MICROLOCALIZATION OF \mathcal{O}_X ALONG DIHEDRAL LAGRANGIANS

GIUSEPPE ZAMPIERI

1. Introduction

Let X be a complex manifold, $T^*X \xrightarrow{\pi} X$ the cotangent bundle to X, $\sigma = \sigma^{\mathbb{R}} + \sqrt{-1}\sigma^{\mathbb{I}}$ the canonical 2-form on T^*X , Λ_1 , Λ_2 two \mathbb{R} -Lagrangian conic submanifolds of T^*X . We assume that the intersection $\Lambda_1 \cap \Lambda_2$ is regular in a neighborhood of a point p, and that the tangent planes $\lambda_i(p) : \stackrel{\text{def.}}{=} T_p \Lambda_i$ verify $\operatorname{codim}_{\lambda_1(p)}(\lambda_1(p) \cap \lambda_2(p)) = 1$. According to [D'A-Z 3] (which improves [S]), one can then find a complex symplectic transformation χ_1 which interchanges Λ_1 , Λ_2 with the conormal bundles $T_{M_1}^*X$, $T_{M_2}^*X$ to two hypersurfaces M_1 , $M_2 \subset X$ whose Levi-forms are positive-semidefinite at $q = \chi_1(p)$.

We prove here in Proposition 1.1 that we can find another symplectic transformation χ_2 such that the Levi-form of one hypersurface is positive-semidefinite, whereas the other has one negative eigenvalue. The choice of the hypersurface which carries the negative eigenvalue is not arbitrary; it relies on intrinsic geometric properties of the pair Λ_1 , Λ_2 . In case the intersection $\Lambda_1 \cap \Lambda_2$ is "clean" of codimension 1, the two cases occur according to the "positivity" $\Lambda_1 > \Lambda_2$ (resp. $\Lambda_2 > \Lambda_1$) in the sense of [D'A-Z 4]. In the first transformation χ_1 this is characterized by the inclusion $\Sigma_1 \supset \Sigma_2$ (resp. $\Sigma_1 \subset \Sigma_2$) (where Σ_i are the closed half-spaces with boundary M_i and inward conormal q. (In the second transformation χ_2 the inclusions are reverted.)

We put $\lambda_0(p) = T_p \pi^{-1} \pi(p)$, assume that $\dim(\lambda_i(p) \cap \lambda_0(p)) \equiv \text{const}$, and still suppose the intersection $\Lambda_1 \cap \Lambda_2$ regular and clean. We denote by Λ_1^+ (resp Λ_2^+) one half-part of Λ_1 (resp. Λ_2) with boundary $\Lambda_1 \cap \Lambda_2$, and set $\Lambda = \Lambda_1^+ \cup \Lambda_2^+$. In Theorem 1.2 we prove that Λ can be reduced to the conormal bundle T_Y^*X to a C^1 -manifold Y of X by one and only one of the tranformations χ_1, χ_2 . This can be proved by a direct analysis of the shift of simple sheaves along the Λ_i 's under the action of quantizations of the χ_i 's.

We finally discuss the complex of microfunctions along Λ in the sense of [K-S 1], and show that its non-trivial cohomology ranges through an interval described by the numbers of negative Levi eigenvalues of the Λ_i^+ 's. By these results we are able to state a strong improvement of our former theorem in [Z 2] on existence for $\bar{\partial}$ on dihedrons of \mathbb{C}^n .

Received August 28, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 58G, 32F.

162 G. ZAMPIERI

Section 1

Let X be a complex manifold of dimension $n, \pi \colon T^*X \to X$ the cotangent bundle to X, $\alpha = \alpha^{\mathbb{R}} + \sqrt{-1}\alpha^{\mathbb{I}}$ ($\sigma = \sigma^{\mathbb{R}} + \sqrt{-1}\sigma^{\mathbb{I}}$) the 1-form (2-form). We identify $T^*(X^{\mathbb{R}}) \simeq (T^*X)^{\mathbb{R}}$ with the aid of $\alpha^{\mathbb{R}}$. We let $H \colon T^*T^*X \xrightarrow{\sim} TT^*X$, (resp. $H^{\mathbb{R}} \colon T^*T^*X^{\mathbb{R}} \xrightarrow{\sim} TT^*X^{\mathbb{R}}$) be the Hamiltonian isomorphism associated to σ (resp. $\sigma^{\mathbb{R}}$). We take an \mathbb{R} -Lagrangian (i.e., Lagrangian for $\sigma^{\mathbb{R}}$) conic submanifold Λ in a neighborhood of a point $p \in \dot{T}^*X$ ($def = T^*X \setminus T^*_X X$), and put

(1.1)
$$e(p) = T_p T^* X$$
 $v(p) = \mathbb{C} H(\alpha(p))$ $\lambda(p) = T_p \Lambda$ $\lambda_0(p) = T_p \pi^{-1} \pi(p)$
$$\mu(p) = \lambda(p) \cap \sqrt{-1} \lambda(p) \quad c_{\lambda/\lambda_0}(p) = \dim_{\mathbb{R}}(\lambda(p) \cap \lambda_0(p))$$

$$\delta_{\lambda}(p) = \dim_{\mathbb{C}}(\mu(p)) \quad \gamma_{\lambda/\lambda_0}(p) = \dim_{\mathbb{C}}(\lambda(p) \cap \sqrt{-1} \lambda(p) \cap \lambda_0(p)).$$

