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SOME REMARKS ON THE WHITEHEAD
ASPHERICITY CONJECTURE

S. V. IVANOV

ABSTRACT. The Whitehead asphericity conjecture claims that if (‘411R) is an aspherical group presenta-
tion, then for every ,5 C TO,. the subpresentation (.All,q) is also aspherical. It is proven that if the Whitehead
conjecture is false then there is an aspherical presentation E (‘411T,. t3 {z}) of the trivial group E,
where the alphabet ,4 is finite or countably infinite and z ,4, such that its subpresentation (,411T.) is
not aspherical. It is also proven that if the Whitehead conjecture fails for finite presentations (i.e., with
finite ,4 and 7Z) then there is a finite aspherical presentation (,4117Z), T,. {Rl, R2 Rn}, such that for
every ,5

_
7Z the subpresentation (,411S) is aspherical and the subpresentation (,411R R2, R3 Rn) of

aspherical (,41IRI R2, R2, R3 Rn) is not aspherical.

Introduction

The Whitehead asphericity conjecture (originally stated as a question in [W])
claims that every subcomplex L of an aspherical 2-complex K (meaning r2(K) O)
is also aspherical. Due to Howie [H it is known that if the Whitehead asphericity
conjecture is false then there exists a counterexample (L, K) of one of the following
two types:

1. K is a finite aspherical contractible 2-complex and L is non-aspherical sub-
complex of K obtained from K by removing one 2-cell.

2. K is an aspherical contractible 2-complex, K 1.3=lLi, Li C Li+l, the
inclusion Li -+ Li+l is nullhomotopic, each Li is finite and is not aspherical.

Recently Luft [L] reproved Howie’s result and showed that the existence of a
counterexample of type implies the existence of a counterexample of type 2.

Recall that a group presentation G (.4117Z>, where ,4 is a group alphabet, is
a set of defining relators (which are reduced words in the free group F(,4) over ,4),
is called aspherical if the standard 2-complex K associated with the presentation
G (.411) (K has a single vertex and zrl (K) G) is aspherical. The asphericity
of G (.4117Z) can be rephrased in group-theoretic terms as follows (see [GR]): The
relation module .A4(G) of G (AIITZ) is freely generated by images of the relators
R R. Accordingly, the Whitehead asphericity conjecture then states that every
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subpresentation (.AIIR/) of an aspherical presentation (AIIT), where R.’
_
R, is also

aspherical. In this note, we will show that it is possible to assume in the Whitehead
asphericity conjecture that the removed part R \ R’ of7 is just a letter of .A. Recall
that a presentation is calledfinite if both f[ and R are finite.

THEOREM 1. /f the Whitehead asphericity conjecture is false then there is an
aspherical presentation E (AIIR t_J {z}) ofthe trivial group E, where the alphabet
t isfinite or countably infinite and z E Jr, such that its subpresentation (.A[[7) is not
aspherical. In addition, if there is a finite presentation giving a counterexample to
the Whitehead asphericity conjecture, then there is afinite presentation (.AIIR {z})
such that its subpresentation (AIITZ) is not aspherical.

Recall that elementary Andrews-Curtis transformations over a group presentation
(AllTZ) of types (T1)-(T3) are defined as follows:

(TI) Add a new letter b A to both 4 and R.
(T2) If a E 4, a R, and a, a -l do not occur in relators R R \ {a} then delete

a in both A and R.
(T3) Replace R R by RCSC-l, where e, {-+-1}, C F(.A), and S

7\ {R].

Two finite presentations are called Andrews-Curtis equivalent if one of them can
be obtained from the other by a finite sequence of elementary Andrews-Curtis trans-
formations. (Recall that another major problem of low dimensional topology, the
so-called Andrews-Curtis conjecture [AC], asks whether a finite aspherical presen-
tation of the trivial group is Andrews-Curtis equivalent to (ALIA).)

Clearly, transformations (T1)-(T3) preserve the asphericity ofa presentation
Moreover, (TI)-(T2) evidently preserve the asphericity of subpresentations. Whether
(T3) preserves the asphericity of subpresentations is unclear and turns out to be equiv-
alent to the Whitehead asphericity conjecture for finite presentations following from
the next result.

THEOREM 2. Suppose (AllT) is a finite aspherical presentation. Then
is Andrews-Curtis equivalent (with a single (Tl), no (72) and several (T3)’s) to a

finite aspherical presentation (B[[S) such thatfor every S’ c_ S the subpresentation
(B[[S’) is aspherical.

