}=\{(0 ; \zeta)\}$ one takes $l_{0}=\{(s \zeta ; \zeta)\}, s \in \mathbb{R}^{+}$(resp. $s \in \mathbb{R}^{-}$) and gets $s_{\lambda_{1} / l_{0}}^{-}=0$ (resp. 1) with $s_{\lambda_{2} / l_{0}}^{-}=0$ for both choices of s. This gives (1.7) (resp. (1.8) (ii)) in this case.

In the other case one remarks that if.${ }^{\lambda_{i}}$ denotes the conjugation in $\lambda_{i}+\sqrt{-1} \lambda_{i}$, then $(z ; \zeta)^{c_{\lambda_{1}}}=(\bar{z} ;-\bar{\zeta}),(z ; \epsilon z+\zeta)^{c_{\lambda_{2}}}=(\bar{z} ;-\bar{\zeta}+\epsilon \bar{z})$. Thus if $l_{0}=\{(s \zeta ; \zeta)\}$, and if $u=(s \zeta ; \zeta) \in l_{0}$, then

$$
\begin{aligned}
& L_{\lambda_{1} / l_{0}}(u, u)=2 s\left(\xi^{2}+\eta^{2}\right) \\
& L_{\lambda_{2} / l_{0}}(u, u)=\left(2 s-2 \epsilon s^{2}\right)\left(\xi^{2}+\eta^{2}\right)
\end{aligned}
$$

(For the second we just put $u=(s \zeta ; \epsilon s \zeta+(1-\epsilon s) \zeta)$.) If one takes $s \in \mathbb{R}^{+},|s| \ll 1$, one gets (1.7). As for (1.8) distinguish these cases:
(i) When $\epsilon>0$ one takes $s \in \mathbb{R}^{+},|s| \gg 1$ and gets $s_{\lambda_{1} / l_{0}}^{-}=0, s_{\lambda_{2} / l_{0}}^{-}=1$.
(ii) When $\epsilon<0$, one takes $s \in \mathbb{R}^{-},|s| \gg 1$, and gets $s_{\lambda_{1} / l_{0}}^{-}=1, s_{\lambda_{2} / l_{0}}^{-}=0$.
Q.E.D.

Let χ be a germ of contact transformation between a neighborhood of p and a neighborhood of $q: \stackrel{\text { def. }}{=} \chi(p)$ which interchanges Λ_{i} to Λ_{i}^{\prime}, put $d_{i}\left(p^{\prime}\right)=d_{\lambda_{i} / \lambda_{0}}\left(p^{\prime}\right)$, $d_{i}^{\prime}\left(q^{\prime}\right)=d_{\lambda_{i}^{\prime} / \lambda_{0}}\left(q^{\prime}\right)$, and similarly define $c_{i}\left(p^{\prime}\right)=c_{\lambda_{i} / \lambda_{0}}\left(p^{\prime}\right), c_{i}^{\prime}\left(q^{\prime}\right)=c_{\lambda_{i}^{\prime} \lambda_{0}}\left(q^{\prime}\right)$. We recall that when $c_{i}\left(p^{\prime}\right)$ and $c_{i}^{\prime}\left(q^{\prime}\right)$ are constant for p^{\prime} and q^{\prime} close to p and q respectively, then $d_{i}\left(p^{\prime}\right)-d_{i}^{\prime}\left(q^{\prime}\right)$ is also constant. Thus if χ satisfies (1.6) and (1.7), then

$$
d_{i}\left(p^{\prime}\right)-d_{i}^{\prime}\left(q^{\prime}\right) \equiv d_{i}(p)-1 \forall i=1,2 \quad\left(q^{\prime}=\chi\left(p^{\prime}\right)\right)
$$

(The above equality also holds for $i=1$ (resp. $i=2$), when χ satisfies (1.6) and (1.8) (i) (resp. (1.8) (ii)). We now assume that $\Lambda_{1}^{+}, \Lambda_{2}^{+}$are \mathbb{R}-Lagrangian manifolds with boundary Σ in a neighborhood of p which intersect along Σ, and put $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$; we call Λ a dihedral Lagrangian manifold. We extend Λ_{i}^{+}to Λ_{i}, defined from both sides of Σ, and set $\Lambda_{i}^{-}=\left(\Lambda_{i} \backslash \Lambda_{i}^{+}\right) \cup \Sigma, \stackrel{\circ}{\Lambda}_{i}^{ \pm}=\Lambda_{i}^{ \pm} \backslash \Sigma$.

