THE EQUIVARIANT BRAUER GROUP AND TWISTED TRANSFORMATION GROUP C^{*}-ALGEBRAS

Judith A. Packer

Abstract

Twisted transformation group C^{*}-algebras associated to locally compact dynamical systems ($X=Y / N, G$) are studied, where G is abelian, N is a closed subgroup of G, and Y is a locally trivial principal G-bundle over $Z=Y / G$. An explicit homomorphism between $H^{2}(G, C(X, \mathbb{T}))$ and the equivariant Brauer group of Crocker, Kumjian, Raeburn and Williams, $B r_{N}(Z)$, is constructed, and this homomorphism is used to give conditions under which a twisted transformation group C^{*}-algebra $C_{0}(X) \times \tau, \omega$ will be strongly Morita equivalent to another twisted transformation group C^{*}-algebra $C_{0}(Z) \times{ }_{I d, \omega} N$. These results are applied to the study of twisted group C^{*}-algebras $C^{*}(\Gamma, \mu)$ where Γ is a finitely generated torsion free two-step nilpotent group.

Introduction

Fifteen years ago, M. Rieffel published the extremely useful observation that if the locally compact groups G and N have commuting free and proper actions on a locally compact Hausdorff space Y, then the transformation group C^{*}-algebras $C_{0}(Y / N) \times G$ and $C_{0}(Y / G) \times N$ are strongly Morita equivalent to one another [Ri]. This result, attributed by Rieffel to P. Green, was a motivating factor behind I. Raeburn's paper [Ra], as well as for A. Kumjian's, Raeburn's and D. Williams' recent proof that for second countable Y, G and N as above, the equivariant Brauer groups $\operatorname{Br}_{G}(Y / N)$, $\operatorname{Br}_{N}(Y / G)$ and $\operatorname{Br}_{G \times N}(Y)$ are isomorphic to each other. In this note, we investigate how the isomorphism of the equivariant Brauer groups above can be used to obtain information about twisted transformation group C^{*}-algebras corresponding to a dynamical system $(Y / N, G)$ in the case where G is abelian and N is a closed subgroup of G, so that N acts trivially on Y / G. In this case $\operatorname{Br}_{N}(Y / G)$ is known to be isomorphic to the direct sum $C\left(Y / G, H^{2}(N, \mathbb{T})\right) \oplus \check{H}^{1}(Y / G, \hat{\mathcal{N}}) \oplus \check{H}^{2}(Y / G, \mathcal{S})$, at least for N elementary abelian (cf. [PRW], [P2]) and our aim in this paper is to use the above structure to describe the strong Morita equivalence between twisted transformation group C^{*}-algebras for $(Y / N, G)$ and crossed product C^{*}-algebras of the form $B \times{ }_{\beta} N$, where B is a stable, separable continuous trace C^{*}-algebra with spectrum Y / G, and the induced action $\hat{\beta}$ of N on Y / G is trivial. Along with giving precise formulas for the element in $\mathrm{Br}_{N}(Y / G)$ corresponding to a twisted transformation group $(Y / N, G, \omega)$ where $[\omega] \in H^{2}(G, C(Y / N, \mathbb{T}))$, we will determine conditions under which a twisted transformation group C^{*}-algebra $C_{0}(Y / N) \times_{\tau, \omega} G$ will be strongly

1991 Mathematics Subject Classification. Primary 46L05, 46L35; Secondary 22D25, 55R10.
Research supported by the NUS Academic Research Fund Committee.

Morita equivalent to another such C^{*}-algebra $C_{0}(Y / G) \times{ }_{I d, \omega_{N}} N$. This question was first raised in [P1, Section 3] and a special case of this situation has already been considered in [LP2] in order to study twisted group C^{*}-algebras associated to discrete Heisenberg groups. This motivates Section 3 of our paper, which gives an analysis of more general twisted group C^{*}-algebras $C^{*}(\Gamma, \mu)$ where Γ is a finitely generated, torsion free two-step nilpotent discrete group, and $[\mu] \in H^{2}(\Gamma, \mathbb{T})$. Under appropriate conditions on $[\mu]$ these C^{*}-algebras will be isomorphic to twisted transformation group C^{*}-algebras $C(Y / N) \times_{\tau, \omega} G$, of the form described above and the invariants of the associated C^{*}-dynamical system $[(B, \beta, N)] \in \operatorname{Br}_{N}(Y / G)$ can in many cases be explicitly computed. These results can be used to state conditions under which $C^{*}(\Gamma, \mu)$ will be strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where Γ_{0} is a subgroup of Γ of finite index and $\mu_{0}=\mu$ restricted to $\Gamma_{0} \times \Gamma_{0}$. This result can be extremely useful in K-theory calculations.

I would like to thank S. Echterhoff and I. Raeburn for useful conversations on the topic of this paper and I. Raeburn for making available to me at a very early stage a preprint of [RW2].

