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MICROLOCALIZATION OF Ox
ALONG DIHEDRAL LAGRANGIANS

GIUSEPPE ZAMPIERI

1. Introduction

Let X be a complex manifold, T*X -- X the cotangent bundle to X, cr cr +
f’Z-i’cr the canonical 2-form on J’*X, A I, A2 two]R-Lagrangian conic submanifolds
of J’*X. We assume that the intersection A1NA2 is regular in a neighborhood ofa point
p, and that the tangent planes .i(p)" de__f. TpAi verify codimxl<p)(. (p)fq)2(P)) 1.
According to [D’A-Z 3] (which improves [S]), one can then find a complex symplectic
transformation g which interchanges A A2 with the conormal bundles T* X T* XMI M2
to two hypersurfaces M, M2 C X whose Levi-forms are positive-semidefinite at
q X (P).
We prove here in Proposition 1.1 that we can find another symplecfic transforma-

tion X2 such that the Levi-form of one hypersurface is posifive-semidefinite, whereas
the other has one negative eigenvalue. The choice of the hypersurface which carries
the negative eigenvalue is not arbitrary; it relies on intrinsic geometric properties of
the pair A1, A2. In case the intersection A1 A2 is "clean" of codimension 1, the
two cases occur according to the "posifivity" A > A2 (resp. A2 > A1) in the sense
of [D’A-Z 4]. In the first transformation X this is characterized by the inclusion
E1 D E2 (resp. E1 C E2) (where Ei are the closed half-spaces with boundary Mi
and inward conormal q. (In the second transformation X2 the inclusions are reverted.)
We put )o(P) Tpzr-yr(P), assume that dim(.i(p) fq Xo(p)) const, and still

suppose the intersection A tq A2 regular and clean. We denote by A (resp A-) one
half-part ofA (resp. A2) with boundary A (q A2, and set A AUA-. In Theorem
1.2 we prove that A can be reduced to the conormal bundle TX to a C1-manifold Y
of X by one and only one of the tranformafions X, X2. This can be proved by a direct
analysis of the shift of simple sheaves along the Ai’s under the action of quantizations
of the Xi’S.
We finally discuss the complex of microfunctions along A in the sense of [K-S ],

and show that its non-trivial cohomology ranges through an interval described by
the numbers of negative Levi eigenvalues of the A/+’s. By these results we are able
to state a strong improvement of our former theorem in [Z 2] on existence for on
dihedrons of Cn.
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Section 1

Let X be a complex manifold of dimension n, zr: T*X -- X the cotangent bundle
to X, t t + ’2]ct (tr tr + ’2]’tr) the 1-form (2-form). We identify
T*(X)

_
(T’X) with the aid of t. We let H" T*T*X - TT*X, (resp.

H" T*T*X - TT*X) be the Hamiltonian isomorphism associated to tr (resp.
trY). We take an N-Lagrangian (i.e., Lagrangian for tr) conic submanifold A in a

neighborhood of a point p J’*X (def. T*X \ TX), and put

(1.1) e(p) TpT*X v(p)= CH(c(p)) X(p)= TpA o(P)= Tpzr-lrr(P)
/x(p) X(p) N S-f,(p) cx/xo (P) dim(X(p) N Z0(P))

3x(p) dimc(/x(p)) YX/Xo(P) dimc(X(p) Cl /-2]X(p) Cl ,0(P)).

We often drop p in the above notations. We define

(1.2)

(where . ((Z0 /x+/-) +/X)//X with .+/- denoting the symplectic orthogonal). Its
kernel being ( X0//x Z0)c, one gets

(1.3) rank(Lx/xo) n cx/xo 3x + 2’X/Xo.

One also has
1

(1.4) sgn(Lx/xo) r(Z, Li’Z, Zo),

where r is the inertia index in the sense of [K-S 1] We shall denote by s+ theX/Xo
numbers of respectively positive and negative eigenvalues for Lx/xo. Now let M be a
C2-submanifold of X, TtX the conormal bundle to M in X, p a point of tX, Zo
the projection zr(p). If 4 is a C2-function at Zo with t#lm -= 0 and dq(Zo) p, then
for Zm TTtX, one gets

(1.5) Lx/Xo Oblrct (TOM TM fq -[TM),

where "--" means equivalence in signature and rank (cf. [S] and also [D’A-Z 2] as for
codim M > 1). We shall write s instead of s/xo, and similarly set cm cx/xo,

’m t’x/x0, Lm Lx/xo, and so on. Let

1
dx/xo [cx/xo + n 3x sgn(Lx/xo)].