ThEOREM 1.2. Let $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$. Assume that $c_{i}\left(p^{\prime}\right) \equiv$ const $\forall p^{\prime} \in \Lambda_{i}$, and that

$$
\begin{equation*}
\Lambda_{1} \cap \Lambda_{2} \text { is } \mathbb{I} \text {-regular, clean, of codim } 1 \text { in } \Lambda_{i} \tag{1.9}
\end{equation*}
$$

(i) Then we may find a contact transformation χ between neighborhoods of p and $q=\chi(p)$ such that

$$
\begin{equation*}
\chi(\Lambda)=T_{Y}^{*} X \quad \text { where } Y \text { is a } C^{1} \text {-hypersurface. } \tag{1.10}
\end{equation*}
$$

Moreover Y is the union of two half-hypersurfaces $M_{1}^{+} \cup M_{2}^{+}$with the M_{i} 's satisfying (1.7) or (1.8).
(ii) Let \mathcal{F} be a simple sheaf with shift $\frac{1}{2} c_{1}$ in \AA_{1}^{+}which satisfies $\operatorname{SS}(\mathcal{F}) \subset \Lambda$. By quantizing χ with a kernel K, we get

$$
\Phi_{K}(\mathcal{F}) \simeq \begin{cases}\mathbb{Z}_{Y}\left[d_{1}(p)-1\right] & \text { for }(1.7) \text { or }(1.8)(i) \tag{1.11}\\ \mathbb{Z}_{Y}\left[d_{1}(p)-2\right] & \text { for }(1.8)(i i)\end{cases}
$$

Proof. For χ_{1} satisfying (1.7), we put $R=\pi\left(T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X\right), T_{M_{i}}^{*} X^{+}=\chi_{1}\left(\Lambda_{i}^{+}\right)$, $M_{i}^{+}=\pi\left(T_{M_{i}}^{*} X\right)^{+}, q^{\prime}=\chi_{1}\left(p^{\prime}\right)$; we also denote by $T_{M_{i}}^{*} X^{-}$and M_{i}^{-}the other components of $T_{M_{i}}^{*} X \backslash\left(T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X\right)$ and $M_{i} \backslash R$ respectively. For χ_{2} satisfying (1.8) we shall use similar notations $\tilde{R}, T_{\tilde{M}_{i}}^{*} X^{ \pm}, \tilde{M}_{i}^{ \pm}, \tilde{q} \ldots$. We recall that $s_{M_{i}}^{-}\left(q^{\prime}\right)-s_{\tilde{M}_{i}}^{-}\left(\tilde{q}^{\prime}\right)$ is constant for $q^{\prime} \in T_{M_{i}}^{*} X$ near q, and that

$$
\begin{equation*}
s_{M_{1}}^{-}-s_{\tilde{M}_{1}} \neq s_{\bar{M}_{2}}^{-}-s_{\tilde{M}_{2}} . \tag{1.12}
\end{equation*}
$$

Clearly either $M_{1}^{+} \cup M_{2}^{+}$or $M_{1}^{+} \cup M_{2}^{-}\left(\right.$resp. $\tilde{M}_{1}^{+} \cup \tilde{M}_{2}^{+}$or $\left.\tilde{M}_{1}^{+} \cup \tilde{M}_{2}^{-}\right)$is a $C^{1}{ }^{-}$ hypersurface Y (resp. \tilde{Y}). But by (1.12), \mathbb{Z}_{Y} is transformed, by a quantization of $\chi_{2} \circ \chi_{1}^{-1}$, to a complex whose shifts are different in the two components of $T_{M_{i}}^{*} X^{+} \backslash$ ($T_{\tilde{M}_{1}}^{*} X \cap T_{\tilde{M}_{2}}^{*} X$). Thus by [K-S 1, Prop. 6.2.1], in the extension stated in [D'A-Z 1], we have $\chi_{2} \circ \chi_{1}^{-1}\left(T_{Y}^{*} X\right) \neq T_{\tilde{Y}}^{*} X$. In conclusion $\chi=\chi_{1}$ or $\chi=\chi_{2}$ satisfies (i).

As for (ii), if $\Phi_{K_{1}}$ (resp. $\Phi_{K_{2}}$) is a quantization of χ_{1} (resp. χ_{2}), then either $\operatorname{SS}\left(\Phi_{K_{1}}(\mathcal{F})\right)=T_{Y}^{*} X$ or $\operatorname{SS}\left(\Phi_{K_{2}}(\mathcal{F})\right)=T_{\tilde{Y}}^{*} X$. A direct computation of shifts then gives (1.11).
Q.E.D.