1. Preliminaries

1.1. The equivariant Brauer group. Let (Y, τ, G) be a locally compact second countable topological dynamical system. The equivariant Brauer group $\operatorname{Br}_{G}(Y)$ is defined to be the set of all equivalence classes of C^{*}-dynamical systems $[(A, \alpha, G)]$, where A is a stable, separable continuous trace C^{*}-algebra with spectrum Y, α is a strongly continuous action of the group G on A such that the induced action $\hat{\alpha}$ of G on $\hat{A}=Y$ is given by τ, and $\left(A_{1}, \alpha_{1}, G_{1}\right) \sim\left(A_{2}, \alpha_{2}, G\right)$ if there exists a $*$-isomorphism $\Phi: A_{1} \rightarrow A_{2}$ preserving the spectrum Y such that α_{2} is exterior equivalent to $\Phi \circ \alpha_{1} \circ$ Φ^{-1}. In [CKRW] it was shown that $\operatorname{Br}_{G}(Y)$ was an abelian group with multiplication given by balanced tensor product over $C_{0}(Y)$ and $[1]_{\mathrm{Br}_{G}(Y)}=\left[\left(C_{0}(Y) \otimes \mathcal{K}, \tau \otimes \mathrm{Id}, G\right)\right]$. This group is defined very naturally in the sense that if $\left(Y_{1}, \tau_{1}, G_{1}\right)$ and $\left(Y_{2}, \tau_{2}, G_{2}\right)$ are equivalent dynamical systems, i.e., if there is a homeomorphism $\Phi: Y_{1} \rightarrow Y_{2}$ and an isomorphism $A: G_{1} \rightarrow G_{2}$ such that $\Phi\left(\tau_{1}(g) y\right)=\tau_{2}(A(g)) \Phi(y), \forall y \in Y_{1}$, then $\operatorname{Br}_{G_{1}}\left(Y_{1}\right) \cong \operatorname{Br}_{G_{2}}\left(Y_{2}\right)$.

A filtration involving the Moore cohomology groups $H^{p}\left(G, \check{H}^{q}(Y, \mathcal{S})\right), p+q=$ 2, was developed in [CKRW] to aid in the computation of $\operatorname{Br}_{G}(Y)$. We mention two of the homomorphisms from this filtration.

PROPOSITION 1.1 [CKRW, Theorem 5.1(3)]. Let (Y, τ, G) be a topological dynamical system and $\operatorname{Br}_{G}(Y)$ the associated equivariant Brauer group. Then there are homomorphisms

$$
d_{(Y, G)}:\left[H^{2}(Y, \mathbb{Z})\right]^{G} \rightarrow H^{2}(G,(C(Y, \mathbb{T}))
$$

and

$$
\xi_{(Y, G)}: H^{2}(G, C(Y, \mathbb{T})) \rightarrow \operatorname{Br}_{G}(Y)
$$

such that the sequence

$$
\begin{equation*}
\left[H^{2}(Y, \mathbb{Z})\right]^{G} \xrightarrow{d_{(Y, G)}} H^{2}\left(G,(C(Y, \mathbb{T})) \xrightarrow{\xi_{(Y, G)}} \operatorname{Br}_{G}(Y)\right. \tag{1.1}
\end{equation*}
$$

is exact.
We mention for future reference that the map $\xi_{(Y, G)}$ sends $[\sigma] \in H^{2}(G,(C(Y, \mathbb{T}))$ to the equivalence class of the C^{*}-dynamical system given by $\left[\left(C_{0}(Y) \otimes \mathcal{K}\left(L^{2}(G)\right), \alpha_{\sigma}\right.\right.$, $G)]$, where α_{σ} is the action of G on $C_{0}(Y) \otimes \mathcal{K}$ associated to the twisted C^{*}-dynamical system $\left(C_{0}(Y), \tau, \sigma, G\right)$ by the stabilization trick of [PR1](see [P1], Equations 2.12.4).

We state two more results mentioned in the introduction concerning the equivariant Brauer group which will be of use to us.

THEOREM 1.2 [KRW]. Let P be an l.c.s.c Hausdorff space carrying commuting free and proper actions of the locally compact groups G and H. Then there are isomorphisms $\theta_{G}: \operatorname{Br}_{G}(P / H) \rightarrow \mathrm{Br}_{G \times H}(P)$ and $\theta_{H}: \operatorname{Br}_{H}(P / G) \rightarrow \mathrm{Br}_{G \times H}(P)$. Furthermore if $\left.\theta_{G}([A, \alpha, G)]\right)=\left([(C, \gamma, G \times H)]\right.$ and $\theta_{H}([(B, \beta, H)])=[(C, \gamma, G \times H)]$ then the C^{*}-algebras $A \times_{\alpha} G, C \times{ }_{\gamma}(G \times H)$ and $B \times_{\beta} H$ are all strongly Morita equivalent to one another.

The next result gives an explicit description of the group $\operatorname{Br}_{N}(Z)$ where N is an elementary abelian group acting trivially on the space Z (this theorem has recently been extended to compactly generated groups N by S. Echterhoff and D. Williams [EW]).