For2-complexes (see IS] or [H2] for definitions), Theorem 2 implies:

COROLLARY. Every finite aspherical 2-complex can be 3-deformed to a finite
2-complex all ofwhose subcomplexes are aspherical.

Technical details in proving Theorem 2 enable us to sharpen the equivalence be-
tween the Whitehead asphericity conjecture for finite presentations and preservation
of asphericity of subpresentations under (T3) as follows.
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THEOREM 3. If the Whitehead asphericity conjecture isfalseforfinite presenta-
tions then there is a finite aspherical presentation (411R), {R, RE Rn},
such thatfor every 7"’ c_ 7" the subpresentation (411R’) is aspherical andthe subp-
resentation (.AIIRIR2, R3 Rn ofaspherical (411RIR2, R:z, R3 Rn) is not
aspherical.

The proofs of Theorems 1-3 will be based on ideas of small cancellation theory
(see [LS], [O]) and given in Section 2.

1. Preliminaries

Let a group G be given by a presentation

G

where 4 is an alphabet, 4 {ai I}, and R {Rj j J} is the set of
defining relators of G such that each Rj is a nonempty cyclically reduced word over

By a disk map M we mean, as in [LS] and [O], a finite, planar, connected and
simply connected simplicial 2-complex. Similarly, a spherical map is a finite 2-
complex which is located on a 2-sphere and has no boundary. 0-, 1-, 2-cells of M are
called vertices, edges, cells of M, respectively.
A disk (resp. spherical) diagram A over G given by (1) is a disk (resp. spherical)

map that is equipped with a labeling function q from the set of oriented edges of A
to the alphabet 4+ such that:

(LI) If b(e) a, then q(e-t) a-t.
(L2) If FI is a cell in A and OH e... ek is the boundary cycle of H, where

et ek are oriented edges, then b(0Fl) b(et)...b(e) is a cyclic
permutation of R, where e 4-l, R 7.

It is convenient to fix the positive (counterclockwise) orientation for the boundary
0 FI of a cell FI in A and the negative (clockwise) orientation for the boundary 0A (if
any) of a diagram A.

If e is an oriented edge in a diagram A then e_ and e+ will denote the initial and
terminal vertices of e, respectively.

Let e be an oriented edge, Fit, FI2 cells in a diagram A, and e 0 H 1, e- 0 FI2.
The cells FI, l-I2 in A are said to be a reducible pair provided the label b(0 FII le_)
of the (oriented) boundary 0 File_ starting at e_ is graphically (i.e., letter-by-letter)
equal to (0rlale_)-. A diagram A over G (AIIR) is termed reduced provided
A contains no reducible pairs of cells.

If X, Y are words over 4+ then X Y will denote the equality in the free group
F(t). The graphical (letter-by-letter) equality of X and Y is denoted by X Y.
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The following lemma due to van Kampen is straightforward (see [LS], [O]); recall
that a cyclic word is a word written on a circle).

LEMMA 1. A nonempty cyclic word W equals in the group G (AII) ifand
only if there is a reduced disk diagram A over G such that cp (0 A) W.

2. Proofs of Theorems 1-3

Let (AIIT) be an aspherical group presentation, where ,4 is finite or countably
infinite, and its subpresentation (tllS), where S c R is finite, be not aspherical.

Let y 4 be a letter that occurs in some relator R 6 ,.3 and y - in the group
given by (,411S) (if there were no such letter the subpresentation (AIIS) would be
obviously aspherical contrary to the assumption).

Let z ’ A be a new letter, K 105, L 102 (we will only require that L be "large
enough" and 4L + 4 < 0.01K), and the words Vt(y, z), 1,2 be defined as
follows:

Vt(y,z) zKtyzKt+IyzKt+2y-lzKt+3y-lzKt+4yzKt+5yzKt+6y-lzKt+7y-1

(1) zKt+4L yzKt+4L+I yzKt+4L+2y-I zKt+4L+3y-I zKt+4L+4.
Now put z 4U {z}, 7"4.0 7a,. \ S, and 7a,.0 {R, R2 }. Consider the

presentations

() (4z IIS co {R V, R2V2 U {z}),

G (AzlIS 3 {R V, R2V2 }),

(4) n

Since every Vt belongs to the normal closure of z in F(Az), presentation (2) is
aspherical (like (.4z II/. t3 {z})).