By (1.3) one has dx/xo cx/xo + s/x ’X/Xo( n 3x + YX/Xo sxxo). Let
Db (X) denote the derived category of the category of bounded complexes of sheaves
and Db(x; p), p *X, denote the localization of Db(x) by the null-system
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{.T; SS(.T) ’ p} (cf. [K-S 1] for the definition of the microsupport SS). Let X
be a germ of a contact transformation between neighborhoods of p and q X (P)
and let br be a quantization of X by a kernel K (i.e., a simple sheaf with shift n on

A the antipodal to the graph of X). Assume that X transforms A to A’. According
to [K-S 1], if .T is simple along A with shift b at p, then tc (.T) is simple along
A’ with shift b 1/2 (sgn Lx/xo (p) sgn Lx,/x0 (q)) b + (dx/x0 (P) dx,/Zo (q))
!(cx/xo(P) cx,czo(q)) at q2

PROPOSITION 1.1. Let A1 and A2 be N-Lagrangian conic submanifolds ofJ*X
in a neighborhood of p. We assume that A1 f’) A2 is ]I-regular (i.e., regularfor a)
and that

codimx(p)(X1 (p) fq X2(p)) 1.

We may then find two contact transformations X, from neighborhoods of p and q,
such that

(1.6) x(Ai)=T* X codimMi=l i=l 2,Mi

and with one satisfying

(1.7) si (q) O, 1, 2,

and the other satisfying

(i)s(q)=l, s,(q)=O or (ii)s,(q)=l, SM(q)=O.

(Cf [D’A-Z 3]for the point (1.7).)

Proof. As remarked by A. D’Agnolo in [D’A-Z 3], we must have an inclusion
Z O "Zl C ,20 ".2 or X tq ZqL D L20 -]’L2. Assume we have
the first inclusion. Let (z, (), z x + -iy, ( + "Z]0 be coordinates in
e TpT*X, and let 1 {( 0}. According to IT], the problem is reduced to find
a C-Lagrangian plane 10 C e, 10 D v:

e 10 @ 11, 10 tq Zi v(the real line spanned by H(otr))
s,/l 0 1, 2 in case (1.7)

S/lo 1, s/l 0 or s;/to 1, sx2/l 0 in case (1.8)

To this end we set/z (Z tq C],kl) + v, and replace e by e’ =/z+/-//z. This is the
same as assuming L;,/lo is non-degenerate from the beginning. We then reason as in
IS] and reduce the above problem in C x C with X1 {(x; C]O)}, X2 {(0; ()} if
,20/’X2 # 0(resp.Z2 {(x; ex+-fr/)} withe # 0ifX2fqq,k2 0). (Note
that the case listed as (a) in [S] cannot happen due to the ]I-regularity of A A A2.)
In case ,k2 {(0; ()} one takes 10 {(s(; ()}, s 6 + (resp. s 6 N-) and gets

sx-/lo 0 (resp. 1) with s;/lo 0 for both choices of s. This gives (1.7) (resp. (1.8)
(ii)) in this case.
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In the other case one remarks that if .% denotes the conjugation in
then (z; g’)c1 (; -), (z; Cz + g’)cx2 (; - + ). Thus if lo {(s(; ()}, and
if u (s(; g’) /o, then

L/lo(U, u) 2s(2 + 02)
L)2/lo(U U) (2S 26S2)(2 + 02).

(For the second wejust put u (s(; es" + (1 es)().) If one takes s Ii+, Isl << 1,
one gets (1.7). As for (1.8) distinguish these cases"

(i) When > 0 one takes s I+, Isl >> 1 and gets SX-l/lo 0, sx-/lo 1.
(ii) When < 0, one takes s -, Isl >> 1, and gets sX/l 1, sx2/l O.

Q.E.D.