Remark 1.3. Given $\Lambda_{1}^{+}, \Lambda_{2}^{+}, \Lambda_{2}^{-}$with $\Lambda_{1}^{+} \cap \Lambda_{2}^{+}$smooth \mathbb{I}-regular of codim 1 in Λ_{i}^{+}, it is easy to see that in order to transform both $\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$and $\Lambda_{1}^{+} \cup \Lambda_{2}^{-}$(by different χ) to $T_{Y}^{*} X$ with $Y \in C^{1}$, the cleaness of $\Lambda_{1} \cap \Lambda_{2}$ is necessary.

Remark 1.4. When the intersection $T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X$ (M_{i} hypersurfaces) is clean of codimension 1, then one easily checks that the order of contact of M_{1} and M_{2} along $R=\pi\left(T_{M_{1}}^{*} X \cap T_{M_{2}}^{*} X\right)$ is exactly 2 . In fact if for real coordinates $t=\left(t_{1}, t_{2}, t^{\prime}\right)$, one writes $M_{1}=\left\{t_{1}=0\right\}, R=\left\{t_{1}=t_{2}=0\right\}, M_{2}=\left\{t_{1}=h\left(t_{2}\right)\right\}\left(h=O\left(t_{2}^{2}\right)\right)$, $p=\left(0 ; \mathrm{d} t_{1}\right)$, one gets $\left.\lambda_{M_{2}}=\left\{u ; t_{1}, \partial_{t_{2}}^{2} h u_{2}, \ldots\right): u_{1}=0\right\}$. Then $\lambda_{M_{1}} \cap \lambda_{M_{2}} \subset$ $T\left(R \times_{M_{2}} T_{M_{2}}^{*} X\right)$ means $\partial_{t_{2}}^{2} h \neq 0$. Thus $R=M_{1} \cap M_{2}$, and if one denotes by Σ_{i}, $i=1,2$, the closed half-spaces with boundary M_{i} and interior conormal q, one has $\Sigma_{1} \supset \Sigma_{2}$ or $\Sigma_{1} \subset \Sigma_{2}$. Notice that in passing from (1.7), to (1.8) the inclusions are reverted; thus in (1.7), $\Sigma_{1} \supset \Sigma_{2}$ (resp. $\Sigma_{1} \subset \Sigma_{2}$) corresponds to (ii) (resp. (i)) of (1.8). We also mention that the inclusion $\Sigma_{1} \supset \Sigma_{2}$ or $\Sigma_{1} \subset \Sigma_{2}$ in (1.7), is related to an intrinsic notion of "positivity" $\Lambda_{1}>\Lambda_{2}$ or $\Lambda_{1}<\Lambda_{2}$ defined in [D'A-Z 4].

Remark 1.5. Let $\Lambda_{1}=T_{M}^{*} X, \Lambda_{2}=T_{S}^{*} X$ where S, M are C^{2}-submanifolds of X with $S \subset M$; then the intersection $\Lambda_{1} \cap \Lambda_{2}$ is always clean. We also assume $\sqrt{-1} p \notin T_{S}^{*} X$ (i.e. $S \times_{M} T_{M}^{*} X$ regular) and $\operatorname{codim}_{M} S=1$. Then the orientation of S in M, which determines the positive and negative components $\Omega^{ \pm}$of $M \backslash S$ and $\Lambda_{1}^{ \pm}$of $\Lambda_{1} \backslash\left(\Lambda_{1} \cap \Lambda_{2}\right)$, determines also, via the Hamiltonian isomorphism, the components $\Lambda_{2}^{ \pm}$of $\Lambda_{2} \backslash\left(\Lambda_{1} \cap \Lambda_{2}\right)$. (Note that in our general notations the sign \pm in $\Lambda_{2}^{ \pm}$has no geometric meaning.) Then if $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$(resp. $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{-}$) the complex \mathcal{F} which satisfies $\operatorname{SS}(\mathcal{F}) \subset \Lambda$ and which is simple with shift $\frac{1}{2} \operatorname{codim} M$ along M is $\mathbb{Z}_{\bar{\Omega}^{+}}\left(\right.$resp. $\left.\mathbb{Z}_{\Omega^{+}}\right)$. For these complexes Th. 1.2 applies.