LEMMA 2. Suppose W W(A) is a word in 4+1 and W in the group G
given by (3). Then W in the group H given by (4).

(3)

Proof Let A be a diagram over G and e an edge of A with 4(e) z+. We
will call such an e a z-edge of A. A cell FI in A will be referred to as a z-fell if I’I
contains z-edges. Clearly, FI is a z-cell if and only if 4(8FI) (RtVt)+1 for some t.
If T is a word in A then ITIz will denote the total number of occurrences of z+l in
T. Let IPlz denote the number of z-edges of a path p in A. Clearly, IPlz Iq(p)lz.

Assume that Lemma 2 is false and pick a disk diagram A over G with 4 (O A) W
such that W is a word in A+l W in G, W in H, and A is minimal relative to
the number Nz ofz-cells in A and, if Nz is fixed, relative to the number of all cells in A.

It is clear that A contains z-cells and there are no z-edges on the boundary 8A of
A. Consequently, if l-I is a z-cell and e 8 FI is a z-edge then e- O FI’, where I-I’
is another z-cell in A.
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By a z-contiguity subdiagram between two z-cells li, 1-I2 in A we mean a sub-
diagram F of A with 0F pq, where p, q are subpaths of 0 I-l l, 0 liE, respectively,
such that p elPl ...el-lplc-lek, q ek lqk-le .qle-, where el, e are
all consecutive z-edges of p and e-1,..., e-1 are all consecutive z-edges of q. A
z-contiguity subdiagram F between z-cells lil, II2 is referred to as maximal if F is
not contained in a bigger z-contiguity subdiagram F’ (relative to 10F’lz).

It follows from the choice of A that if F is a z-contiguity subdiagram in A, then
1-’ has no z-cells (for otherwise, one of subdiagrams Aj in F with O Aj. pjqj
would contain z-cells, contrary to the minimality of A). Therefore, it follows from
definition (1) of words Vt(y, z) that if l-’ is a z-contiguity subdiagram between z-
cells li 1, li2 with 0F pq, where p, q are subpaths of 0 li l, 0 l-I2, respectively,
then there is a subpath r of 0I-I1 such that (r) is a subword of Vt (provided
b (01"I l) (Rt Vtl)+l), r -1 is a subpath of 0I-I2 such that t(r-1) is a subword of Vt2
(provided (01-I2) (Rt2 Vt2)+/-l), and Irlz >_ IPlz/3.

Since A is reduced (following from its choice) and so li1, liE may not form a
reducible pair, it follows from definition (1) again that

Irlz < 2 (min(tl, tE)K 4- 4L 4- 4).

Therefore, it follows from the inequality 4L 4- 4 < 0.01K that

01i1 Irl < 2.1.01K
[’ [0Fl2lz 4L’R’" < -’

whence

(5) Iplz Iplz < 3. 2.1.01K
IOrl,lz’ larl21z 4LK < "Let us construct an auxiliary graph * in A as follows" Pick a vertex on inside

each z-cell FI of A and connect vertices on, and on2 by an edge er provided 1-" is
a maximal z-contiguity subdiagram between rI and 1-I2 so that er goes through a
z-edge of F. It follows from definitions and inequality (5) that every vertex o
is incident to at least 6 edges of and if er, er2.., er,, is a cycle in then k > 3.
Since is planar and connected (following from choice of A), by Euler’s formula
we have V E 4- F 1, where V, E, F are the numbers of vertices, edges, faces
of., respectively. By the above observations, 3F < 2E and 6V < 2E, whence
El3 E 4- 2E/3 0 > 1. This contradiction shows no such A exists and Lemma 2
is proven. El

Now suppose that both 4 and7 are finite, R Rl Rn }, and the presentation
(AIIR) is aspherical. As above, let z ’ 4 be a new letter, let .Az ,4 U {z}, pick
y e .A, and consider two more presentations

(6) (Az R V, R2 V2 Rn Vn, z),

(7) G (.AzllRI Vl, R2 V2 R,, Vn, ZRI V R2 V2 R,, Vn),
where the words Vt Vt (y, z) are defined by (1).
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LEMMA 3. Suppose, c_ {R! VI, Rz V2 Rn Vn zR V R2 V2 Rn Vn
Then the subpresentation

of (7) is aspherical.

