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HARDY’S INEQUALITY AND EMBEDDINGS IN
HOLOMORPHIC TRIEBEL-LIZORKIN SPACES

JOAQU[N M. ORTEGA AND JOAN F,BREGA

ABSTRACT. In this work we study some properties ofthe holomorphic TriebeI-Lizorkin spaces H Fspq 0
p, q _< X, S , in the unit ball B ofC motivated by some well-known properties ofthe Hardy-Sobolev
spaces Hsp H Fs

We show that ,n>_o lanl/(n -I- l) ,n>_o anznlIHFd which improves the classical Hardy’s in-

equality for holomorphic functions in the Hardy space H in the disc. Moreover, we give a characterization

of the dual of HFq which includes the classical result (H )* BMOA. Finally, we prove some embed-
dings between holomorphic Triebel-Lizorkin and Besov spaces, and we apply them to obtain some trace
theorems.

1. Introduction

Let B denote the unit ball in Cn, and S its boundary. Let R denote the radial
derivative and I the identity operator. We recall that if f(z) _, cz is holo-
morphic on B and s , then the operator (I + R) is defined by (I + R)f(z)

c(l + Icl)’z.
The holomorphic Triebel-Lizorkin space HFspq, 0 < p < o, 0 < q < o, s

/1, is the space of holomorphic functions f on B such that f nF " (X), where

(fs(f0 [q )IlfllHFffq--" I(I + R)[sl+f) (r() (1- F2) ([sl+-sIq-I dr

for 0 < p,q < o,

dcr())
and [s]+ is the integer part of s + 1.

Observe that H Fspq coincides with (I + R)-’HFq Moreover, for q 2 and
s 0, the norm in HFop2 is the Lp (S)-norm of the Littlewood-Paley g-function,
and therefore HEp2 is the Hardy-Sobolev space H,p. For p q, the space HEpp
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coincides with the holomorphic Besov space HBspp. These spaces are included in

HFf.
In many situations, the properties of the Hardy-Sobolev and Besov spaces have

analogies in all the scale of the Triebel-Lizorkin spaces, which permits us to give an
unified treatment of the results. Therefore, it seems natural to consider the spaces
HFq by themselves. In this context we will study three classical problems.

The first one comes from the duality results (HI)* BMOA (with the non-
isotropic metric d(’, r/) 11 r/I /2) ([C-R-W]) and (HB)* Bloch [An-C-Po].
We would like to give an analogous result for all the scale HFq, < q < cxz.

To solve this problem it is natural to introduce the following definition of HFq.
For( Sandt > 0, letl,t {r/ S;[l-r/I < t}andl.t {z B;ll-z[ <

t}.
We define H Fs:q as the space of holomorphic functions on B such that, the norm

given by

R)tSl+ iq )q--IIIflIF sup I(I + f(Z) (1 --IZ12)tt+-’ dV(z)

for q < o,

IIflIHF. sup I(I + R)tLl/f(z)l(l IZ12) [’1/-, for q o, is finite.
zEB

Observe that if we denote by W the space of non-isotropic Carleson measures on
B then IlfllHFq is just I(I -I- R)tl/ flq(l- Izl2)t’]+-sq-dV(z)II /qw" In particular,
we have HF0 BMOA.

Our first result is the following.

THEOREM A. Let < q < o and let q’ be its conjugate exponent. Then the
dual ofHFq is isomorphic to HFscq’

The duality is given by the pairing

f (i + R)tf(z)(l d- )(z)(1 -Iz12)2k-’- dV(z)(f, g)

for any k > s.

The second topic that we consider in this work is the well-known Hardy’s inequality

n>_O an zn
for holomorphic functions on the unit disc.

To be precise we prove the following theorem, which is a consequence of the
one-dimensional case of Theorem A.
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THEOREM B. Let D be the unit disc ofC, and let f(z) Yk>_o akZ
k be a holo-

morphicfunction in HFd. Then, lal < c lIflIHFdk>_0k+

The above result improves the classical Hardy’s inequality, because H HF02 C
HFd. As a consequence, we can obtain the following version for n > 1.