Let X be a germ of contact transformation between a neighborhood of p and a
def.

neighborhood of q: X(p) which interchanges Ai to Ai, put di(p’) dx,/xo(p’),
d(q’) dxl/xo(q’), and similarly define ci(p’) cxi/Xo(P’), c(q’) cx’i/xo(q’).
We recall that when ci(p’) and c (q’) are constant for p’ and q’ close to p and q
respectively, then di (p’) d(q’) is also constant. Thus if satisfies (1.6) and (1.7),
then

di(p’) d(q’) di(p) 1 Mi 1, 2 (q’ X(P’)).
(The above equality also holds for 1 (resp. 2), when X satisfies (1.6) and (1.8)
(i) (resp. (1.8) (ii)). We now assume that A-, A- are I-Lagrangian manifolds with
boundary in a neighborhood of p which intersect along , and put A A- t3 A-;
we call A a dihedral Lagrangian manifold. We extend A- to Ai, defined from both

4sides of , and set A;- (Ai \ A/+) U E, A Af \ .
THEOREM 1.2. Let A A LJ A. Assume that ci(p’) constVp’ Ai, and

that

(1.9) A (q AEiS ]I-regular, clean, of codim in Ai.
(i) Then we may find a contact transformation X between neighborhoods of p and
q X (P) such that

(1.10) x(A) TX where Y is a C-hypersurface.

Moreover Y is the union oftwo half-hypersurfaces M- LJM with the Mi ’s satisfying
(1.7) or (1.8).

(ii) Let SF be a simple sheafwith shift 1/2c in ;k- which satisfies SS(.T’) C A. By
quantizing X with a kernel K, we get

Zr[dl (p) l] for (1.7) or (1.8) (i)
(1.11) aPK(’T’)

Zr[dl(p) 2] for(1.8)(ii).
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Proof. For X1 satisfying (1.7), we put R zr(T*M, XfqT*M2 X),T*Mi X+ gl (A.+,),
Mi+ r(Tt X)+, q’ (p’)" we also denote by T* X- and M/-- the other compo-Mi
nents of T,X \ (T, X N Tt X) and Mi \ R respectively. For )2 satisfying (1.8) we
shall use similar notations/, T,X+, , 1 We recall that s, (q’) s Zi (’) is

constant for q’ Tt X near q, and that

(1.12)

Clearly either M- to M- or M1+ to M- (resp. - to/- or/- to ]-)is a C1-

hypersurface Y (resp. I7). But by (1.12), Zr is transformed, by a quantization of
2 o x-l, to a complex whose shifts are different in the two components of Tt X+ \

(TX N TX). Thus by [K-S 1, Prop. 6.2.1 ], in the extension stated in [D’A-Z 1],

we have X20 (1- (T)X) : TX. In conclusion )f X1 or X X2 satisfies (i).
As for (ii), if Otc (resp. Or:) is a quantization of X (resp. X2), then either

SS(Or (.T’)) T:,X or SS (r(.T’)) T,X. A direct computation of shifts then
gives (1.1 1). Q.E.D.

Remark 1.3. Given A-, A-, A with A1+ fq A- smooth ]I-regular of codim 1
in A/+, it is easy to see that in order to transform both A- to A- and A+ to A- (by
different () to TX with Y e C, the cleaness of A1 N A2 is necessary.

Remark 1.4. When the intersection T, X TX (Mi hypersurfaces) is clean of
codimension 1, then one easily checks that the order of contact of M1 and M2 along
R rr(T*M X f3 Tt2X) is exactly 2. In fact if for real coordinates (tl t2, t’),
one writes M1 {t 0}, R {tl t2 0}, M2 {q h(t2)} (h O(t22)),
p (0; dq), one gets ),M {U; tl, 0h u2 ): Ul 0}. Then .M1 ZM C
T(R x M: T* X) means 02h 5k 0. Thus R M N ME and if one denotes byM2 t2

I, 2, the dosed half-spaces with boundary Mi and interior conormal q, one has
El 3 E or E C Ea. Notice that in passing from (1.7), to (1.8) the inclusions are
reverted; thus in (1.7), E 3 Eg. (resp. E C Ea) corresponds to (ii) (resp. (i)) of
(1.8). We also mention that the inclusion E 3 Ea or El C Ea in (1.7), is related to
an intrinsic notion of "positivity" A > Aa or A < Aa defined in [D’A-Z 4].

Remark 1.5. Let A1 TX, A2 TX where S, M are C2-submanifolds of
X with S C M; then the intersection A1 CI A2 is always clean. We also assume
’S]p TX (i.e. S xM TtX regular) and codimM S 1. Then the orientation
of S in M, which determines the positive and negative components f2+ of M \ S
and A1 of A1 \ (A1 CI AE), determines also, via the Hamiltonian isomorphism, the
components A of A2 \ (A1 f3 A2). (Note that in our general notations the sign
in A2 has no geometric meaning.) Then if A A- tO A- (resp. A A1+ to A)the
complex .T" which satisfies SS(.’) C A and which is simple with shift codim M
along M is Zfi/ (resp. Z/). For these complexes Th. 1.2 applies.
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Section 2

Let M/+, 1, 2 be C2-hypersurfaces of X Cn with boundary R which verify
TMI[I TMEIR and let p R Xtg T* X, zr(p) ZoMi

LEMMA 2.1. Let Y M t_J M be a C1-hypersurface, denote by E the closed
half-space with boundary Y and interior conormal p, and assume

(2.1) s: (p) s (p) + 1.