Section 2

Let $M_{i}^{+}, i=1,2$ be C^{2}-hypersurfaces of $X \simeq \mathbb{C}^{n}$ with boundary R which verify $\left.T M_{1}\right|_{R}=\left.T M_{2}\right|_{R}$, and let $p \in R \times_{M_{i}} T_{M_{i}}^{*} X, \pi(p)=z_{o}$.

LEMMA 2.1. Let $Y=M_{1}^{+} \cup M_{2}^{+}$be a C^{1}-hypersurface, denote by Σ the closed half-space with boundary Y and interior conormal p, and assume

$$
\begin{equation*}
s_{M_{2}}^{-}(p)=s_{R}^{-}(p)+1 \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{H}_{\Sigma}^{1}\left(\mathcal{O}_{X}\right)_{z_{o}}=0 \tag{2.2}
\end{equation*}
$$

Proof. Because of (2.1), R must be "generic"; i.e., in our case, $\operatorname{dim}\left(T^{\mathbb{C}} R\right)=$ $n-2$. We take complex coordinates $z=x+\sqrt{-1} y, z=\left(z_{1}, z_{2}, z^{\prime}\right)$ such that $z_{o}=0$ and

$$
\begin{aligned}
M_{2} & =\left\{z:-y_{1}=y_{2}^{2}+\sum_{i=3}^{s^{-}+1} y_{i}^{2}-\sum_{i=s^{-}+2}^{s^{-}+s^{+}+1} y_{i}^{2}+o(\cdot)^{2}\right\}, \\
R & =\left\{z \in M_{2}: y_{2}=\phi\left(z^{\prime}, z^{\prime}\right)+o(\cdot)^{2}\right\}
\end{aligned}
$$

where ϕ is real valued, $\phi=O\left(\left|z^{\prime}\right|\right)^{2}$ and where \cdot denotes all arguments but y_{1} (resp. y_{1}, y_{2}) in the first (resp. second) line. We also suppose that $p=-\mathrm{d} y_{1}$ and $M_{2}^{ \pm}=\left\{z \in M_{2}: \pm y_{2} \geq \phi+o(\cdot)^{2}\right\}$. Fix $z_{3}=\cdots=0$ and in the $\left(z_{1}, z_{2}\right)$-plane define the sets

$$
\begin{aligned}
& I=\left\{y_{1}=\epsilon,-\delta<y_{2} \leq t\right\} \cup\left\{y_{2}=t, \frac{-t^{2}}{2}<y_{1} \leq \epsilon\right\} \\
& J=\left\{-\delta<y_{2}<t, \epsilon-\frac{t}{3}\left(y_{2}+\delta\right)<y_{1}<\epsilon\right\}
\end{aligned}
$$

with $\delta=\eta t, \epsilon=\frac{\eta t^{2}}{4}, \eta$ small, $t \rightarrow 0$. Set $B_{c t}=\left\{\left|\left(x_{1}, x_{2}\right)\right|<c t\right\}, W=X \backslash \Sigma$; then $W \cap \mathbb{C}_{z_{1}, z_{2}}^{2} \supset B_{c t} \times I$ for any large c. By $[K, T h .5]$ the restriction

$$
\left.\mathcal{O}_{X}\left(B_{\frac{c t}{2}} \times J\right) \rightarrow \mathcal{O}_{X}\left(B_{c t} \times I\right)\right|_{B_{\frac{c}{2}} \times(I \cap J)}
$$

is surjective. In particular $\left(\mathcal{O}_{X}\right)_{z_{o}} \xrightarrow{\sim} \underset{B \ni z_{o}}{\lim } \mathcal{O}_{X}(B \cap W)$.
Q.E.D.

Proposition 2.2. (Cf. [Z 4].) Let W be a dihedron of \mathbb{C}^{n} with C^{1}-boundary $Y=$ $M_{1}^{+} \cup M_{2}^{+}$, each "face" $M_{i}^{+} a C^{2}$-manifold with boundary $R=M_{1}^{+} \cap M_{2}^{+}$. Let $z_{o} \in Y$,
denote by p_{o} the exterior conormal to W at z_{o}, and set $S^{-}=\sup s_{M_{i}}^{-}\left(p^{\prime}\right)$ for $i=$ 1,2 and for $p^{\prime} \in\left(M_{i}^{+} \times_{X} T_{M_{i}}^{*} X\right) \cap B\left(B\right.$ a neighborhood of $\left.p_{o}\right)$. Then

$$
\begin{equation*}
\underset{B \exists z_{o}}{\lim _{\rightarrow}} H^{j}\left(W \cap B, \mathcal{O}_{X}\right)=0 \quad \forall j>S^{-} . \tag{2.3}
\end{equation*}
$$