COROLLARY B. Let f be a holomorphic function in HFn(B) and let f(z)
->_o f(z) be its homogeneous expansion at O. Then

k>0 (k + 1)n Z IIAII,

>_o k-I-

We point out that, for the Hardy space H this result was obtained in [C-W] and
[A-Br].

The third problem that we consider is related to a classical theorem due to Privalov.
It is known that a holomorphic function f on the unit disc has continuous extension
to the closed unit disc with absolutely continuous boundary values if and only if f is
in H. It is also well known that for any n and s nip > 0, the Hardy-Sobolev
space is a subspace of the Lipschitz space At. In the extreme case s nip O,
H.p is a subspace of the space of continuous functions on/) if and only if 0 < p < 1.
Moreover, the restriction of f HP/p, p < on smooth curves 9/of S is absolutely
continuous [A-Br], [B2], [Bu].
A more precise result in all the scale of holomorphic Triebel-Lizorkin spaces is

given by the following theorem.

THEOREM C. For 0 < p, q < cx and s n/p > 0, the space H Fspq B is a
subspace ofthe holomorphic Lipschitz space HF. In the extreme case s n/p,
the space HFq is a subspace ofC ifand only if0 < p <_ 1.

Moreover,for n > and 0 < p < l, the trace off HFnPp on a smooth simple
curve 9/on S is in the Besov space B (9/). In particular, it is absolutely continuous
on 9/.

We obtain this result by methods different from those of the ones used in [A-Br],
[B2] and [Bu] for Hp. Our proof will be a direct consequence of some embedding
results that are of interest by themselves.

The paper is organized as follows. In Section 2, we start recalling some properties
ofthe tent spaces introduced by R. R. Coifman, Y. Meyer and E. M. Stein [C-M-S] and
the relations between these spaces and the spaces HFq. These relations permit us to
prove Theorem A. In Section 3 we use the results of Section 2 to prove Theorem B.
In Section 4, we prove some embeddings between holomorphic Triebel-Lizorkin
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and holomorphic Besov spaces which give Theorem C. Moreover, we complete the
section showing that, for 0 < p, q < x, the space of holomorphic functions in a
neighbourhood of/ is dense in HFspq and that HFf is not separable.
We use the notation Ilf lip to denote the norm of f in Lp (S) with the Lebesgue

measure. Moreover, we use f < g if f < cg for some constant independent of f
and g, and f g if f < g < f.

2. The spaces HFq

In this section we state some duality properties ofthe holomorphic Triebel-Lizorkin
spaces HFfq, with special attention to the case p 1.
We will start recalling some results about tent spaces introduced by R. R. Coifman,

Y. Meyer and E. M. Stein [C-M-S]. We point out that these results were obtained in
the half-space in n+, but the same arguments show that they remain true for the
unit ball B of Cn with the usual non-isotropic metric.

For( S, let F(’) {z B; II-zl < c(l Iz12)}, I,, {r/ S; II-r/I <

t} and/,t {z e B; II zl < t}.
For a measurable function f on B, let

aq(f)(()__(fr if(z)[q dV(z))() (1 -Izl2)n/
q < x,

A(f)(() sup{If(z)l; z I’(’)},

Cq(f)(() sup If(z)]q
-Izl2

For 0 < p, q < x, we consider the spaces

FPq(B) {f L(B); IlfllF,q --IIAq(f)llp < }, 0 < p, q < x,

Tpq (B) Fpq, 0 < p, q < <X or p q x,

Tq(B) {f L(B); Ilfllr --IlCq(f)ll < c}, q < ,
where L(B) denotes the space of Lebesgue measurable functions on B.

Note that, for 0 < p < c, the tent space Tp is not included in the above
definitions. Following [C-M-S], this space could be defined as the closure in Ft’ of
the subspace of continuous functions on B.

Moreover, observe that if we denote by W the space of (non-isotropic) Carleson
l/qmeasures on B, then Ilfllr IIIflq/(l -Izl2) dV(z)llw,.

Next we state two theorems that we will use later.

THEOREM 2.1. [C-M-S]. Let < q < x, and let q’ be its conjugate exponent.
Then

fB ldV ," fsf(z),(z) ,z,9 < c Aq,(f)()Cq(g)()dcr().
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THEOREM 2.2. Let < p, q < x and let p’ and q’ be their conjugate exponents.
Then, with the pairing

we have

((f g)) f f(z),(z)
dr(z)

-Izl2’

(l) (FPq)* Fp’q’,
(2) (Flq)* Tq’,
(3) T C (F)*.