THEOREM 1.3 [P2], [PRW]. Let N be an elementary abelian group acting trivially on the l.c.s.c Hausdorff space Z. Then there is an isomorphism

$$
\begin{aligned}
\operatorname{Br}_{N}(Z) & \cong C\left(Z, H^{2}(N, \mathbb{T})\right) \oplus \check{H}^{1}(Z, \hat{\mathcal{N}}) \oplus \check{H}^{3}(Z, \mathbb{Z}) \\
& =\check{H}^{0}\left(Z, \mathcal{H}^{2}(N, \mathbb{T})\right) \oplus \check{H}^{1}\left(Z, \mathcal{H}^{1}(N, \mathbb{T})\right) \oplus \check{H}^{2}\left(Z, \mathcal{H}^{0}(N, \mathbb{T})\right)
\end{aligned}
$$

Denoting by $\Pi_{i}: i=0,1,2$, the projection of $\operatorname{Br}_{N}(Z)$ onto each summand in (1.2), we recall that Π_{0} can be identified with the Mackey obstruction map $M_{N}: \operatorname{Br}_{N}(Z) \rightarrow$ $C\left(Z, H^{2}(N, \mathbb{T})\right)$ and $\Pi_{2}([(B, \beta, N)]$ gives exactly the Dixmier-Douady class of B. The map Π_{1} is related to the Phillips-Raeburn obstruction.

We also recall that under the hypotheses of Theorem 1.3 there is a monomorphism $E_{(Z, N)}: H_{\mathrm{pt}}^{2}(N, C(Z, \mathbb{T})) \rightarrow \check{H}^{1}(Z, \hat{\mathcal{N}})$ whose range is denoted by $\check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$ and represents the set of equivalence classes of characteristic principal \hat{N} bundles over $Z\left[R W 1\right.$, Prop 3.8]. Here $H_{\mathrm{pt}}^{2}(N, C(Z, \mathbb{T}))$ represents the group of equivalence
classes of pointwise trivial 2-cocycles. We then have the following relationship between Proposition 1.1 and Theorem 1.3.

COROLLARY 1.4 [P2, 2.4]. Let N be an elementary abelian group acting trivially on the l.c.s.c Hausdorff space Z, and let $[(B, \beta, N)] \in B r_{N}(Z)$. Then $[(B, \beta, N)] \in$ $\xi_{(Z, N)}\left(H^{2}(N, C(Z, \mathbb{T}))\right)$ if and only if $\Pi_{2}([(B, \beta, N)])=\delta(B)=\{0\}$ and $\Pi_{1}([(B, \beta$, $N)] \in \check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$.
1.2. The Λ-invariant. The Λ-invariant, first defined by I. Raeburn and D. Williams in their study of continuous trace C^{*}-dynamical systems [RW1], built on prior work of J. Huebschmann [Hu], and at least for a discrete group G with normal subgroup N can be viewed as one way of organizing the information one obtains about $H^{2}(G, M)$ from the Lyndon-Hochschild-Serre spectral sequence. Let G be an l.c.s.c. group with closed normal subgroup N. Suppose that M is a Polish G / N module, with the abelian group structure on M denoted by $(a, b) \longmapsto a b, a, b \in M$. Let $Z(G, N ; M)$ denote the set of pairs $\{(\lambda, \mu)\}$ where $\lambda: G \times N \rightarrow M$ and $\mu: N \rightarrow M$ are Borel maps satisfying

$$
\begin{gather*}
\mu \in Z^{2}(N, M), \tag{1.3}\\
\lambda\left(1_{G}, n\right)=1_{M}=\lambda\left(s, 1_{N}\right),(s, n) \in G \times N, \tag{1.4}\\
\lambda(m, n)=\mu(m, n) \mu(n, m)^{-1},(m, n) \in N \times N, \tag{1.5}\\
\lambda(s t, n)=\lambda(s, n) s(\lambda(s, t, n)),(s, t, n) \in G \times G \times N, \tag{1.6}\\
\lambda(s, m n)=s(\mu(m, n))^{-1} \mu(m, n) \lambda(s, m) \lambda(s, n),(s, m, n) \in G \times N \times N . \tag{1.7}
\end{gather*}
$$

With pointwise operations, $Z(G, N ; M)$ is an abelian group. Let $B(G, N ; M)$ denote the subgroup of $\Lambda(G, N ; M)$ consisting of all pairs of the form

$$
\left\{\Delta_{\rho}=\left(s\left(\rho(n)^{-1}\right) \rho(n), \rho(m) \rho(n) \rho(m n)^{-1}\right)\right\}
$$

where $\rho: N \rightarrow M$ is a Borel map. Then the Λ-invariant group $\Lambda(G, N ; M)$ is defined to be the quotient group $Z(G, N ; M) / B(G, N ; M)$. It can be shown [RW2] that the Λ-invariant fits into the Inflation-Restriction sequence indicated,

$$
0 \rightarrow H^{1}(G / N, M) \xrightarrow{\operatorname{Inf}} H^{1}(G, M) \xrightarrow{\text { Res }} H^{1}(N,[M])^{G / N}
$$

$$
\begin{equation*}
H^{2}(G / N, M) \xrightarrow{\mathrm{Inf}} H^{2}(G, M) \xrightarrow{\mathrm{r}} \Lambda(G, N ; M) \xrightarrow{\delta} H^{3}(G / N, M) \xrightarrow{\mathrm{Inf}} H^{3}(G, M), \tag{1.8}
\end{equation*}
$$