Then

(2.2) 7-(.lz (Ox) Zo O.

Proof. Because of (2.1), R must be "generic"; i.e., in our case, dim(TcR)
n 2. We take complex coordinates z x / -]y, z (z l, z2, z’) such that Zo 0
and

s-+l s-+s++lM2 Z" --Yl =Y2
2 + ZY/2 y/2 + 0(.)2

i=3 i=s-+2

R {z M2" Y2 q(z’, ’) + 0(’)2},

where b is real valued, b O(Iz’l)2 and where denotes all arguments but Yl
(resp. Yl, y2) in the first (resp. second) line. We also suppose that p -dyl and

Mf {z M2" -t-y2 > b +0(.)2}. Fix z3 0 and in the (Zl, z2)-plane define
the sets

I Yl .=6, --$ < y2<t}t.J{y2--t, -- < Yl <6

IJ -8 < Y2 < t, 6 (Y2 -+-) < Yl < 6

r/twith 6 tit, 6 q--, ti small, -- 0. Set Bct {l(Xl, x2)l < ct}, W X \ E; then
W f-] C2 Z) Bct I for any large c. By [K, Th. 5] the restriction

Zl ,Z2

Ox(B x J) Ox(Bct x l)lk x(l(qJ),

is surjective. In particular (Ox)zo lim Ox(B (’1 W).
Bzo

Q.E.D.

PROPOSITION 2.2. (Cf [Z 4].) Let W be a dihedron ofCn with Cl-boundary Y
2MUM, each "face Mi+ a C -manifoldwithboundary g MfqMf Letzo Y,
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denote by Po the exterior conormal to W at Zo, and set S- sup sl (p’) for
2 andfor p’ (Mi+ xx T* X) q B (B a neighborhood ofpo). Then

(2.3) limHj (W N B Ox) O Yj > S-
Bzo

Proof We choose coordinates such that Zo 0, Po (1, 0 ). We can then
describe Y (resp. W) as a graph Xl g(.) (resp. as a subgraph xl < g(.)) with
g(.) o(.) where "." denotes all arguments but xl. We put

$ log(g Xl) q- clzl,
and denote by s-(z) the number of negative eigenvalues of the Levi-form 00q(z).

Let S {z z* + Pol z* R}, and let Wi be the components of W \ S. Clearly

g, (b C2(W \ S) q C (W) and for z z* + rpo Wi we have

O)(Z) (1, l/))=(g--x1)-2 (0 (g--x1)" 1/3 (g--x1)" l))--(g’--X1) -1 Og(z*) (1), w)+clwl2.

Thus if the projection w’ of w on TCM satisfies --Og(z*)t’w >_ 0 and if c is large
enough, then for suitable c’,

90qb(z)(Vo, w) > c’lwl2.

It follows that

(2.4) s, (z) st.ti (z*) [z Wi.

We make now a C-change of holomorphic derivatives 0zi such that

TzcS Span{0z Ozn_, Yz S.

We also write ’ instead of z, zn_. By noticing that W is foliated by the (C
level surfaces Yr {g Xl r} r It+, one concludes that for t#i

0llS Ot#21s,

which implies

9’Olls =-- 9’021s.
The argument which leads to (2.4) implies s-(9’’$i) s-(’O’$ilc2-.2.z_) and

s+(9’O’cbi) n 1 s-(’O’$i); in particular, ’’$i is non-degenerate. It fol-
lows that we can diagonalize 051 (or Ot#2) by a change of holomorphic derivatives
preserving Span{O’}. Thus in a suitable basis of the Oz,’S,

50llq, 50212 are diagonal.
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Thus from (2.4) (possibly by a permutation of the Oz, ’s) we get

(2.5)

_
Ozizjf(Z)l)iWj Oz,gzi(z)lwil2 > c(z)lw"l

j<n i<S-

(w" (wn-s-+l wn)). Once (2.5) is established, we can adapt the calculus of
L2-norms with weight e- by [H, Ch. 4-5], and get the conclusion (cf. [Z 4 Th. 2.2
and Remark 2.4]). Q.E.D.