We often drop p in the above notations. We define

$$(1.2) L_{\lambda/\lambda_0} = \sigma(u, v^c)|_{u,v \in \lambda_0^{\mu}},$$

(where $\lambda_0^\mu=((\lambda_0\cap\mu^\perp)+\mu)/\mu$ with \cdot^\perp denoting the symplectic orthogonal). Its kernel being $(\lambda\cap\lambda_0/\mu\cap\lambda_0)^\mathbb{C}$, one gets

(1.3)
$$\operatorname{rank}(L_{\lambda/\lambda_0}) = n - c_{\lambda/\lambda_0} - \delta_{\lambda} + 2\gamma_{\lambda/\lambda_0}.$$

One also has

(1.4)
$$\operatorname{sgn}(L_{\lambda/\lambda_0}) = \frac{1}{2}\tau(\lambda, \sqrt{-1}\lambda, \lambda_0),$$

where τ is the inertia index in the sense of [K-S 1]. We shall denote by $s_{\lambda/\lambda_0}^{\pm}$ the numbers of respectively positive and negative eigenvalues for L_{λ/λ_0} . Now let M be a C^2 -submanifold of $X^{\mathbb{R}}$, T_M^*X the conormal bundle to M in X, p a point of \dot{T}_M^*X , z_o the projection $\pi(p)$. If ϕ is a C^2 -function at z_o with $\phi|_M \equiv 0$ and $\mathrm{d}\phi(z_o) = p$, then for $\lambda_M = TT_M^*X$, one gets

$$(1.5) L_{\lambda_M/\lambda_0} \sim \partial \bar{\partial} \phi|_{T^{\mathbb{C}}M} (T^{\mathbb{C}}M = TM \cap \sqrt{-1}TM),$$

where "~" means equivalence in signature and rank (cf. [S] and also [D'A-Z 2] as for codim M>1). We shall write s_M^{\pm} instead of $s_{\lambda_M/\lambda_0}^{\pm}$, and similarly set $c_M=c_{\lambda_M/\lambda_0}$, $\gamma_M=\gamma_{\lambda_M/\lambda_0}$, $L_M=L_{\lambda_M/\lambda_0}$, and so on. Let

$$d_{\lambda/\lambda_0} = \frac{1}{2} [c_{\lambda/\lambda_0} + n - \delta_{\lambda} - \operatorname{sgn}(L_{\lambda/\lambda_0})].$$

By (1.3) one has $d_{\lambda/\lambda_0} = c_{\lambda/\lambda_0} + s_{\lambda/\lambda_0}^- - \gamma_{\lambda/\lambda_0} (= n - \delta_{\lambda} + \gamma_{\lambda/\lambda_0} - s_{\lambda/\lambda_0}^+)$. Let $D^b(X)$ denote the derived category of the category of bounded complexes of sheaves and $D^b(X; p)$, $p \in \dot{T}^*X$, denote the localization of $D^b(X)$ by the null-system

 $\{\mathcal{F}; SS(\mathcal{F}) \not\ni p\}$ (cf. [K-S 1] for the definition of the microsupport SS). Let χ be a germ of a contact transformation between neighborhoods of p and $q = \chi(p)$ and let ϕ_K be a quantization of χ by a kernel K (i.e., a simple sheaf with shift n on Λ^a_{χ} the antipodal to the graph of χ). Assume that χ transforms Λ to Λ' . According to [K-S 1], if \mathcal{F} is simple along Λ with shift b at p, then $\Phi_K(\mathcal{F})$ is simple along Λ' with shift $b - \frac{1}{2}(\operatorname{sgn} L_{\lambda/\lambda_0}(p) - \operatorname{sgn} L_{\lambda'/\lambda_0}(q)) = b + (d_{\lambda/\lambda_0}(p) - d_{\lambda'/\lambda_0}(q)) - \frac{1}{2}(c_{\lambda/\lambda_0}(p) - c_{\lambda'/\lambda_0}(q))$ at q.

PROPOSITION 1.1. Let Λ_1 and Λ_2 be \mathbb{R} -Lagrangian conic submanifolds of \dot{T}^*X in a neighborhood of p. We assume that $\Lambda_1 \cap \Lambda_2$ is \mathbb{I} -regular (i.e., regular for $\sigma^{\mathbb{I}}$) and that

$$\operatorname{codim}_{\lambda_1(p)}(\lambda_1(p) \cap \lambda_2(p)) = 1.$$

We may then find two contact transformations χ , from neighborhoods of p and q, such that

(1.6)
$$\chi(\Lambda_i) = T_{M_i}^* X, \quad \text{codim } M_i = 1, \ i = 1, 2,$$

and with one satisfying

$$(1.7) s_{M_i}^-(q) = 0, i = 1, 2,$$

and the other satisfying

(1.8)
$$(i)s_{M_2}^-(q) = 1$$
, $s_{M_1}^-(q) = 0$ or $(ii)s_{M_1}^-(q) = 1$, $s_{M_2}^-(q) = 0$.

(Cf. [D'A-Z 3] for the point (1.7).)