and that $\Lambda(G, N ; M)$ is determined by the exact sequence

Formulas for the maps r, δ, i, j, k are given in [RW2]. The case of interest to us is the situation where $M=C(Y, \mathbb{T})$, where G is abelian and Y is a G-space with constant stabilizer subgroup N, and G / N acts freely and properly on Y. Then the map $r: H^{2}(G, C(Y, \mathbb{T})) \rightarrow \Lambda(G, N ; C(Y, \mathbb{T}))$ is given by $r([\sigma])=[(\lambda, \mu)]$, where

$$
\begin{gather*}
\lambda(g, n)=\sigma(g, n) \sigma(n, g)^{-1},(g, n) \in G \times N, \tag{1.10}\\
\mu=\sigma_{\mid N \times N} . \tag{1.11}
\end{gather*}
$$

Moreover in this situation, Raeburn and Williams have defined a subgroup

$$
Z_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T})) \subseteq Z(G, N, C(Y, \mathbb{T}))
$$

by

$$
[(\lambda, n)] \in Z_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T})) \quad \text { if } \mu \in Z_{\mathrm{pt}}^{2}(N, C(Y, \mathbb{T}))
$$

Since clearly $B(G, N ; C(Y, \mathbb{T})) \subset Z_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T}))$ it is possible to define the subgroup
$\Lambda_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T}))=Z_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T})) / B(G, N ; C(Y, \mathbb{T})) \subset \Lambda(G, N ; C(Y, \mathbb{T}))$.
Under the above assumptions, Raeburn and Williams have proved the following:
Theorem 1.5 [RW1, Theorem 6.5, Proposition 7.1]. Let G be an l.c.s.c abelian group acting on the l.c.s.c Hausdorff space Y with constant stabilizer subgroup N in such a way that Y is a locally trivial principal G / N - bundle over the quotient space $Z=Y /(G / N)$. Let $I_{N}(Y) \subset \operatorname{Br}_{G}(Y)$ be defined by $I_{N}(Y)=\{[(A, \alpha, G)]: \alpha / N \in$ $\operatorname{Inn}(A)\} ;$ i.e., the action α restricted to N is inner. There are homomorphisms

$$
\begin{equation*}
d: I_{N}(Y) \rightarrow \Lambda_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T})) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{(Y, G)}: \Lambda_{\mathrm{pt}}(G, N ; C(Y, \mathbb{T})) \rightarrow \check{H}^{1}(Z, \hat{\mathcal{N}}) \tag{1.13}
\end{equation*}
$$

such that $F_{(Y, G)} \circ d([(A, \alpha, G)])=\left[\lambda_{\alpha}\right]$, where $\left[\lambda_{\alpha}\right]$ is the class of the principal \hat{N} bundle $\widehat{A \times_{\alpha} G} \rightarrow Y / G=Z$. Furthermore $F_{(Y, G)}$ is a monomorphism and the
image of $F_{(Y, G)}$ is equal to

$$
\left\{[F] \in \check{H}^{1}(Z, \hat{N}): p^{*}(F) \in \check{H}_{C}^{1}(Y, \hat{\mathcal{N}})\right\}
$$

where $p: Y \rightarrow Y / G=Z$ is the quotient map.

2. Strong Morita equivalence of twisted transformation group \boldsymbol{C}^{*}-algebras

Let Y be an l.c.s.c. Hausdorff space, let G be an l.c.s.c. abelian group with closed subgroup N, acting freely and properly on Y_{1}, and suppose that
(2.1) $p_{1}: Y \rightarrow Y / N=X$ is a locally trivial principal N -bundle,
(2.2) $p_{2}: X \rightarrow X / G=Y / G=Z$ is a locally trivial principal G / N - bundle,
(2.3) $p_{3}=p_{2} \circ p_{1}: Y \rightarrow Y / G=Z$ is a locally trivial principal $G-$ bundle.

If G is an elementary abelian group, (2.1)-(2.3) will follow automatically from the freeness and properness of the G-action on Y. We will consider twisted transformation group C^{*}-algebras $C_{0}(X) \times_{\tau, \omega} G$, where $[\omega] \in H^{2}(G, C(X, \mathbb{T})$), and our main aim will be to identify the element $[(B, \beta, N)] \in \operatorname{Br}_{N}(Z)$ guaranteed by Theorem 1.2 such that $C_{0}(X) \times_{\tau, \omega} G$ is strongly Morita equivalent to $B \times_{\beta} N$; along the way we will state conditions on $[\omega]$ which will guarantee that $C_{0}(X) \times_{\tau, \omega} G$ is strongly Morita equivalent to a twisted transformation group C^{*}-algebra of the form $C_{0}(Z) \times{ }_{\text {Id }, \tilde{\omega}} N$, $\widetilde{\omega} \in Z^{2}(N, C(Z, \mathbb{T}))$. As the latter type of C^{*}-algebras can be decomposed as the C^{*} algebra of sections of a C^{*}-bundle whose fibers are twisted abelian group C^{*}-algebras, they are more easy to study.