<p<o,l <q<o
l<q<o

Proof. The proof of these results for the half-space in n+ can be found in [C-
M-S], [H-T-V] and [L]. These proofs can be adapted to our case. For instance, the
proof of (1) for the unit ball can be found in [O-F2].

The next theorem gives a characterization of the holomorphic Triebel-Lizorkin
spaces in terms of the above spaces. Analogous results for the real case and p < o
can be found for instance in [T2].

THEOREM 2.3. For 0 < p, q < o, s and any integer k > s, we have

(1) nFq(n) {f e n(n); IlLsfllFpq < o}, if 0 < p < o,
(2) nFsq(B) {f H(B); IILf lira, < o}, if 0 < q < o,

where Lf(z) (1 -Izl)-’(l + R)f(z).

Proof. A direct proof of (1) for the non-isotropic case can be found in [O-F2].
Part (2) can be obtained from the representation formula

(1 --lu12)n
(2.1) (I + R)m f(z) --CM(I + R)m-k (1 + R)kf(u)

(1 --z)n+l+M
dV(u),

with M large enough, and the equivalence

sup fn (1 -Iw12)m

o I1 wln+v dlz(z),

for a fixed positive N.

Remark. In [O-F2] it is shown that in the above characterization (1) of HFq,
we can replace the differential operator L by a sum of differential operators of type
(1- Iz12) (1- Izl2)T... Tm, where m < 2k, and the operators Tj are complex
tangential vector fields. The analogous result holds for the case p o. For instance,
for f nFq we have

l[fllHF=q " ([flq "- <i<j<n [i fzJ .-,,,,tOf
q )

I/q

; -. (1 -Izl2)q/2-1dV(z)
W
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Remark. S. Krantz [K] proved that the space BMOA with the Euclidean metric,
which we denote by BMOAt, does not coincide with the space BMOA with the
non-isotropic metric defined above. In [U], D.C. Ullrich shows that the function

10f(z) f(z, z2) n>_ z is in BMOA(C2) but it is not in BMOAt(C2).
The same function provides an example of a function which is in HFq, 0 <

q < cx, i.e., I(I / R)f(z)lq( Izl2)q-dV(z) is a Carleson measure, and that the
above measure is not a Carleson measure in the Euclidean sense. We only give the
scheme used to obtain this result.

Let d/z(z) Yj>_(I + lOJ)zl’lq(l Izl2)q-dV(z). We have

q

(1 -t- lOJ)zli (1 --Iz12)q- dE(z)
(1 --IZ12)q-I

j>l (1 --IZ12)q
dV(z) < .

Then/x W
To show that/z is not a Carleson measure in the Euclidean sense, it is sufficient to

show that if

t {z = (z, z:z) B; Iz=l < t, z rei < r < 2t:z -t < 0 < t}

then

dtz(z) > 3 log
1

for all 0 < < to small.
Note that for z 2t, we have Izl 2 Iz 12, and that for small e > 0 and
(1 + e)10-t‘ < Izl _< (1

(1 + ’)10-k thenTherefore, if rt‘ (1 e) 10-t‘ and rk

dlz(z) > :z

log <k<21og lit

>

_
log <k<21og lit

> 3 log 1/t.

’(1 + 10J)z (1 --Izl2)q- dOdr
j>l

lOt‘q (1 r2)q-! dr

Before stating the next result we recall two technical lemmas.
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LEMMA 2.4. For 0 < m < n + 1, k > 0, and A > 0,

(1)
(A + I1 tbzl)++

dV(w) <
(A + -Izl=)"

(2)
I1 tbulmll lbZln+l+k

dV(w) <
(1 -Izle)ll zlm

The proof of this lemma is standard.

LEMMA 2.5. Let f be a holomorphicfunction on B.
(l)For0<q < and M such that (M + n + )q n >0,

(fa (1 IzlZ)n )qfB (l--lzl2)<M+n+l)q-n-I
If(z)l

I1 zln+l+N dV(z) < If(z)lq
Cozln++N)q

dV(z).