Proof. As remarked by A. D'Agnolo in [D'A-Z 3], we must have an inclusion $\lambda_1 \cap \sqrt{-1}\lambda_1 \subset \lambda_2 \cap \sqrt{-1}\lambda_2$ or $\lambda_1 \cap \sqrt{-1}\lambda_1 \supset \lambda_2 \cap \sqrt{-1}\lambda_2$. Assume we have the first inclusion. Let $(z, \zeta), z = x + \sqrt{-1}y, \zeta = \xi + \sqrt{-1}\eta$ be coordinates in $e = T_p T^* X$, and let $l_1 = \{\zeta = 0\}$. According to [T], the problem is reduced to find a \mathbb{C} -Lagrangian plane $l_0 \subset e, l_0 \supset \nu$:

$$\begin{cases} e = l_0 \oplus l_1, \ l_0 \cap \lambda_i = \nu^{\mathbb{R}} \text{ (the real line spanned by } H^{\mathbb{R}}(\alpha^{\mathbb{R}})) \\ s_{\lambda_i/l_0}^- = 0 \ i = 1, 2 \text{ in case } (1.7) \\ s_{\lambda_2/l_0}^- = 1, s_{\lambda_1/l_0}^- = 0 \text{ or } s_{\lambda_1/l_0}^- = 1, s_{\lambda_2/l_0}^- = 0 \text{ in case } (1.8) \end{cases}$$

To this end we set $\mu=(\lambda_1\cap\sqrt{-1}\lambda_1)+\nu$, and replace e by $e'=\mu^\perp/\mu$. This is the same as assuming L_{λ_1/l_0} is non-degenerate from the beginning. We then reason as in [S] and reduce the above problem in $\mathbb{C}\times\mathbb{C}$ with $\lambda_1=\{(x;\sqrt{-1}\eta)\},\lambda_2=\{(0;\zeta)\}$ if $\lambda_2\cap\sqrt{-1}\lambda_2\neq 0$ (resp. $\lambda_2=\{(x;\epsilon x+\sqrt{-1}\eta)\}$ with $\epsilon\neq 0$ if $\lambda_2\cap\sqrt{-1}\lambda_2=0$). (Note that the case listed as (a) in [S] cannot happen due to the \mathbb{I} -regularity of $\Lambda_1\cap\Lambda_2$.) In case $\lambda_2=\{(0;\zeta)\}$ one takes $l_0=\{(s\zeta;\zeta)\}, s\in\mathbb{R}^+$ (resp. $s\in\mathbb{R}^-$) and gets $s_{\lambda_1/l_0}=0$ (resp. 1) with $s_{\lambda_2/l_0}=0$ for both choices of s. This gives (1.7) (resp. (1.8) (ii)) in this case.

In the other case one remarks that if $c^{c_{\lambda_i}}$ denotes the conjugation in $\lambda_i + \sqrt{-1}\lambda_i$, then $(z; \zeta)^{c_{\lambda_1}} = (\bar{z}; -\bar{\zeta}), (z; \epsilon z + \zeta)^{c_{\lambda_2}} = (\bar{z}; -\bar{\zeta} + \epsilon \bar{z})$. Thus if $l_0 = \{(s\zeta; \zeta)\}$, and if $u = (s\zeta; \zeta) \in l_0$, then

$$L_{\lambda_1/l_0}(u, u) = 2s(\xi^2 + \eta^2)$$

$$L_{\lambda_2/l_0}(u, u) = (2s - 2\epsilon s^2)(\xi^2 + \eta^2).$$

(For the second we just put $u = (s\zeta; \epsilon s\zeta + (1 - \epsilon s)\zeta)$.) If one takes $s \in \mathbb{R}^+$, $|s| \ll 1$, one gets (1.7). As for (1.8) distinguish these cases:

- (i) When $\epsilon > 0$ one takes $s \in \mathbb{R}^+$, $|s| \gg 1$ and gets $s_{\lambda_1/l_0}^- = 0$, $s_{\lambda_2/l_0}^- = 1$.
- (ii) When $\epsilon < 0$, one takes $s \in \mathbb{R}^-$, $|s| \gg 1$, and gets $s_{\lambda_1/l_0}^- = 1$, $s_{\lambda_2/l_0}^- = 0$.

Q.E.D.

Let χ be a germ of contact transformation between a neighborhood of p and a neighborhood of $q : \stackrel{\text{def.}}{=} \chi(p)$ which interchanges Λ_i to Λ'_i , put $d_i(p') = d_{\lambda_i/\lambda_0}(p')$, $d'_i(q') = d_{\lambda'_i/\lambda_0}(q')$, and similarly define $c_i(p') = c_{\lambda_i/\lambda_0}(p')$, $c'_i(q') = c_{\lambda'_i/\lambda_0}(q')$. We recall that when $c_i(p')$ and $c'_i(q')$ are constant for p' and q' close to p and q respectively, then $d_i(p') - d'_i(q')$ is also constant. Thus if χ satisfies (1.6) and (1.7), then

$$d_i(p') - d'_i(q') \equiv d_i(p) - 1 \ \forall i = 1, 2 \ (q' = \chi(p')).$$

(The above equality also holds for i=1 (resp. i=2), when χ satisfies (1.6) and (1.8) (i) (resp. (1.8) (ii)). We now assume that Λ_1^+ , Λ_2^+ are \mathbb{R} -Lagrangian manifolds with boundary Σ in a neighborhood of p which intersect along Σ , and put $\Lambda = \Lambda_1^+ \cup \Lambda_2^+$; we call Λ a dihedral Lagrangian manifold. We extend Λ_i^+ to Λ_i , defined from both sides of Σ , and set $\Lambda_i^- = (\Lambda_i \setminus \Lambda_i^+) \cup \Sigma$, $\Lambda_i^\pm = \Lambda_i^\pm \setminus \Sigma$.