Proof. We choose coordinates such that $z_{o}=0, p_{o}=(1,0, \ldots)$. We can then describe Y (resp. W) as a graph $x_{1}=g(\cdot)$ (resp. as a subgraph $\left.x_{1}<g(\cdot)\right)$ with $g(\cdot)=o(\cdot)$ where "." denotes all arguments but x_{1}. We put

$$
\phi=-\log \left(g-x_{1}\right)+c|z|^{2}
$$

and denote by $s_{\phi}^{-}(z)$ the number of negative eigenvalues of the Levi-form $\bar{\partial} \partial \phi(z)$.
Let $S=\left\{z=z^{*}+\mathbb{R} p_{o} \mid z^{*} \in R\right\}$, and let $\stackrel{\circ}{W}_{i}$ be the components of $W \backslash S$. Clearly $g, \phi \in C^{2}(W \backslash S) \cap C^{1}(W)$ and for $z=z^{*}+r p_{o} \in \stackrel{\circ}{W}_{i}$ we have
$\bar{\partial} \partial \phi(z)^{t}(\bar{w}, w)=\left(g-x_{1}\right)^{-2}\left(\partial\left(g-x_{1}\right) \cdot w \bar{\partial}\left(g-x_{1}\right) \cdot \bar{w}\right)-\left(g-x_{1}\right)^{-1} \bar{\partial} \partial g\left(z^{*}\right)^{t}(\bar{w}, w)+c|w|^{2}$.
Thus if the projection w^{\prime} of w on $T^{\mathbb{C}} M$ satisfies $-\bar{\partial} \partial g\left(z^{*}\right)^{t} \bar{w}^{\prime} w^{\prime} \geq 0$ and if c is large enough, then for suitable c^{\prime},

$$
\bar{\partial} \partial \phi(z)(\bar{w}, w)>c^{\prime}|w|^{2}
$$

It follows that

$$
\begin{equation*}
s_{\phi}^{-}(z)=s_{M_{i}}^{-}\left(z^{*}\right) \quad \forall z \in \stackrel{\circ}{W}_{i} . \tag{2.4}
\end{equation*}
$$

We make now a C^{0}-change of holomorphic derivatives $\partial_{z_{i}}$ such that

$$
T_{z}^{\mathbb{C}} S=\operatorname{Span}\left\{\partial_{z_{1}}, \ldots, \partial_{z_{n-1}}\right\} \quad \forall z \in S
$$

We also write $\bar{\partial}^{\prime}$ instead of $\bar{\partial}_{z_{1}}, \ldots, \bar{\partial}_{z_{n-1}}$. By noticing that W is foliated by the $\left(C^{1}\right)$ level surfaces $Y_{r}=\left\{g-x_{1}=r\right\} r \in \mathbb{R}^{+}$, one concludes that for $\phi_{i}=\left.\phi\right|_{\bar{W}_{i}}$,

$$
\left.\left.\partial \phi_{1}\right|_{s} \equiv \partial \phi_{2}\right|_{s}
$$

which implies

$$
\left.\left.\bar{\partial}^{\prime} \partial \phi_{1}\right|_{s} \equiv \bar{\partial}^{\prime} \partial \phi_{2}\right|_{s}
$$

The argument which leads to (2.4) implies $s^{-}\left(\overline{\partial^{\prime}} \partial^{\prime} \phi_{i}\right)=s^{-}\left(\left.\bar{\partial}^{\prime} \partial^{\prime} \phi_{i}\right|_{\mathbb{R}_{22}^{n-2} z_{n-1}}\right)$ and $s^{+}\left(\bar{\partial}^{\prime} \partial^{\prime} \phi_{i}\right)=n-1-s^{-}\left(\bar{\partial}^{\prime} \partial^{\prime} \phi_{i}\right)$; in particular, $\bar{\partial}^{\prime} \partial^{\prime} \phi_{i}$ is non-degenerate. It follows that we can diagonalize $\bar{\partial} \partial \phi_{1}$ (or $\bar{\partial} \partial \phi_{2}$) by a change of holomorphic derivatives preserving $\operatorname{Span}\left\{\partial^{\prime}\right\}$. Thus in a suitable basis of the $\partial_{z_{i}}{ }^{\prime} \mathrm{s}$,

$$
\left.\bar{\partial} \partial \phi_{1}\right|_{\bar{W}_{1}},\left.\bar{\partial} \partial \phi_{2}\right|_{\bar{W}_{2}} \text { are diagonal. }
$$