(2) Forq > 1, e>0andM>-l/q,

(fB (1 [zl2)M )qfB (l-lzl2)Mq(l-lwl2)-eqdv(z)"[f(z)l
I1 tbzln++

dV(z) < If(z)lq
I1 I)Zln+l+(N-e)q

Proof Part (1) is shown in [B 1]. Part (2) follows from HOlder’s inequality and
the estimate (2) of Lemma 2.4 for m 0. I’-I

The next result is a duality theorem that we will use later and which includes
the well-known duality (HI)* (HF2)* HF2 BMOA and (HF)* =
HF Bloch.

THEOREM2.6. For < p, q < o, thedualof(HFq)* is HFsp’q’ andHF C
(H F.l )*. The duality pairing is

(f g) ((Lf k fBLsg)) (I + R f(z)(l + k)k(z)(1 -Izl2)2(k-s)- dg(z)

for any k > s.

Remark. Note that for s 0 the above pairing is similar to the Cauchy pairing

(f’ g) r--llim fs f(r)(r)da().
This pairing identifies the dual ofHFq as HF_PIq’ (for instance, see [B-Bu] for Hardy
spaces). We consider the pairing (f, g) because, in our case, it is technically simpler.
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Proof. The case < p < cx was shown in [O-F2]. Let us consider the case
p 1. By Theorems 2.2 and 2.3, it is clear that HFq’

C (HFq)*. Conversely, let
q > and let do be a continuous functional on HEq. By the Hahn-Banach theorem
there is a function tp Tq’ such that

dV(z)
dO(f) ((Lf p)) Lf(z)(z) -Izl’ k > s.

By representation formula (2.1) and Fubini’s Theorem, we have

c[(l+R)f(w)(l_lwl2)2_s,_,[ (z)(l- ,z,2)-’-
(f)=

(1 Z)n+2(k-s)

(1 z)"+2-.
dE(z)

Iwl2"

Therefore, it remains to show that the operator

(1 IZ12)k-’-
(2.2) T()(w) (I + R)- (z)

(1 -w)"+2(k-’} dV(z)

dV(z)dV(w)

maps Tcq’ to HFsOq’ or equivalently that

du(w)
(1 Iz12)

(Z)
(1 110)n+2(k-s)

q’

dV(z) (1 -]wl2)k-’)q’-I dV(w) W

(1 lul 2)sup
i.+

dlz(w) < o.u
For e and k such that 1/q’ < e < < k s, it follows from HOlder’s inequality,

Fubini’s theorem and Lemma 2.4 that

(1 lul2)
17ouln+l

dlz(w)

<f. (1 lu’2) f (1 Iz[2)k-’-’

l1 tbul"+
ItP(z)lq’ (1 111312) (k-s-e)q’-I

l1 OZ[n+k-s+(k-s-e)q’

< (1 -lul2) f. I(z)lq’f (1 -Izl2)k-s-(l -Iwl2)<k-.-)q’-

I1 tbul+ I1 l)Z{n+k-s+(k-s-e)q’
dV (w) dV(z)

aV(z)< (1 -lul2) ItP(z)lq’
11 uln+l(1 -Izl2)

I1oll q’Toq

dV(z)dV(w)

which proves the result for p 1, q > 1.
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The casep q follows in the same way. In this case we have F II

L F L and

HF {f H(B); sup lLf(z)l < cxz}.
zB

Therefore, it is clear that HF. C (HF. )*. To obtain the converse it is sufficient to
show that the operator T defined in (2.2) maps L to HF, which can be trivially
verified. I-1

3. Hardy’s inequality

The purpose of this section is to extent the well-known Hardy’s inequality for
holomorphic functions in the Hardy space on the unit disc HI(D) to the context of
Triebel-Lizorkin spaces. Moreover, we give a version of this result in the unit ball of
Cn

THEOREM 3.1.
Then

Let D be the unitdisc ofCand f(z) Y]n>_oanZn in HFd(D).

lanl < ilfllnv0,"
n>_o n-Jr

To prove this result we need the following proposition.