THEOREM 1.2. Let $\Lambda = \Lambda_1^+ \cup \Lambda_2^+$. Assume that $c_i(p') \equiv \text{const} \, \forall p' \in \Lambda_i$, and that

- (1.9) $\Lambda_1 \cap \Lambda_2$ is \mathbb{I} -regular, clean, of codim 1 in Λ_i .
- (i) Then we may find a contact transformation χ between neighborhoods of p and $q = \chi(p)$ such that

(1.10)
$$\chi(\Lambda) = T_v^* X \quad \text{where Y is a } C^1\text{-hypersurface}.$$

Moreover Y is the union of two half-hypersurfaces $M_1^+ \cup M_2^+$ with the M_i 's satisfying (1.7) or (1.8).

(ii) Let $\mathcal F$ be a simple sheaf with shift $\frac12c_1$ in $\overset{\circ}\Lambda^+_1$ which satisfies $SS(\mathcal F)\subset\Lambda$. By quantizing χ with a kernel K, we get

(1.11)
$$\Phi_{K}(\mathcal{F}) \simeq \begin{cases} \mathbb{Z}_{Y}[d_{1}(p) - 1] & \text{for (1.7) or (1.8) (i)} \\ \mathbb{Z}_{Y}[d_{1}(p) - 2] & \text{for (1.8) (ii)}. \end{cases}$$

Proof. For χ_1 satisfying (1.7), we put $R = \pi(T_{M_1}^*X \cap T_{M_2}^*X)$, $T_{M_i}^*X^+ = \chi_1(\Lambda_i^+)$, $M_i^+ = \pi(T_{M_i}^*X)^+$, $q' = \chi_1(p')$; we also denote by $T_{M_i}^*X^-$ and M_i^- the other components of $T_{M_i}^*X \setminus (T_{M_1}^*X \cap T_{M_2}^*X)$ and $M_i \setminus R$ respectively. For χ_2 satisfying (1.8) we shall use similar notations \tilde{R} , $T_{\tilde{M}_i}^*X^\pm$, \tilde{M}_i^\pm , \tilde{q} We recall that $s_{M_i}^-(q') - s_{\tilde{M}_i}^-(\tilde{q}')$ is constant for $q' \in T_{M_i}^*X$ near q, and that

$$(1.12) s_{M_1}^- - s_{\tilde{M}_1}^- \neq s_{M_2}^- - s_{\tilde{M}_2}^-.$$

Clearly either $M_1^+ \cup M_2^+$ or $M_1^+ \cup M_2^-$ (resp. $\tilde{M}_1^+ \cup \tilde{M}_2^+$ or $\tilde{M}_1^+ \cup \tilde{M}_2^-$) is a C^1 -hypersurface Y (resp. \tilde{Y}). But by (1.12), \mathbb{Z}_Y is transformed, by a quantization of $\chi_2 \circ \chi_1^{-1}$, to a complex whose shifts are different in the two components of $T_{\tilde{M}_1}^* X^+ \setminus (T_{\tilde{M}_1}^* X \cap T_{\tilde{M}_2}^* X)$. Thus by [K-S 1, Prop. 6.2.1], in the extension stated in [D'A-Z 1], we have $\chi_2 \circ \chi_1^{-1}(T_Y^* X) \neq T_{\tilde{Y}}^* X$. In conclusion $\chi = \chi_1$ or $\chi = \chi_2$ satisfies (i).

As for (ii), if Φ_{K_1} (resp. Φ_{K_2}) is a quantization of χ_1 (resp. χ_2), then either $SS(\Phi_{K_1}(\mathcal{F})) = T_Y^*X$ or $SS(\Phi_{K_2}(\mathcal{F})) = T_{\tilde{Y}}^*X$. A direct computation of shifts then gives (1.11).

Remark 1.3. Given Λ_1^+ , Λ_2^+ , Λ_2^- with $\Lambda_1^+ \cap \Lambda_2^+$ smooth \mathbb{I} -regular of codim 1 in Λ_i^+ , it is easy to see that in order to transform both $\Lambda_1^+ \cup \Lambda_2^+$ and $\Lambda_1^+ \cup \Lambda_2^-$ (by different χ) to T_Y^*X with $Y \in C^1$, the cleaness of $\Lambda_1 \cap \Lambda_2$ is necessary.

