CORRECTION TO MY PAPER "UNIFORM AND STRONG ERGODIC THEOREMS IN BANACH SPACES"

TAKESHI YOSHIMOTO

We use some notations and terminology from [1] and [4]. Let $C_0[0, 1]$ be the space of functions f(x) continuous for $0 \le x \le 1$ which vanish at 0, with $||f|| = \max |f(x)|$. For any real number $\beta > 0$ we define

$$Q_{\beta}f = (I - J_{\beta})f, \quad (J_{\beta}f)(x) = [\Gamma(\beta)]^{-1} \int_0^x (x - u)^{\beta - 1} f(u) \, du$$

for $f \in C_0[0, 1]$ and $0 \le x \le 1$. Then for each integer $n \ge 1$ the n^{th} iterate Q_{β}^n has the form

$$(Q_{\beta}^{n}f)(x) = f(x) - \int_{0}^{x} P_{n}(x-u,\beta)f(u) du$$

where

$$P_n(w,\beta) = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} [\Gamma(k\beta)]^{-1} w^{k\beta-1}.$$

The kernel $P_n(w, \beta)$ used in the inequalities cited as Hille's estimates on pages 534 and 542 of [4] should be replaced by the Laguerre polynomial $L_n(w, \beta)$ (cf. [2], Chapter V):

$$L_n(w, \beta) = \sum_{k=0}^n (-1)^k \binom{n+\beta}{n-k} \frac{w^k}{k!}.$$

In this case, the estimate for $||T_{\beta}^{n}||$ on page 535 of [4], however, need not be satisfied. Instead, we define $T_{\beta} = \Gamma(\beta + 1)Q_{1}J_{\beta}$ for $\beta \ge 3/2$. Since $||J_{\beta}|| \le 1/\Gamma(\beta + 1)$, it follows that $||T_{\beta}^{n}|| \le ||Q_{1}^{n}|| = O(n^{1/4})$. T_{β} is compact, because J_{β} is compact as a Volterra integral operator. Therefore T_{β} turns out to be uniformly (C, α) ergodic for $\alpha > 1/4$ by Theorem 3.1 of [3]. Finally, the case $-1 < \beta < 3/2$ in Remark 2 of [4] should be replaced by the case $0 \le \beta \le 1$. This finishes the correction.

Incidentally, we remark that the operator T_{β} satisfies the following conditions:

(i) The point $\lambda = 1$ is either in the resolvent set $\rho(T_{\beta})$ or else a simple pole of the resolvent $R(\lambda; T_{\beta})$.

© 1999 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 30, 1999.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A35; Secondary 40E05.

CORRECTION TO MY PAPER

- (ii) The ascent and descent of $I T_{\beta}$ are both equal to 1.
- (iii) $I T_{\beta}$ is a quasi-Fredholm operator.
- (iv) $(I T_{\beta})^k C_0[0, 1]$ (and $(I T_{\beta})^k L_1(0, 1)$) is closed for any integer $k \ge 1$. (v) $\operatorname{Ker}(I T_{\beta})^k + (I T_{\beta})^k C_0[0, 1]$ (and $\operatorname{Ker}(I T_{\beta})^k + (I T_{\beta})^k L_1(0, 1)$) is closed for any integer k > 1.

REFERENCES

- 1. E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246-269.
- 2. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, RI, 1939.
- 3. T. Yoshimoto, On the speed of convergence in the (C, α) uniform ergodic theorem for quasi-compact operators, J. Math. Anal. Appl. 176 (1993), 413-422.
- _____, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525-4. _ 543.

Toyo University, Kawagoe, Saitama 350-8585, Japan