PROPOSITION 3.2. Let f (z) -n>_oanZn be a holomorphicfunction on the unit
disc, such that SUPn>_O lanl M . Then If(z)ldV(z) IIw’ < M.

In particular,

II(l + R)-’ fII.F , n+l
FgH

Proof. LetSe,a ={z=rei’,l-e <r < 1,c-e <0 <a+e}.Wewantto
prove that

sup I/(z)l dV(z) < M.
>0,--Tt <or <Tt" e

Given e > 0, we write f as f h + u, where h(z) Yn<_/e an zn, and we
consider the measures d/z IhldV(z), dv luldV(z).
We prove that the measures of S, with respect to/z and v are bounded by cMe.
For/z, we have

f,l 1_
dlz < M rn+ dO dr <_ 2Me < ME.

n<_l/e -e ,ot-e n<_l/e n + 2
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To show that v satisfies the condition, observe that for 0 < < 1, the set

tnwhere Cn " (1 t)dt " (n 4- 1)(1+)/2’Cn n>O

is an orthonormal set in the Hilbert space L2 (D, (1 -Izl2)dV(z)) with the inner
product

(f, g) f(z)(z)(l -Iz12) dV(z).

Therefore, if we let dV(z) (1 Izl2)dV(z), we have

fs dv . fs zn (z)
anCn

>/ c lu(z)l(l -IzlZ)dV(z)

(n>l/ ll/2(n>l/ fs. 1Zn /(Z) 2 1/2

< M c- lu(z)l(1 -Iz12)
dW(z)

Now, by Bessel’s inequality, we have

du < M/2 (1 Iz12)- dV(z) < M.

Proofof Theorem 3.1. Observe that

n>O [an[ fO(n>_O an(n 4- 1)l/2zn)( tn
rr lal (n 4- 1) I/2n+l n>O,a,,O

rr((L l/2f L l/2g))

where g(z) ,>0 n
h--Z

Therefore, by dality Theorem 2.6 and Proposition 3.2,

lal < IIflIHFdIIglIHFg, < ilfllHFdO;,n>_on+
which ends the proof.

) dr(z)

Versions of Hardy’s inequality in the unit ball were given in,.[C-W] and [A-Br]
applying the unidimensional result to slices. The same arguments give:

COROLLARY 3.3. Let f be a holomorphicfunction in HFIn(B) and let f(z)
kzo fk(z) be its homogeneous expansion at O. Then

>0 Ilfkll <llAIll <llfllnFd.(k+)n k+
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Proof. The first inequality follows from Lemma 2.2 of [A-Br]. The second
inequality follows from the integration by slices formula [Ru]

1 sup 1(I + R)f(rei()ldOdr((),Ilflln’ 2zr , 0<r<l

and Theorem 3.1 applied to the function

Remark. Observe that the above theorem shows that if f e HFn(B), then

(I -]- R)n f (z) E(1 q-k)nfk(Z) 6 nFdc(n),
k>O

and therefore

Y IIAII < Ilfll,l.
>_0

Hence, HFl is a subspace of the ball algebra
In the next section, we improve this result using other techniques.

4. Embedding theorems

The purpose of this section consists to give some embeddings between holomor-
phic Triebel-Lizorkin and Besov spaces, which in particular will permit us to obtain
analogous results to the Privalov’s theorem for n > 1.
We recall that the holomorphic Besov space Hnspq B), 0 < p, q < x, s e 11,

ig the subspace of holomorphic functions on B such that the norm

(fol (fS )q/p )l/qIlfllHB.g I(I -I- R) [’1+ f(r()l p da(() (1 r2)([s]+-s)q-I dr

is finite, with the usual conventions for p
It is known that if we replace [s]+ by k > s, we obtain equivalent norms.
The next results give some embeddings between these spaces. For r < , parts

(1), (2), (3), (4) and (6) of the following theorem can be found in [B-Bul for p q
or q 2, or in [O-F1 and [O-F2]. We include them for completeness.