Remark 1.4. When the intersection $T_{M_1}^*X\cap T_{M_2}^*X$ (M_i hypersurfaces) is clean of codimension 1, then one easily checks that the order of contact of M_1 and M_2 along $R=\pi(T_{M_1}^*X\cap T_{M_2}^*X)$ is exactly 2. In fact if for real coordinates $t=(t_1,t_2,t')$, one writes $M_1=\{t_1=0\}$, $R=\{t_1=t_2=0\}$, $M_2=\{t_1=h(t_2)\}$ ($h=O(t_2^2)$), $p=(0;dt_1)$, one gets $\lambda_{M_2}=\{u;t_1,\partial_{t_2}^2h\ u_2,\ldots)$: $u_1=0\}$. Then $\lambda_{M_1}\cap\lambda_{M_2}\subset T(R\times_{M_2}T_{M_2}^*X)$ means $\partial_{t_2}^2h\neq 0$. Thus $R=M_1\cap M_2$, and if one denotes by Σ_i , i=1,2, the closed half-spaces with boundary M_i and interior conormal q, one has $\Sigma_1\supset\Sigma_2$ or $\Sigma_1\subset\Sigma_2$. Notice that in passing from (1.7), to (1.8) the inclusions are reverted; thus in (1.7), $\Sigma_1\supset\Sigma_2$ (resp. $\Sigma_1\subset\Sigma_2$) corresponds to (ii) (resp. (i)) of (1.8). We also mention that the inclusion $\Sigma_1\supset\Sigma_2$ or $\Sigma_1\subset\Sigma_2$ in (1.7), is related to an intrinsic notion of "positivity" $\Lambda_1>\Lambda_2$ or $\Lambda_1<\Lambda_2$ defined in [D'A-Z 4].

Remark 1.5. Let $\Lambda_1 = T_M^*X$, $\Lambda_2 = T_S^*X$ where S, M are C^2 -submanifolds of X with $S \subset M$; then the intersection $\Lambda_1 \cap \Lambda_2$ is always clean. We also assume $\sqrt{-1}p \notin T_S^*X$ (i.e. $S \times_M T_M^*X$ regular) and $\operatorname{codim}_M S = 1$. Then the orientation of S in M, which determines the positive and negative components Ω^\pm of $M \setminus S$ and Λ_1^\pm of $\Lambda_1 \setminus (\Lambda_1 \cap \Lambda_2)$, determines also, via the Hamiltonian isomorphism, the components Λ_2^\pm of $\Lambda_2 \setminus (\Lambda_1 \cap \Lambda_2)$. (Note that in our general notations the sign \pm in Λ_2^\pm has no geometric meaning.) Then if $\Lambda = \Lambda_1^+ \cup \Lambda_2^+$ (resp. $\Lambda = \Lambda_1^+ \cup \Lambda_2^-$) the complex $\mathcal F$ which satisfies $\operatorname{SS}(\mathcal F) \subset \Lambda$ and which is simple with shift $\frac12$ codim M along M is $\mathbb Z_{\tilde{\Omega}^+}$ (resp. $\mathbb Z_{\Omega^+}$). For these complexes Th. 1.2 applies.

Section 2

Let M_i^+ , i=1,2 be C^2 -hypersurfaces of $X \simeq \mathbb{C}^n$ with boundary R which verify $TM_1|_R = TM_2|_R$, and let $p \in R \times_{M_i} T_{M_i}^* X$, $\pi(p) = z_o$.

LEMMA 2.1. Let $Y = M_1^+ \cup M_2^+$ be a C^1 -hypersurface, denote by Σ the closed half-space with boundary Y and interior conormal p, and assume

$$(2.1) s_{M_2}^-(p) = s_R^-(p) + 1.$$

Then

(2.2)
$$\mathcal{H}^1_{\Sigma}(\mathcal{O}_X)_{z_o} = 0.$$

Proof. Because of (2.1), R must be "generic"; i.e., in our case, $\dim(T^{\mathbb{C}}R) = n-2$. We take complex coordinates $z = x + \sqrt{-1}y$, $z = (z_1, z_2, z')$ such that $z_0 = 0$ and

$$M_2 = \left\{ z \colon -y_1 = y_2^2 + \sum_{i=3}^{s^-+1} y_i^2 - \sum_{i=s^-+2}^{s^-+s^++1} y_i^2 + o(\cdot)^2 \right\},$$

$$R = \left\{ z \in M_2 \colon y_2 = \phi(z', \overline{z}') + o(\cdot)^2 \right\},$$

where ϕ is real valued, $\phi = O(|z'|)^2$ and where \cdot denotes all arguments but y_1 (resp. y_1, y_2) in the first (resp. second) line. We also suppose that $p = -\mathrm{d}y_1$ and $M_2^{\pm} = \{z \in M_2: \pm y_2 \ge \phi + o(\cdot)^2\}$. Fix $z_3 = \cdots = 0$ and in the (z_1, z_2) -plane define the sets

$$I = \left\{ y_1 = \epsilon, \, -\delta < y_2 \le t \right\} \cup \left\{ y_2 = t, \, \frac{-t^2}{2} < y_1 \le \epsilon \right\}$$

$$J = \left\{ -\delta < y_2 < t, \, \epsilon - \frac{t}{3} (y_2 + \delta) < y_1 < \epsilon \right\},$$

with $\delta = \eta t$, $\epsilon = \frac{\eta t^2}{4}$, η small, $t \to 0$. Set $B_{ct} = \{|(x_1, x_2)| < ct\}$, $W = X \setminus \Sigma$; then $W \cap \mathbb{C}^2_{z_1, z_2} \supset B_{ct} \times I$ for any large c. By [K, Th. 5] the restriction

$$\mathcal{O}_X(B_{\frac{ct}{2}} \times J) \to \mathcal{O}_X(B_{ct} \times I)|_{B_{\frac{ct}{2}} \times (I \cap J)},$$

is surjective. In particular $(\mathcal{O}_X)_{z_o} \xrightarrow{\sim} \underset{B \ni z_o}{\lim} \mathcal{O}_X(B \cap W)$. Q.E.D.