We note that examples from [RR] and [PR3] show, first of all, that there exists a locally trivial principal G / N-bundle X over Z which is not the quotient of a G-bundle, such that the ordinary transformation group C^{*}-algebra $C_{0}(X) \times_{\tau} G$ is not strongly Morita equivalent to any crossed product of the form $B \times_{\beta} N$, where $[(B, \beta, N)] \in \operatorname{Br}_{N}(Z)$, and, second, that even if X is the quotient by the action of N of a G-bundle Y over $Z, C_{0}(X) \times_{\tau}, \omega G$ need not be strongly Morita equivalent to a twisted transformation group C^{*}-algebra $C_{0}(Z) \times_{\mathrm{Id}, \tilde{\omega}} N$, so that some sort of conditions on X, Z and $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$ are necessary to obtain positive results.

For future reference we point out that if G is a countable discrete abelian group and X is a locally trivial G / N bundle over the space $Z=\mathbb{T}^{k}, k \in N$, then X is always the quotient of a principal G-bundle (X, G) :

Proposition 2.1. Let G be a countable discrete abelian group and N a subgroup of G, and let X be a locally trivial principal G / N-bundle over $Z=\mathbb{T}^{k}, k \in N$. Then there is a locally trivial principal G-bundle Y over \mathbb{T}^{k} such that $Y / N=X$.

Proof. The bundle $(X, G / N)$ over $Z=\mathbb{T}^{k}$ is classified by an element $[\gamma] \in$ $\check{H}^{1}(Z, \mathcal{G} / N)=\check{H}^{1}\left(Z, G_{j}^{\prime} N\right)$, and X will be the quotient of a G-bundle (Y, G) over
$Z=\mathbb{T}^{k}$ if and only if $[\gamma]$ is in the range of the map $\pi_{*}: \check{H}^{1}\left(\mathbb{T}^{k}, G\right) \rightarrow \check{H}^{1}\left(\mathbb{T}^{k}, G / N\right)$, where $\pi: G \rightarrow G / N$ is the projection map. By a slight modification of [PR3, Lemma 2.6], there is a commutative diagram

where $\left(\lambda_{G}\right)^{*}$ and $\left(\lambda_{G / N}\right)^{*}$ are the isomorphisms between group cohomology and Čech cohomology obtained by using the fact that \mathbb{T}^{k} is a classifying space for \mathbb{Z}^{k}. Since G is discrete abelian, every homomorphism from \mathbb{Z}^{k} to G / N can be lifted to a homomorphism from \mathbb{Z}^{k} to G, and the result follows from the commutativity of diagram (2.4).

We now let Y, X, and Z be as in (2.1)-(2.3), fix $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$ and consider the twisted transformation group C^{*}-algebra $C_{0}(X) \times_{\tau, \omega} G$. By Theorem 1.2, there is a C^{*}-dynamical system (B, β, N) such that B has continuous trace, $\hat{B}=Z$, the induced action $\hat{\beta}$ of N on Z is trivial, and $B \times{ }_{\beta} N$ is strongly Morita equivalent to $C_{0}(X) \times_{\tau, \omega} G$, which can be constructed using the isomorphism $\theta_{N}^{-1} \circ \theta_{G}: \operatorname{Br}_{G}(X) \rightarrow$ $\operatorname{Br}_{N}(Z)$ of Theorem 1.2. We shall use a slightly different isomorphism Ψ between $\operatorname{Br}_{G}(X)$ and $\mathrm{Br}_{N}(Z)$, defined as follows:

$$
\begin{equation*}
\Psi=K^{*} \circ A^{*} \circ \theta_{G} \tag{2.5}
\end{equation*}
$$

where $\theta_{G}: \operatorname{Br}_{G}(X) \rightarrow \operatorname{Br}_{G \times N}(Y)$ is as in Theorem 1.2,

$$
A^{*}: \operatorname{Br}_{\left(G \times N, \tau_{1}\right)}(Y) \rightarrow \operatorname{Br}_{\left(G \times N, \tau_{2}\right)}(Y)
$$

is obtained by taking $\Phi=\mathrm{Id}$ and defining $A: G \times N \rightarrow G \times N$ by $A(g, n)=(g n, n)$, where τ_{1} is the action of $G \times N$ on Y defined by $\tau_{1}(g, n) y=g n^{-1} y$, and $\tau_{2}=\tau_{1} \circ A$, as in our remarks prior to the statement of Prop. 1.1, and $K^{*}: \operatorname{Br}_{\left(G \times N, \tau_{2}\right)}(Y) \rightarrow \operatorname{Br}_{N}(Z)$ is given by Theorem 5.3 of [PRW]; more precisely, we have $K^{*}([(C, \gamma, G \times N)])=$ [$\left(C \times \times_{\gamma / G} G, \gamma_{/(N)}, N\right)$], where, by abuse of notation, $\gamma /{ }_{N}$ denotes the action of N on the crossed product $C \times_{\gamma / G} G$ obtained from standard decomposition results for crossed product C^{*}-algebras, so that $C \times_{\gamma}(G \times N) \cong\left(C \times_{\gamma / G} G\right) \times_{\gamma / N} N$. It is then easy to check that setting $\Psi\left(\left[\left(C_{0}(X) \otimes \mathcal{K}, \alpha_{\omega}, G\right)\right]=\Psi\left(\xi_{(X, G)}([\omega])\right)=\right.$ $[(B, \beta, N)] \in \operatorname{Br}_{N}(Z), B \times_{\beta} N$ will be strongly Morita equivalent to $C_{0}(X) \times_{\tau, \omega} G$.