Thus from (2.4) (possibly by a permutation of the $\partial_{z_{i}}$'s) we get

$$
\begin{equation*}
\sum_{i j \leq n} \partial_{z_{i}} \bar{\partial}_{z_{j}} \phi(z) \bar{w}_{i} w_{j}-\sum_{i \leq S^{-}} \partial_{z_{i}} \bar{\partial}_{z_{i}} \phi(z)\left|w_{i}\right|^{2} \geq c(z)\left|w^{\prime \prime}\right|^{2} \tag{2.5}
\end{equation*}
$$

($w^{\prime \prime}=\left(w_{n-s^{-}+1}, \ldots, w_{n}\right)$). Once (2.5) is established, we can adapt the calculus of L^{2}-norms with weight $e^{-\phi}$ by [H, Ch. 4-5], and get the conclusion (cf. [Z 4 Th. 2.2 and Remark 2.4]).
Q.E.D.

Remark 2.3. Let W be a dihedron with transversal faces M_{1}^{+}, M_{2}^{+}, and suppose $T W$ is non-convex. In this case, if we define $S^{-}=\sup \left(\sup _{N(W)^{o a}} S_{M_{1}}^{-}, \sup _{\left.N(W)^{o a}\right)_{M_{2}}^{-}}\right.$, $\left.\sup _{N(W)^{o a}} s_{R}^{-}+1\right)$, where $N(W)^{o a}$ is the exterior conormal cone to W, then (2.3) still holds true for this new S^{-}. In fact if we set $S_{i}=\left\{z \in W ; z-z^{*} \in R \times_{M_{i}} T_{M_{i}}^{*} X\right\}$, then $\phi=-\log \delta+c|z|^{2}$ is C^{1} on W and C^{2} on W_{i}. Moreover $s_{\phi}^{-} \leq S^{-}$by the same argument as in Proposition 2.2. Thus [Z 4] still applies.

Let $\Lambda_{i}^{+}, i=1,2$ be \mathbb{R}-Lagrangian submanifolds of $T^{*} X$ with boundary Σ which intersect along Σ, let $\Lambda=\Lambda_{1}^{+} \cup \Lambda_{2}^{+}$, and let $c_{i}=c_{\lambda_{i} / \lambda_{0}}$. Recall the bifunctor $\mu \operatorname{hom}(\cdot, \cdot)$ from [K-S 1].

THEOREM 2.4. Let $c_{i} \equiv$ const in Λ_{i} and suppose $\Lambda_{1} \cap \Lambda_{2}$ is regular (for $\sigma^{\mathbb{I}}$) clean of $\operatorname{codim} 1$ in Λ_{i}. Let \mathcal{F} be simple with shift $\frac{1}{2} c_{1}$ in \AA_{1}^{+}and $\operatorname{satisfy~} \operatorname{SS}(\mathcal{F}) \subset \Lambda$. Then
(2.6) $H^{j} \mu \operatorname{hom}\left(\mathcal{F}, \mathcal{O}_{X}\right)_{p}=0 \quad \forall j \notin\left[d_{1}(p), \sup _{i, p^{\prime}} d_{i}\left(p^{\prime}\right)\right] \quad$ with $p^{\prime} \in \Lambda_{i}^{+} \cap \pi^{-1}(B)$.

Proof. Let χ be the contact transformation between neighborhoods of p and q defined in Theorem 1.2. We have $\chi(\Lambda)=T_{Y}^{*} X$ where $Y=M_{1}^{+} \cup M_{2}^{+}$is a $C^{1}-$ hypersurface with the $M_{i}^{\prime} s$ satisfying (1.7) or (1.8). By quantization we transform

$$
\Phi_{K}(\mathcal{F}) \xrightarrow{\sim} \begin{cases}\mathbb{Z}_{Y}\left[d_{1}-1\right] & \text { in (1.7) and in (1.8) (i) } \\ \mathbb{Z}_{Y}\left[d_{1}-2\right] & \text { in (1.8) (ii). }\end{cases}
$$

If Σ is the closed half-space with boundary Y and interior conormal q, then

$$
\mu \operatorname{hom}\left(\mathcal{F}, \mathcal{O}_{X}\right) \simeq R \Gamma_{\Sigma}\left(\mathcal{O}_{X}\right)\left[-d_{1}+1\right]\left(\text { or }\left[-d_{1}+2\right]\right)
$$