THEOREM 4.1. For 0 < p, q < cxz and s It,

(I) HFq
C HF:m,

(2) HBspq C HBspm
(3) HFq

C HB:q

(4) HB,gq C HFq

(5) HFfq
C HF/TM,

(6) HBffq C HB:q,
(7) HFflq C HBp,

0<q <m<cx,
0<q <m <cx,
0<p<q <cx,
0<q <p<cxz,
0 < p < r < x,s n/p n/r
0 < p < r <cxz, s nip n/r
0 < p < r < x, s nip n/r
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Proof. First, we consider the case p <
To show (5), we will prove that

(a) IlfllH IlfllHvyO, 0 < m < p
s-n/p

iiP/r l--p/r(b) IlfllHf" < IIf,HFIIflI, 0 < m < p < r < oo, m(1 p/r).
s-nip

Then (5) follows from (1), (a) and (b). To obtain (a), observe that for k > s and
N>0,

IlfllF"s-n/p
< supfl k (1--1W12)N dV(z)

web JB Ls-n/Pf(z)lm I1 wln+N Izl 2

f f (1- .wl2)(1- .zl2)nm/p-n-I<supon Is 1r() ILf(z)lm
[1 wln+N

dV(z) da(t;)

fs Z N 12)nm/p-n-’
sup A (1 () dV(z) da()Zf[)m (1 Iwl=) (1 Iz

For z F, we have 11 Cz[ (1 Izl) II Ewl, so Lemma 2.4 gives

(1 [zl2)nm/p-n-I fB (1 Izl2)nm/p-n-l
dV(z) dV(z)

() 11 5wln+N (ll wl + l1 wl)n+N

<
l1 toln+N-nm/p"

Using this estimate, H61der’s inequality and Lemma 2.4, we obtain

(1 [w[2)N
Ilfllvoo,,,_,,/ weBSUp A(ILfI)m()

[1 wIn+N_nm/p dcr(;).

< IIflIHF,,,.

To prove (b), we have

(fs (fF ir/m )m/rf IIF:,,, iLktf(z)lm dr(z)

fsfr (l-,z,’-)+’aV(z)sup ILktf(z)lm
[[Pll(r/m),=l ,()

fB fs dV(z)sup ILktf(z)lm
IIoll(r/,,),=l

Observe that

iLkt f (z)lm iLf(z)lmp/r] k ,-p/r)Ls_n/pf(z)lm(
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and that for r/6 S,

sup Xr(c) (z)liP(C)I dtr (C)
zer, (1 [z[2)n

where Ml-t-t. (1991) denotes the Hardy-Littlewood maximal function

Mn-L(f)(rl) sup If(()l
t>0

Thus, by Theorem 2.1,

IlfllF;,, sup fs A(lLf(z) l)mp/r (O)MH-L (ltPl)(o) dtr (o) f lllHFt
I1o tr/.,,

/p

Clearly, (b) follows from H61der’s inequality and the fact that the Hardy-Littlewood
maximal operator is continuous from Ld (S) to Ld (S) for d > 1.
Now we prove (6). for r x. Let rn < min(p, q, 1). By the representation

formula (2.1) and Lemma 2.5, we have

s-n/p- sup I(l --1- R)kf(x()lq (l --X)(k-s-l-n/p)q-I dx
S

(foils R)kf(Yrl)lm (1 )q/mf sup I(I d- YE)(N+n+lm-n-ly2n-I dcr(rl)dy<
Jo (s I1 ylx(I(n+l+N)m

x(l X2)(k-s+n/p)q-I dx.

For N large enough, two applications of Htilder’s inequality, give

q f01(f01(fs tnipIlflla.z,,/, < I(I + R)kf(Yrl)lp dcr(rl)

(1 y)(N+n+l)m-n-I (1 x)(k-s+n/p)m y2n-I dy
q/m

dx

I1 y + xl(n+I+N)m-n(p-m)/p) x

< Ilfll qBfq
Now we prove (7). By (1) and (6) it is clear that it is sufficient to obtain the result

for r < and q . Using the duality between L I(Lr/p) mixed-no spaces (see
[Be-P]), we have

Ilfll;, I(1 + R)f(x)l do() (1 x)-’P-xZ-dx

sup I(I + R)f(xg)e d(g)(1 x)(-P-llO(xg)xn-I dx
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where the supremum is taken over all the functions satisfying

sup [(xf)l(r/p)’dcr(() 1.
0<x<l

Therefore,

ilfll p f k [p [2)n-np/r-Is;" < supas IL,f(z) (1 -Iz I(z)ldV(z)