PROPOSITION 2.2. (Cf. [Z 4].) Let W be a dihedron of \mathbb{C}^n with C^1 -boundary $Y = M_1^+ \cup M_2^+$, each "face" M_i^+ a C^2 -manifold with boundary $R = M_1^+ \cap M_2^+$. Let $z_o \in Y$,

denote by p_o the exterior conormal to W at z_o , and set $S^- = \sup_{M_i} s_{M_i}^-(p')$ for i = 1, 2 and for $p' \in (M_i^+ \times_X T_{M_i}^* X) \cap B$ (B a neighborhood of p_o). Then

(2.3)
$$\lim_{\substack{\longrightarrow B\ni z_o}} H^j(W\cap B, \mathcal{O}_X) = 0 \quad \forall j > S^-.$$

Proof. We choose coordinates such that $z_o = 0$, $p_o = (1, 0, ...)$. We can then describe Y (resp. W) as a graph $x_1 = g(\cdot)$ (resp. as a subgraph $x_1 < g(\cdot)$) with $g(\cdot) = o(\cdot)$ where "·" denotes all arguments but x_1 . We put

$$\phi = -\log(g - x_1) + c|z|^2,$$

and denote by $s_{\phi}^{-}(z)$ the number of negative eigenvalues of the Levi-form $\bar{\partial}\partial\phi(z)$. Let $S=\{z=z^*+\mathbb{R}p_o|z^*\in R\}$, and let $\overset{\circ}{W_i}$ be the components of $W\setminus S$. Clearly $g,\ \phi\in C^2(W\setminus S)\cap C^1(W)$ and for $z=z^*+rp_o\in \overset{\circ}{W_i}$ we have

$$\bar{\partial} \partial \phi(z)^t(\bar{w}, w) = (g - x_1)^{-2} \left(\partial (g - x_1) \cdot w \bar{\partial} (g - x_1) \cdot \bar{w} \right) - (g - x_1)^{-1} \bar{\partial} \partial g(z^*)^t(\bar{w}, w) + c|w|^2.$$

Thus if the projection w' of w on $T^{\mathbb{C}}M$ satisfies $-\bar{\partial} \partial g(z^*)^t \bar{w}' w' \geq 0$ and if c is large enough, then for suitable c',

$$\bar{\partial} \partial \phi(z)(\bar{w}, w) > c'|w|^2.$$

It follows that

(2.4)
$$s_{\phi}^{-}(z) = s_{M_i}^{-}(z^*) \quad \forall z \in \mathring{W}_i.$$

We make now a C^0 -change of holomorphic derivatives ∂_{z_i} such that

$$T_z^{\mathbb{C}}S = \operatorname{Span}\{\partial_{z_1}, \ldots, \partial_{z_{n-1}}\} \quad \forall z \in S.$$

We also write $\bar{\partial}'$ instead of $\bar{\partial}_{z_1}, \ldots, \bar{\partial}_{z_{n-1}}$. By noticing that W is foliated by the (C^1) level surfaces $Y_r = \{g - x_1 = r\} r \in \mathbb{R}^+$, one concludes that for $\phi_i = \phi|_{\bar{W}_i}$,

$$\partial \phi_1|_S \equiv \partial \phi_2|_S$$
.

which implies

$$\bar{\partial}'\partial\phi_1|_S \equiv \bar{\partial}'\partial\phi_2|_S.$$

The argument which leads to (2.4) implies $s^-(\bar{\partial}'\partial'\phi_i) = s^-(\bar{\partial}'\partial'\phi_i)_{\mathbb{C}^{n-2}_{z_2...z_{n-1}}}$ and $s^+(\bar{\partial}'\partial'\phi_i) = n-1-s^-(\bar{\partial}'\partial'\phi_i)$; in particular, $\bar{\partial}'\partial'\phi_i$ is non-degenerate. It follows that we can diagonalize $\bar{\partial}\partial\phi_1$ (or $\bar{\partial}\partial\phi_2$) by a change of holomorphic derivatives preserving Span{ ∂' }. Thus in a suitable basis of the ∂_{z_i} 's,

$$\bar{\partial} \partial \phi_1|_{\bar{W}_1}$$
, $\bar{\partial} \partial \phi_2|_{\bar{W}_2}$ are diagonal.

168 G. ZAMPIERI

Thus from (2.4) (possibly by a permutation of the ∂_{z_i} 's) we get

(2.5)
$$\sum_{i,j \leq n} \partial_{z_i} \bar{\partial}_{z_j} \phi(z) \bar{w}_i w_j - \sum_{i \leq S^-} \partial_{z_i} \bar{\partial}_{z_i} \phi(z) |w_i|^2 \geq c(z) |w''|^2$$

 $(w'' = (w_{n-S^-+1}, \ldots, w_n))$. Once (2.5) is established, we can adapt the calculus of L^2 -norms with weight $e^{-\phi}$ by [H, Ch. 4–5], and get the conclusion (cf. [Z 4 Th. 2.2 and Remark 2.4]).