Now $H^{j} R \Gamma_{\Sigma}\left(\mathcal{O}_{X}\right)[+1]=0 \forall j<0$ and even $\forall j \leq 0$ in (1.8) (due to Lemma 2.1). Thus we get 0 in (2.6) $\forall j<d_{1}(p)$. As for the vanishing for large j, we remark that for $q^{\prime}=\chi\left(p^{\prime}\right)$,

$$
s_{M_{i}}^{-}\left(q^{\prime}\right) \equiv d_{i}\left(p^{\prime}\right)-d_{i}(p) \quad\left(\text { resp. } \equiv d_{i}\left(p^{\prime}\right)-d_{i}(p)+1\right)
$$

if $s_{M_{i}}^{-}(q)=0\left(\operatorname{resp} . s_{M_{i}}^{-}(q)=1\right)$. The conclusion then follows from Proposition 2.2. Q.E.D.

For $A \subset X$ locally closed, we put $\mu_{A}(\mathcal{F}) \stackrel{\text { def. }}{=} \mu \operatorname{hom}\left(\mathbb{Z}_{A}, \mathcal{F}\right)$.
Corollary 2.5. (Cf. [D'A-Z 3].) Let $S \subset M$ be (C^{2})-submanifolds of X with $\operatorname{codim}_{M} S=1, \sqrt{-1} p \notin T_{S}^{*} X$, let $\Omega(\bar{\Omega})$ be an open (closed) component of $M \backslash S$, and put $\Lambda_{1}=T_{M}^{*} X, \Lambda_{2}=T_{S}^{*} X$. Then

$$
\begin{aligned}
H^{j} \mu_{\Omega}\left(\mathcal{O}_{X}\right)_{p}= & 0 \quad \forall j \notin\left[d_{1}(p), \sup _{p^{\prime}} d_{1}\left(p^{\prime}\right) \vee\left(\sup _{p^{\prime}} d_{2}\left(p^{\prime}\right)-1\right)\right] \\
& \left(p^{\prime} \in \Lambda_{i}^{+} \cap \pi^{-1}(B)\right)
\end{aligned}
$$

$$
\begin{equation*}
H^{j} \mu_{\Omega}\left(\mathcal{O}_{X}\right)_{p}=0 \quad \forall j \notin\left[d_{2}(p), \sup _{i, p^{\prime}} d_{i}\left(p^{\prime}\right)\right] \quad\left(p^{\prime} \in \Lambda_{i}^{+} \cap \pi^{-1}(B)\right) \tag{2.7}
\end{equation*}
$$

Proposition 2.6. ($C f$. [Z].) Let $W \subset X \simeq \mathbb{C}^{n}$ be a dihedron with transversal faces M_{1}^{+}, M_{2}^{+}and with generic "edge" $R=M_{1}^{+} \cap M_{2}^{+}$in a neighborhood of $z_{o} \in \partial W$. Denote by $N(W)^{o a}$ the exterior conormal cone to W and put

$$
s^{-}= \begin{cases}\inf _{p^{\prime} \in N_{z_{o}}(W)^{o a}} s_{R}^{-}\left(p^{\prime}\right) & \text { if } T W \text { is convex } \\ \inf _{p^{\prime} \in N_{z_{o}}(W)^{o a}} s_{R}^{-}\left(p^{\prime}\right)+1 & \text { if } T W \text { is non-convex }\end{cases}
$$

Then if B ranges through a fundamental system of neighborhoods of z_{o}, we have

$$
\begin{equation*}
\underset{B \ni z_{o}}{\underset{\longrightarrow}{\lim }} H^{j}\left(W \cap B, \mathcal{O}_{X}\right)=0 \quad \forall j<s^{-} \tag{2.8}
\end{equation*}
$$

(and $\lim _{\rightarrow} H^{0}\left(B, \mathcal{O}_{X}\right) \rightarrow \lim _{\rightarrow} H^{0}\left(W \cap B, \mathcal{O}_{X}\right)$ is surjective if $s^{-} \geq 1$).
Proof. Assume first $T W$ is convex. Let p_{\sim}, p_{2} be the unitary conormals to M_{1}, M_{2} at z_{o} exterior to W; one has $\mu_{W}\left(\mathcal{O}_{X}\right) \xrightarrow{\sim} \mu_{\dot{M}_{i}}+\left(\mathcal{O}_{X}\right)[+1]$ at $p_{i} i=1,2$, and $\mu_{W}\left(\mathcal{O}_{X}\right) \xrightarrow{\sim} \mu_{R}\left(\mathcal{O}_{X}\right)[2]$ at $p \in \dot{N}_{z_{o}}(W)^{o a} / \mathbb{R}^{+}, p \neq p_{1}, p_{2}$. From the distinguished triangle in $D^{b}(X)$,