< sup f A(ILfI())PCI((1 [zl2)n-np/rlaPl)()dtr().
,Is

By H61der’s inequality, we have

Cl ((1-Izl2)n-np/rloI) (() < supt-n lap(xrl)ldcr(rl)(l-x)n-np/r-ldx
I., -t -01<t

< sup np/r-n (1- x)n-np/r-ldx <_ c < 0,
0<t<l -t

which concludes the proof of (7).
To finish the proof of the theorem we consider the case p c.
To prove part (l), first we show that HFscq C HFsx. For q > and 0 < e <

l/q, the representation formula (2. l) and part (2) of Lemma 2.5 give

IIfIIHF sup(1 --Iz12)-’l(l -I- g)f(z)l
zB

<sup(fll(i+R)kf(w)]q(l_lwl2)Nq(l_lzl2)(k_,_)q )l/qzn I1 Cvzln+l+<v-)q
dV(w)

< II1(I / R)kf(z)lq( -Izl2)k-’)q- dV(z)ll l/q
W

IlfllnFq.
The case 0 < q < follows in the same way.

Observe that the above result shows that if f is in HFs<xq, then the function
I(I + R)kf(z)l(1 --Iz12)-’ is bounded. The case q < m < c follows trivially from
this result.

An analogous argument shows that HB,q C_. HF. Therefore, if f
_
HB,q

then I(I + R)f(z)l(1 Iz12)g-’ is bounded. Clearly, (2) follows from this fact.
Part (3) is trivial. Finally (4) follows from

IIflIF - sup fn I(I / R)kf(z)lq( --[Z[2)(k-s)q-I (1 --Iwl2)
0eB I1 5wln+l

dV(z)

< sup I(I d- R)l f(x()lq(1 --IxI2)(k-s)q-lx2n-I dx,
S

which concludes the proof of the theorem.



HARDY’S INEQUALITY IN TRIEBEL-LIZORKIN SPACES 747

From this theorem, we generalize a result of P. Ahem and J. Bruna [A-Br],and
F. Beatrous [B2] and J. Burbea [Bu], about the boundary continuity of the functions

f in H,p (B), for the extreme cases s n/p, 0 < p < 1. These authors showed
that the Hardy-Sobolev space H (B) is a subspace of C(/}) and that the trace of the

H (B) on a smooth curve ?, C S is a subspace of the space of absolutely continuous
functions on t’, which we will denote by AC(?,). The next theorems show that for
n > and 0 < p < 1, HFnqp is a subspace of the ball algebra, and that for n >
the trace HF2 on smooth curves t’ C S is absolutely continuous.

THEOREM 4.2. The space HB is a subspace ofC ).

Proof. We willprovethatiff HB’l and ft(z) f (tz), then Ilft- fllo 0
when - 1.

By the representation formula,

lift fll SUpzn L I(I + R)f(w)l
(1 Iw12)N (1 Iw12)N

(1 Cotz)n+lv (1 Coz)n+v

(1 t)(l Iw12)
dV(w)

[1 tbtz[ [1 Coz[n+N

1--x+l--t

sup I(I + R)f(w)l
zB

fo’ sup I(I + R)f(x)l
Ces

which tends to zero by the Lebesgue dominated convergence theorem.

dV(w)

Remark. The above result fails if we replace q by q > 1. For instance, for
HBgq and it is notn and 0 < < l/q, the function f(z) log is in

bounded.

THEOREM 4.3. Thespace HFq (B) isasubspaceofC([) ifandonlyifs-n/p >
Oors-n/p=OandO < p < 1.

For n > and p, s satisfying the above conditions, the restriction of HFfq on
smooth curves , ofS is a subspace ofB (/ and therefore ofthe space ofabsolutely
continuousfunctions on y.

Proof. If s n/p > 0 then HFspq is a subspace of the holomorphic Lipschitz
space HFt, and therefore, the result is obvious.

If s n/p, 0 < p _< and 0 < < 1/p, then HFspq C HFn C HB C
C(B).

FfqFor p > and s n/p, the function ft(z) log is in H and it is not
bounded.