Proof. IfS {RI VI, R2V2 RnVn, zR VR2V2 RnVn},thentheaspheric-
ity of presentation (8) follows from the asphericity of (4z IIR u {z}) (recall that all Vt
belong to the normal closure of z).

So we letS 7 R Vl R2 V2 Rn Vn, zR V R2 V2 Rn Vn and A be a spherical
reduced diagram over (8) such that A contains cells and is minimal relative to the
number of cells. Keeping the notation introduced in the proof of Lemma 2, first
assume that there are two cells zr and lI in A and a z-contiguity subdiagram F with
OV pq, where p is a subpath of 0 H, q is a subpath of 0zr, between FI and rr such
that (0zr)+= RiVi and [qlz >- -glOrrlz. Then, by the same argument as in the proof
of Lemma 2 (involving a reference to the analog of Lemma 2 for presentation (8) in
which H F(4)), one has b(0I-l)+1 zRI VIR2V2... RnVn and 0F pq, where
p is a subpath of the arc u of rl with b(u) Vi+ q is a subpath of the arc v of zr with
49(v) Vie and hence one can deform A so that u v-, that is, OF uv-. By
this observation, we may assume that if F is a z-contiguity subdiagram with 0F pq

(we will call such a F exceptional), thenand Iqlz >_ NlOzrlz
q(0zr) +/-! RiVi, b(01l):t:1 ZRl VIR2V2 RnVn, p q-l,

and Iqlz -IOnlz.
As in the proof of Lemma 2, we consider an auxiliary graph in A constructed

as follows" Pick a vertex oF inside each cell zr of A except when zr is a cell with
4)(Ore)+ Ri Vi and there is an exceptional z-contiguity subdiagram between
and a cell zr’ with 4(19zr’): zRI V! R2V2... Rn Vn. Connect vertices o,r, and o
by an edge er provided F is a maximal z-contiguity subdiagram between zr and 7t"2

(clearly, F is not exceptional) so that er goes through a z-edge of F. Since the set
omits at least one relator of the set R V, RE V2 Rn Vn, ZR1VI RE V2... Rn Vn }, it
follows that for every cell FI with (01-I)+1 zR VR2Vz... R,V,, the vertex on is
incident to some edges of . Hence, it now follows from definitions and the analog
of inequality (5) that every vertex o 6 is incident to more than 6 edges of and
if er er: er is a cycle in
Arguing as in the proof of Lemma 2, we get V0 E0 / F0 2 (for 0 is on 2-sphere)
and, on the other hand, 3F0 _< 2E0, 6V0 _< 2E0 which, as in the proof of Lemma 2,
contradicts the existence of A.

Proofof Theorem 1. If the Whitehead asphericity conjecture is false then, ac-
cording to Howie [HI] (see also [L], [I]), there are an aspherical presentation E
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(AllT), where A is finite or countably infinite, ofthe trivial group E and a finite subset
S C 7"Z such that (AII$) is not aspherical. Applying the construction of presentation
(2), it follows from Lemma 2 that we can naturally embed the group H (AllS’)
in the group G given by (3) and, therefore, presentation (3) is not aspherical. Since
(3) is obtained from (2) by deleting the relator z, the first claim of Theorem is
proven. Next, if (AIITZ) is finite and aspherical and (AIIS), S 7Z, is not aspherical,
then, as above, presentation (3) is nonaspherical and obtained from finite aspherical
presentation (2) by deleting relator z. [q

ProofofTheorem 2. Applying a single transformation (T 1) and several transfor-
mations (T3) to a finite aspherical presentation (4117Z) we will get presentation (7)
all of whose subpresentation are aspherical by Lemma 3. I-q

Proofof Theorem 3. Suppose the Whitehead asphericity conjecture fails for fi-
nite presentations and (AIITZ) is a finite aspherical presentation, 7 {R R, },
,S {gl Rm}, m < n, and (411S) is.nonaspherical. Consider presentations
(6) and (7). Note that presentation (6) is also aspherical and its subpresentation
G4zII{R Vl em Vm, z}) is nonaspherical. Also observe that presentation (7) (all
of whose subpresentations are aspherical by Lemma 3) can be obtained from (6) by
n transformations (T3) that are multiplications of the last relator by all preceding
ones. Applying the inverse transformations to get (6) back from (7), we see that the
property of having all subpresentations aspherical must fail at one of these n reverse
steps. This proves Theorem 3. 13
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