Before stating the main theorem, we establish some notation. For $[\omega] \in H^{2}(G$, $C(X, \mathbb{T}))$, let $\left[\omega_{N}\right]=\operatorname{Res}([\omega]) \in H^{2}(N, C(X, \mathbb{T}))$, where Res: $H^{2}(G, C(X, \mathbb{T})) \rightarrow$ $H^{2}(N, C(X, \mathbb{T}))$ is the restriction map. Taking $M=C(X, \mathbb{T})$ in (1.8) and (1.9), we
note that Res $=j$ so that $\left[\omega_{N}\right] \in\left[H^{2}(N, C(X, \mathbb{T}))\right]^{G}$. For N elementary abelian acting trivially on X, by [PRW, Cor 5.2] there is a split exact sequence

$$
\begin{equation*}
0 \rightarrow H_{\mathrm{pt}}^{2}(N, C(X, \mathbb{T})) \xrightarrow{\mathrm{i}_{*}} H^{2}(N, C(X, \mathbb{T})) \underset{j_{*}}{\stackrel{\pi_{*}}{\leftrightarrows}} C\left(X, H^{2}(N, \mathbb{T})\right) \rightarrow 0 \tag{2.6}
\end{equation*}
$$

and clearly if $\left[\omega_{N}\right] \in\left[H^{2}(N, C(X, \mathbb{T}))\right]^{G}$, we have $\pi_{*}\left(\left[\omega_{N}\right]\right)=f_{\omega} \circ p_{2}$, where $f_{\omega}: Z \rightarrow H^{2}(N, \mathbb{T})$ is continuous. One easily checks that $\left[f_{\omega}\right]=M_{G}\left(\xi_{(X, G)}[\omega]\right)$, where $M_{G}: \operatorname{Br}_{G}(X) \rightarrow C\left(Z, H^{2}(N, \mathbb{T})\right)$ is the Mackey obstruction map defined in Section 1 of [PRW]. Given $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$, we now define $\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right] \in$ $\Lambda(G \times N, N ; C(Y, \mathbb{T}))$. Here the action of $G \times N$ on Y is defined by τ_{2}; i.e., $\tau_{2}(g, n) y=g y$, and N is identified with the subgroup $\left\{1_{G}\right\} \times N$ of $G \times N$.

$$
\begin{align*}
& \lambda_{\omega}\left(\left(g_{1}, n_{1}\right), n_{2}\right)(y)=\omega\left(g_{1}, n_{2}\right)\left(p_{1}(y)\right) \overline{\omega\left(n_{2}, g_{1}\right)\left(p_{1}(y)\right)} \tag{2.7}\\
& \mu_{\omega}\left(n_{1}, n_{2}\right)=\omega\left(n_{1}, n_{2}\right)\left(p_{1}(y)\right)\left[j_{*}\left(f_{\omega}\right)\right]^{-1}\left(n_{1}, n_{2}\right)\left(p_{3}(y)\right) \tag{2.8}
\end{align*}
$$

where $j_{*}: C\left(Z, H^{2}(N, \mathbb{T})\right) \rightarrow H^{2}(N,(C(Z, \mathbb{T}))$ is the splitting map for the exact sequence (2.6) where the trivial N-space X is replaced by the trivial N-space Z. By construction, one checks that

$$
\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right] \in \Lambda_{\mathrm{pt}}(G \times N, N ; C(Y, \mathbb{T})) \subset \Lambda(G \times N, N ; C(Y, \mathbb{T}))
$$

We now state the main theorem.
THEOREM 2.2. Let G be an l.c.s.c. abelian group, with closed subgroup N which is elementary abelian, and suppose that G acts freely and properly on the l.c.s.c. Hausdorff space Y, in such a way that the quotient maps $p_{1}: Y \rightarrow Y / N=X$, $p_{2}: X \rightarrow X / G=Z$ and $p_{3}=p_{2} \circ p_{1}: Y \rightarrow Z$ satisfy (2.1)-(2.3), respectively. Denote by $d_{i}, i=0,1,2$, the homomorphisms of $H^{2}(G, C(X, \mathbb{T}))$ into the groups $C\left(Z, H^{2}(N, \mathbb{T})\right), \check{H}^{1}(Z, \hat{\mathcal{N}})$, and $H^{2}(Z, \mathcal{S})$ defined by $d_{i}=\Pi_{i} \circ \Psi \circ \xi_{(X, G)}$, respectively, where the maps Π_{i} are defined after (1.2). Then

$$
\begin{align*}
d_{0}([\omega]) & =\left[f_{\omega}\right] \tag{2.9}\\
d_{1}([\omega]) & =F_{(Y, G \times N)}\left(\left[\lambda_{\omega}, \mu_{\omega}\right]\right) \tag{2.10}\\
d_{2}([\omega]) & =\xi_{(Y, G)}\left(p_{1}^{*}[\omega]\right) \in B r_{G}(Y) \cong \check{H}^{2}(Z, S) \tag{2.11}
\end{align*}
$$