Remark 2.3. Let W be a dihedron with transversal faces M, M, and suppose
TW is non-convex. In this case, if we define S- sup(suPN(w)oaS, SUPN(w)oaS2,
SUPN(w)oaS- @ 1), where N(W)a is the exterior conormal cone to W, then (2.3) still
holds true for this new S-. In fact if we set Si {z W; z z* R x t, T* X},Mi
then b log + clzl2 is C on W and C2 on Wi. Moreover s < S- by the same
argument as in Proposition 2.2. Thus [Z 4] still applies.

Let A/+, 1, 2 be -Lagrangian submanifolds of T*X with boundary E which
intersect along E, let A A+ tA A-, and let ci cxi/Xo. Recall the bifunctor
/z hom(., .) from [K-S ].

THEOREM 2.4. Let ci =-- const in Ai and suppose A N A2 is regular (for cr)
clean ofcodim l in Ai. Let .T" be simple with shift 1/2cl in k- and satisfy SS(.T’) C A.
Then

(2.6) Hi/z hom(.T’, Ox)p 0 ’V’j [dl(p), sup di(p’)] with p’ A fqzt-I(B).
i,p’

Proof. Let X be the contact transformation between neighborhoods of p and q
defined in Theorem 1.2. We have X (A) TX where Y M- t3 M- is a C 1-

hypersurface with the M;s satisfying (1.7) or (1.8). By quantization we transform

{Zv[d 1] in (1.7) andin (1.8) (i)
dpK (.T’) Zy[dl 2] in (1.8) (ii).

If E is the closed half-space with boundary and interior conormal q, then

/z hom(.T’, Ox)" RFz(Ox)[-d + 1] (or [-dl + 2]).

Now HJRFr(Ox)[+I] 0’j < 0 and even Vj _< 0 in (E8) (due to Lemma 2.1).
Thus we get 0 in (2.6) Yj < d (p). As for the vanishing for large j, we remark that
for q’ X (P’),

st (q’) di(p’) di(p) (resp. m di(p’) di(p) + 1)

if si (q) 0 (resp. s (q) 1). The conclusion then follows from Proposition 2.2.
Q.E.D.
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For A C X locally closed, we put/zA (.)
def.

/Z hom(Zt, .T’).

COROLLARY 2.5. (Cf. [D’A-Z 3].) Let S C M be (C2)-submanifolds ofX with
codimM S 1, /--p TX, let [2 () be an open (closed) component ofM \ S,
andput A TX, A2 T;X. Then

HJp,(OX)p 0 Vj [dl(p),SUpp, dl(p’) v (SUpp, d2(p’)- 1)]

(p’ e A tq r-l(B))

(2.7) HJlz(OX)p 0 Vj [d2(p),suPi,p, di(p’)] (p’ A/+ (7/’-l(B)).

PROPOSmON 2.6. (Cf. [Z].) Let W C X
_
Cn be a dihedron with transversal

faces M,M and with generic "edge" R M fq M in a neighborhood of
Zo 0 W. Denote by N(W)a the exterior conormal cone to W andput

{infp,Nzo(W)O s(p’)s
infp,Nzo(W)O s(p’) + 1

if TW is convex

if TW is non-convex

Then if B ranges through afundamental system ofneighborhoods ofZo, we have

(2.8) limHj (W N B, Ox) O Yj < s-,
Bzo

(and lim H (B, (.gx) "-" lim H (W tq B, (.gx) is surjective ifs > 1 ).

Proof. Assume first TW is convex. Let pl, p2 be the unitary conormals to

M, ME at Zo exterior to W; one has IXw(Ox) -- lX + (Ox)[+l] at Pi 1, 2, and
Mi

lZw(Ox) lzR(Ox)[2] at p filzo (W)a/IR+, p p, P2. Fromthedistinguished
triangle in Ob (X),

(Ox), RI"w(Ox) ---> RY,w(Ox),

one concludes that (2.8) is 0 for j < s-, j 0, and that (Ox)fv -, RFw(Ox) is
surjective when s- >_ 1.
Now let TW be non-convex. In this case one has lzw(Ox) - /zt+(Ox)[1] at

Pi, 1, 2, and lzw(Ox) -- /zR(Ox)[+l] at p filzo(W)a/,+, p pl, P2. By
Corollary 2.5 we get the conclusion in the same way as in the preceding case. Q.E.D.

[A-G]
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