$$
\left(\mathcal{O}_{X}\right)_{\bar{W}} \rightarrow R \Gamma_{W}\left(\mathcal{O}_{X}\right) \rightarrow R \dot{\pi}_{*} \mu_{W}\left(\mathcal{O}_{X}\right)
$$

one concludes that (2.8) is 0 for $j<s^{-}, j \neq 0$, and that $\left(\mathcal{O}_{X}\right)_{\bar{W}} \rightarrow R \Gamma_{W}\left(\mathcal{O}_{X}\right)$ is surjective when $s^{-} \geq 1$.

Now let $T W$ be non-convex. In this case one has $\mu_{W}\left(\mathcal{O}_{X}\right) \simeq \mu_{M_{i}^{+}}\left(\mathcal{O}_{X}\right)[1]$ at $p_{i}, i=1,2$, and $\mu_{W}\left(\mathcal{O}_{X}\right) \simeq \mu_{R}\left(\mathcal{O}_{X}\right)[+1]$ at $p \in \dot{N}_{z_{0}}(W)^{o a} / \mathbb{R}^{+}, p \neq p_{1}, p_{2}$. By Corollary 2.5 we get the conclusion in the same way as in the preceding case. Q.E.D.

REFERENCES

[A-G] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des éspaces complexes, Bull. Soc. Math. France 90, (1962), 193-259.
[B-R-T] M. S. Baouendi, L. P. Rothschild and F. Treves CR Structures with group action and extendability of CR functions, Invent. Math. 82 (1985), 359-396.
[D'A-Z 1] A. D'Agnolo and G. Zampieri, A propagation theorem for a class of microfunctions at the boundary, Rend. Acc. Naz. Lincei 9 (1) (1990), 54-58.
[D'A-Z 2] _ Generalized Levi's form for microdifferential systems, \mathcal{D}-modules and microlocal geometry Walter de Gruyter and Co., New York, 1992, pp. 25-35.
[D'A-Z 3] , Vanishing theorem for sheaves of microfunctions at the boundary on CR manifolds, Comm. Partial Differential Equations $17(5,6)(1992), 989-999$.
[D'A-Z 4] _ Microlocal direct images of simple sheaves with applications to systems with simple characteristics, Bull. Soc. Math. France 23 (1995), 101-133.
[D'A-Z 5] . On microfunctions at the boundary along CR manifolds, Compositio Math. (1996), to appear.
[H] L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, Princeton N. J., 1966.
[K] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 201-214.
[K-K] M. Kashiwara and T. Kawaï, On the boundary value problems for elliptic systems of linear differential equations, Proc. Japan Acad. 48, 49 (1971, 1972), 712-715, 164-168.
[K-S 1] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque 128, (1985).
[K-S 2] A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579-592.
[S] P. Schapira, Condition de positivité dans une variété symplectique complexe. Applications à l'étude des microfunctions, Ann. Sci. École Norm. Sup. 14 (1981), 121-139.
[S-K-K] M. Sato, M. Kashiwara, and T. Kawaï, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math., no. 287, Springer-Verlag, New York, 1973, pp. 265-529.
[T] J. M. Trépreau Systèmes differentiels à caractéristiques simples et structures réelles-complexes (d'après Baouendi-Trèves et Sato-Kashiwara-Kawai), Sém. Bourbaki 595, 1981-82.
[Z 1] G. Zampieri, "Pseudoconvexity and pseudoconcavity" in Complex geometry, Lecture Notes in Pure and Applied Math., no. 173, Marcel Dekker, New York, 1995, pp. 541-554.
[Z 2] , The Andreotti-Grauert vanishing theorem for dihedrons of \mathbb{C}^{n}, J. Math. Sci. Univ. Tokyo 2 (1995), 233-246.
[Z 3] _ Simple sheaves along dihedral Lagrangians, J. Analyse Math. 66 (1995), 331-344.
L^{2}-estimates with Levi-singular weight, and existence for $\bar{\partial}$, Preprint, 1996.

Dipartmento di Matematica, Univesità v. Belzoni 7, 35131 Padova, Italy zampieri@galileo.math.unipd.it