The fact that the restriction of HFI on ?, be absolutely continuous follows
from HFIn(B)Ir C B() C LI(?’) AC(?’). The first embedding is proved in
Section 3 of [Br-O]. C!
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Remark. In some sense the above result is sharp. If , is a complex-tangential
curve (i.e., y(t),’(t) 0 for all t,) then the trace of HFn on ’ is exactly Bl(,)
(see Section 3 of [Br-O]).

Observe that, as a consequence of the above results, if f HF, then the
functions ft(z) f(tz) converge uniformly to f(z). The next theorem extends this
result for f in HFpq and p, q <

PROPOSITION 4.4. For 0 < p, q < o, s I, the space of holomorphic func-
tions on a neighbourhood of [1 is dense in HFpq

Proof Since HFpq is isomorphic to HFtpq we can assume that -sq > O.
We prove that the functions ft(z) f(tz) satisfy lift fllHFpq 0, when -- 1,
i.e.,

If(try) f(r()lq(l r) -sq-I dr dcr() O,

Let

(foot() If(try) f(r)lq(l -r)-sq-I dr

We want to prove that for 1/2 < < 1,

(fo )P/q(a) ot() < If(r)lq(l r)-sq-I dr

(b) ot(() 0 if -- 1.

LI(S),

Clearly, (a), (b) and the Lebesgue dominated convergence theorem prove the propo-
sition.

Now, we prove (a). Note that

tpt(() < If(tr()lq(l r) -sq-I dr + If(r()lq(l r) -sq-I dr
P/q

By the change of variables tr u in the first integral, we obtain

If(tr()lq(l r) -sq-I dr sq If(u()lq(t U)-sq-I du

< 2-sq ]f(u()lq(l U)-sq-I du,

which proves (a).
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To prove (b), we recall that, as a consequence ofEgorov’s theorem, if 0 < rn < cx,
/z is a positive measure, Ilhtll,’,d) Ilhll,,d) and ht(x) ----> h(x), /z-a.e., then
Ilht hllL,,a,) - O. Therefore (b) follows from the fact that ft(r() ---> f (r() for
0 < r < 1, and

If(tr()lq(1 r) -sq-I dr If(r()lq(l r) -sq-I dr

whent 1. El

The result of Proposition 4.4 for HFf is false. To show this, we prove that the
space HFp on the unit disc is not separable. For the Bloch space HF, this
result is shown in [Ca-Ci-P].

PROPOSITION 4.5. Let D be the unit disc. Then HF(D) is not separable.

Proofi It is sufficient to obtain the result for s 0. Consider the set

.T’= akz ak =O,
k>ko

for some k0 which we will later.
Observe that br is not enumerable. Therefore, to show that HF0p is not separable,

it is sufficient to prove that .T" C HF0p, and that f g Fo’ >-- C > 0, for f, g
and f :/: g.

It is clear that

sup(l Izl 2)
zED

(I + R) az2k

k>ko

< sup(1 -Izl2) ..(1 + 2)lzl2 < .
zED k>O

Therefore, " C HF C HF0p.
To prove that f g Fo’ > c > 0, we have

d- -akZ
k m HFP

>" 0<r<lSUp((lq-2m)r2"--(l+2k)r2k)(l-r)’k>m
Clearly, it is sufficient to show that for rn k0,

sup ((l + 2m)r2" y(l + 2k)r2) (1-- r) > c > O.
O<r<l k>rn
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Observe that for 0 < x < 1,

2 X2S(x)=y.2’x < +2x4+xt+--gS(x)
l>_l 1>5

and thus S(x) < 2x2 q- 4x4 -+- 2x5 /(1 x).
Therefore, for x r2" we have

(1 + 2m)r2m y(1 q- 2k)r2k) (1 r)
k>m

> (l +2m) (x--2k-mx2k-m)
> (1+2m) x-2x-4x4- 1_--2--x-

To conclude the proof, note that for r 2-m,

lim (1 +2m) (x 2x2 --4x4
m---o

2x5

r) e- 2e-2 4e-4 2e-4
1-x / e-I

> 0. I--I

COROLLARY 4.6. The space ofholomorphicfunctions on a neighbourhood of)
is not dense in HF.
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