with $\left[f_{\omega}\right]$ as in (2.6), and $F_{(Y, G \times N)}$ as in (1.13).
Remark. If in addition ω is a continuous cocycle on $N \times N$ and not just Borel, we note that an explicit formula for $d_{2}([\omega])$ is given as follows: Let $\left\{N_{i}\right\}_{i}$ be a trivialing open cover for Z corresponding to the G-bundle $p_{3}: Y \rightarrow Z$, and let $c_{i}: N_{i} \rightarrow Y$ be local cross sections and $\lambda_{i j}: N_{i} \cap N_{j} \rightarrow G$ the transition functions defined by $c_{j}(z)=\lambda_{i j}(z) c_{i}(z)$. Then

$$
\begin{equation*}
d_{2}([\omega])=\left[v_{i j k}(z)\right]=\left[\omega\left(\lambda_{i j}(z), \lambda_{j k}(z)\right)\left(p_{1}\left(c_{i}(z)\right)\right)\right] . \tag{2.12}
\end{equation*}
$$

We will first establish a sequence of lemmas.
Lemma 2.3. Let $(Y, G),(X, G)$ and (Z, N) be as in the statement of Theorem 2.2, and let $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$. Then

$$
A^{*} \circ \theta_{G} \circ \xi_{(X, G)}([\omega])=\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega, 1}\right]\right)
$$

where $\left[\sigma_{\omega, 1}\right] \in H_{\left(\tau_{2}\right)}^{2}(G \times N, C(Y, \mathbb{T}))$ is defined by

$$
\begin{align*}
& \sigma_{\omega, 1}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y) \\
& \quad=\omega\left(g_{1} n_{1}, g_{2} n_{2}\right)\left(p_{1}(y)\right), \quad\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right) \in G \times N, y \in Y \tag{2.13}
\end{align*}
$$

Proof. By checking the definitions of $\xi_{(X, G)}$ as explicitly given in [P1, 2.1-2.4] and $\theta_{G}: \operatorname{Br}_{G}(X) \rightarrow \operatorname{Br}_{\left(G \times N, \tau_{1}\right)}(Y)$ as given in [KRW, Prop. 7], we see that

$$
\theta_{G} \circ \xi_{(X, G)}([\omega])=\xi_{(Y, \tau, G \times n)}\left(\left[\sigma_{\omega, 2}\right]\right)
$$

where $\left[\sigma_{\omega, 2}\right] \in H_{\left(\tau_{1}\right)}^{2}(G \times N, C(Y, \mathbb{T}))$ is defined by

$$
\begin{equation*}
\sigma_{\omega, 2}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y)=\omega\left(g_{1}, g_{2}\right)\left(p_{1}(y)\right),\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right) \in G \times N, y \in Y \tag{2.14}
\end{equation*}
$$

In what follows, for $[\sigma] \in H^{2}(G \times N, C(Y, \mathbb{T}))$ we denote by $\lambda_{[\sigma]}$ the action of $G \times N$ on $C_{0}(Y) \otimes \mathcal{K}$ given by the stabilization trick. Using [P1, 2.1-2.2], one can also check that the action $\lambda_{\sigma_{\omega, 2}} \circ A$ of $G \times N$ on $C_{0}(Y) \otimes \mathcal{K}$ obtained from calculating

$$
\left.A^{*}\left(\xi_{\left(Y, \tau_{1}, G \times N\right.}\right)\left(\left[\sigma_{\omega, 1}\right]\right)\right)=A^{*}\left(\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left[\sigma_{\omega, 2}\right]}, G \times N\right)\right]\right) \in \operatorname{Br}_{\left(G \times N, \tau_{2}\right)}(Y)
$$

is exterior equivalent to the action $\gamma_{\left[A^{*}\left(\sigma_{\omega, 2}\right)\right]}$ of $G \times N$ on $C_{0}(Y) \otimes \mathcal{K}$, and since $\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega, 1}\right]\right)=\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left[A^{*}\left[\sigma_{\omega, 2}\right]\right]}, G \times N\right)\right]$, we see that $A^{*} \circ \theta_{G} \circ$ $\xi_{(X, G)}([\omega])=\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega, 1}\right]\right)$, as desired.

We now show that $\sigma_{\omega, 1}$ is cohomologous to another cocycle σ_{ω}, in part by using the decomposition for $H_{\left(\tau_{2}\right)}^{2}(G \times N, C(Y, \mathbb{T}))$ given in (1.8) and (1.9).