Remark 2.3. Let W be a dihedron with transversal faces M_1^+ , M_2^+ , and suppose TW is non-convex. In this case, if we define $S^- = \sup(\sup_{N(W)^{oa}} s_{M_1}^-, \sup_{N(W)^{oa}} s_{M_2}^-, \sup_{N(W)^{oa}} s_R^- + 1)$, where $N(W)^{oa}$ is the exterior conormal cone to W, then (2.3) still holds true for this new S^- . In fact if we set $S_i = \{z \in W; z - z^* \in R \times_{M_i} T_{M_i}^* X\}$, then $\phi = -\log \delta + c|z|^2$ is C^1 on W and C^2 on W_i . Moreover $s_{\phi}^- \leq S^-$ by the same argument as in Proposition 2.2. Thus [Z 4] still applies.

Let Λ_i^+ , i=1,2 be \mathbb{R} -Lagrangian submanifolds of T^*X with boundary Σ which intersect along Σ , let $\Lambda=\Lambda_1^+\cup\Lambda_2^+$, and let $c_i=c_{\lambda_i/\lambda_0}$. Recall the bifunctor $\mu \operatorname{hom}(\cdot,\cdot)$ from [K-S 1].

THEOREM 2.4. Let $c_i \equiv \text{const in } \Lambda_i$ and suppose $\Lambda_1 \cap \Lambda_2$ is regular (for $\sigma^{\mathbb{I}}$) clean of codim 1 in Λ_i . Let \mathcal{F} be simple with shift $\frac{1}{2}c_1$ in $\overset{\circ}{\Lambda}_1^+$ and satisfy $SS(\mathcal{F}) \subset \Lambda$. Then

$$(2.6) H^{j} \mu \hom(\mathcal{F}, \mathcal{O}_{X})_{p} = 0 \quad \forall j \notin [d_{1}(p), \sup_{i, p'} d_{i}(p')] \quad \text{with } p' \in \Lambda_{i}^{+} \cap \pi^{-1}(B).$$

Proof. Let χ be the contact transformation between neighborhoods of p and q defined in Theorem 1.2. We have $\chi(\Lambda) = T_Y^*X$ where $Y = M_1^+ \cup M_2^+$ is a C^{1-} hypersurface with the $M_i's$ satisfying (1.7) or (1.8). By quantization we transform

$$\Phi_K(\mathcal{F}) \xrightarrow{\sim} \begin{cases} \mathbb{Z}_Y[d_1 - 1] & \text{in (1.7) and in (1.8) (i)} \\ \mathbb{Z}_Y[d_1 - 2] & \text{in (1.8) (ii)}. \end{cases}$$

If Σ is the closed half-space with boundary Y and interior conormal q, then

$$\mu \operatorname{hom}(\mathcal{F}, \mathcal{O}_X) \simeq R\Gamma_{\Sigma}(\mathcal{O}_X)[-d_1+1] \text{ (or } [-d_1+2]).$$

Now $H^j R\Gamma_{\Sigma}(\mathcal{O}_X)[+1] = 0 \,\forall j < 0$ and even $\forall j \leq 0$ in (1.8) (due to Lemma 2.1). Thus we get 0 in (2.6) $\forall j < d_1(p)$. As for the vanishing for large j, we remark that for $q' = \chi(p')$,

$$s_{M_i}^-(q') \equiv d_i(p') - d_i(p) \quad (\text{resp.} \equiv d_i(p') - d_i(p) + 1)$$

if $s_{M_i}^-(q) = 0$ (resp. $s_{M_i}^-(q) = 1$). The conclusion then follows from Proposition 2.2. Q.E.D.

For $A \subset X$ locally closed, we put $\mu_A(\mathcal{F}) \stackrel{\text{def.}}{=} \mu \text{ hom}(\mathbb{Z}_A, \mathcal{F})$.

COROLLARY 2.5. (Cf. [D'A-Z 3].) Let $S \subset M$ be (C^2) -submanifolds of X with $\operatorname{codim}_M S = 1$, $\sqrt{-1}p \notin T_S^*X$, let Ω $(\bar{\Omega})$ be an open (closed) component of $M \setminus S$, and put $\Lambda_1 = T_M^*X$, $\Lambda_2 = T_S^*X$. Then

$$H^{j}\mu_{\Omega}(\mathcal{O}_{X})_{p} = 0 \quad \forall j \notin [d_{1}(p), \sup_{p'} d_{1}(p') \vee (\sup_{p'} d_{2}(p') - 1)]$$
$$(p' \in \Lambda_{i}^{+} \cap \pi^{-1}(B))$$

$$(2.7) H^{j} \mu_{\tilde{\Omega}}(\mathcal{O}_{X})_{p} = 0 \quad \forall j \notin [d_{2}(p), \sup_{i, p'} d_{i}(p')] \quad (p' \in \Lambda_{i}^{+} \cap \pi^{-1}(B)).$$

PROPOSITION 2.6. (Cf. [Z].) Let $W \subset X \simeq \mathbb{C}^n$ be a dihedron with transversal faces M_1^+ , M_2^+ and with generic "edge" $R = M_1^+ \cap M_2^+$ in a neighborhood of $z_o \in \partial W$. Denote by $N(W)^{oa}$ the exterior conormal cone to W and put

$$s^{-} = \begin{cases} \inf_{p' \in N_{z_o}(W)^{oa}} s_R^{-}(p') & \text{if } TW \text{ is convex} \\ \inf_{p' \in N_{z_o}(W)^{oa}} s_R^{-}(p') + 1 & \text{if } TW \text{ is non-convex} \end{cases}$$

Then if B ranges through a fundamental system of neighborhoods of z_o , we have

(2.8)
$$\lim_{\substack{\longrightarrow \\ B \ni z_o}} H^j(W \cap B, \mathcal{O}_X) = 0 \quad \forall j < s^-,$$

(and $\lim_{X \to \infty} H^0(B, \mathcal{O}_X) \twoheadrightarrow \lim_{X \to \infty} H^0(W \cap B, \mathcal{O}_X)$ is surjective if $s^- \geq 1$).

Proof. Assume first TW is convex. Let p_1 , p_2 be the unitary conormals to M_1 , M_2 at z_o exterior to W; one has $\mu_W(\mathcal{O}_X) \xrightarrow{\sim} \mu_{\stackrel{\circ}{M_i}}(\mathcal{O}_X)[+1]$ at p_i i=1,2, and $\mu_W(\mathcal{O}_X) \xrightarrow{\sim} \mu_R(\mathcal{O}_X)[2]$ at $p \in \dot{N}_{z_o}(W)^{oa}/\mathbb{R}^+$, $p \neq p_1$, p_2 . From the distinguished triangle in $D^b(X)$,

$$(\mathcal{O}_X)_{\bar{w}} \to R\Gamma_W(\mathcal{O}_X) \to R\dot{\pi}_*\mu_W(\mathcal{O}_X),$$

one concludes that (2.8) is 0 for $j < s^-$, $j \neq 0$, and that $(\mathcal{O}_X)_{\bar{W}} \twoheadrightarrow R\Gamma_W(\mathcal{O}_X)$ is surjective when $s^- \geq 1$.

Now let TW be non-convex. In this case one has $\mu_W(\mathcal{O}_X) \simeq \mu_{M_i^+}(\mathcal{O}_X)[1]$ at p_i , i=1,2, and $\mu_W(\mathcal{O}_X) \simeq \mu_R(\mathcal{O}_X)[+1]$ at $p \in \dot{N}_{z_0}(W)^{oa}/\mathbb{R}^+$, $p \neq p_1$, p_2 . By Corollary 2.5 we get the conclusion in the same way as in the preceding case. Q.E.D.

REFERENCES

[A-G] A. Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des éspaces complexes*, Bull. Soc. Math. France **90**, (1962), 193–259.

[B-R-T] M. S. Baouendi, L. P. Rothschild and F. Treves CR Structures with group action and extendability of CR functions, Invent. Math. 82 (1985), 359-396. [D'A-Z 1] A. D'Agnolo and G. Zampieri, A propagation theorem for a class of microfunctions at the boundary, Rend. Acc. Naz. Lincei 9 (1) (1990), 54-58. [D'A-Z 2] . , Generalized Levi's form for microdifferential systems, ${\cal D}$ -modules and microlocal geometry Walter de Gruyter and Co., New York, 1992, pp. 25-35. [D'A-Z 3] _, Vanishing theorem for sheaves of microfunctions at the boundary on CR manifolds, Comm. Partial Differential Equations 17 (5, 6) (1992), 989–999. [D'A-Z 4] _, Microlocal direct images of simple sheaves with applications to systems with simple characteristics, Bull. Soc. Math. France 23 (1995), 101-133. [D'A-Z 5] . _, On microfunctions at the boundary along CR manifolds, Compositio Math. (1996), to appear. L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, [H] Princeton N. J., 1966. [K] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **19** (1972), 201–214. [K-K] M. Kashiwara and T. Kawai, On the boundary value problems for elliptic systems of linear differential equations, Proc. Japan Acad. 48, 49 (1971, 1972), 712-715, 164-168. [K-S 1] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque 128, (1985). [K-S 2] , A vanishing theorem for a class of systems with simple characteristics, Invent. Math. 82 (1985), 579-592. [S] P. Schapira, Condition de positivité dans une variété symplectique complexe. Applications à l'étude des microfunctions, Ann. Sci. École Norm. Sup. 14 (1981), 121-139. [S-K-K] M. Sato, M. Kashiwara, and T. Kawai, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math., no. 287, Springer-Verlag, New York, 1973, pp. 265–529. [T] J. M. Trépreau Systèmes differentiels à caractéristiques simples et structures réelles-complexes (d'après Baouendi-Trèves et Sato-Kashiwara-Kawai), Sém. Bourbaki 595, 1981-82. G. Zampieri, "Pseudoconvexity and pseudoconcavity" in Complex geometry, Lecture Notes in [Z 1]Pure and Applied Math., no. 173, Marcel Dekker, New York, 1995, pp. 541-554. , The Andreotti-Grauert vanishing theorem for dihedrons of \mathbb{C}^n , J. Math. Sci. Univ. [Z 2]Tokyo 2 (1995), 233-246. [Z3]_, Simple sheaves along dihedral Lagrangians, J. Analyse Math. 66 (1995), 331–344. [Z4]_, L²-estimates with Levi-singular weight, and existence for $\bar{\partial}$, Preprint, 1996.

Dipartmento di Matematica, Univesità v. Belzoni 7, 35131 Padova, Italy zampieri@galileo.math.unipd.it