Lemma 2.4. Let Y, X, Z, G and N be as in the statement of Theorem 2.2. Define $\left[\sigma_{\omega}\right] \in Z_{\tau_{2}}^{2}(G \times N, C(Y, \mathbb{T}))$ by

$$
\begin{array}{r}
\sigma_{\omega}\left(\left(y_{1}, n_{1},\right),\left(g_{2}, n_{2}\right)\right)(y)=\omega\left(g_{1}, g_{2}\right)\left(p_{1}(y)\right) \lambda\left(g_{1}, n_{2}\right)\left(p_{1}(y)\right) \omega\left(n_{1}, n_{2}\right)\left(p_{1}(y)\right) \\
\text { for }\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right) \in G \times N, y \in Y,(2.15)
\end{array}
$$

where $\lambda: G \times N \rightarrow C(X, \mathbb{T})$ is defined by

$$
\begin{equation*}
\lambda(g, n)(x)=\omega(g, n)(x) \overline{\omega(n, g)(x)}, \quad(g, n) \in G \times N, x \in X \tag{2.16}
\end{equation*}
$$

Then σ_{ω} is cohomologous to $\sigma_{\omega, 1}$.

Proof. We first establish for the reader's convenience that $\left[\left(\lambda, \omega_{N}\right)\right] \in \Lambda(G, N$; $C(X, \mathbb{T})$), although this follows from Raeburn and Williams' unpublished work [RW2, Section 5]; i.e., we shall prove that

$$
\begin{equation*}
\lambda\left(g_{1} g_{2}, n\right)(x)=\lambda\left(g_{1}, n\right)(x) \lambda\left(g_{2}, n\right)\left(g_{1}^{-1} x\right) g_{1}, g_{2} \in G, n \in N, x \in X \tag{2.17}
\end{equation*}
$$

and

$$
\begin{array}{r}
\lambda\left(g, n_{1} n_{2}\right)(x)=\overline{\omega\left(n_{1}, n_{2}\right)\left(g^{-1} x\right)} \omega\left(n_{1}, n_{2}\right)(x) \lambda\left(g, n_{1}\right)(x) \lambda\left(g, n_{2}\right)(x) \\
\text { for } g \in G, n_{1}, n_{2} \in N, x \in X . \tag{2.18}
\end{array}
$$

We have

$$
\begin{aligned}
& \lambda\left(g_{1} g_{2}, n\right)(x) \\
&= \omega\left(g_{1} g_{2}, n\right)(x) \overline{\omega\left(n, g_{1} g_{2}\right)(x)} \\
&= {\left[\omega\left(g_{1}, g_{2}\right)(x) \omega\left(g_{2}, n\right)\left(g_{1}^{-1} x\right) \omega\left(g_{1}, n g_{2}\right)(x)\right]\left[\omega\left(g_{1}, g_{2}\right)(x) \overline{\omega\left(n, g_{1}\right)(x)}\right.} \\
&= \omega\left(g_{2}, n\right)\left(g_{1}^{-1} x\right) \omega\left(g_{1}, n g_{2}\right)(x) \overline{\left.\omega\left(n g_{1}, g_{2}\right)(x)\right]} \\
&= \omega\left(g_{2}, n\right)\left(g_{1}^{-1} x\right)\left[\omega\left(g_{1}, n\right)(x) \omega\left(g_{1} n, g_{2}\right)(x) \overline{\omega\left(n g_{1}, g_{2}\right)(x)}\right. \\
& \cdot \overline{\left.\omega\left(n, g_{2}\right)\left(g_{1}^{-1} x\right)\right]} \\
&= \lambda\left(g_{1}, n\right)(x) \lambda\left(g_{2}, n\right)\left(g_{1}^{-1} x\right),
\end{aligned}
$$

establishing (2.17).
As for (2.18), we have

$$
\begin{aligned}
\lambda\left(g, n_{1} n_{2}\right)(x)= & \omega\left(g, n_{1} n_{2}\right)(x) \overline{\omega\left(n_{1} n_{2}, g\right)(x)} \\
= & \overline{\omega\left(n_{1}, n_{2}\right)\left(g^{-1} x\right)} \omega\left(g n_{1}, n_{2}\right)(x) \omega\left(g, n_{1}\right)(x) \overline{\omega\left(n_{1} n_{2}, g\right)(x)} \\
= & \overline{\omega\left(n_{1}, n_{2}\right)\left(g^{-1} x\right)} \omega\left(g n_{1}, n_{2}\right)(x) \omega\left(g, n_{1}\right)(x) \omega\left(n_{1}, n_{2}\right)(x) \\
& \cdot \overline{\omega\left(n_{2}, g\right)(x) \omega\left(n_{1}, n_{2} g\right)(x)} \\
= & \overline{\omega\left(n_{1}, n_{2}\right)\left(g^{-1} x\right)} \omega\left(n_{1}, n_{2}\right)(x) \omega\left(g, n_{1}\right)(x) \overline{\omega\left(n_{2}, g\right)(x) \omega\left(n_{1}, g\right)(x)} \\
& \cdot \frac{\omega\left(n_{1}, g n_{2}\right)(x) \omega\left(g, n_{2}\right)(x) \circ \overline{\omega\left(n_{1}, g n_{2}\right)(x)}}{\omega\left(n_{1}, n_{2}\right)\left(g^{-1} x\right)} \omega\left(n_{1}, n_{2}\right)(x) \lambda\left(g, n_{1}\right)(x) \lambda\left(g, n_{2}\right)(x) .
\end{aligned}
$$

With the above identities in mind, we define $b: G \times N \rightarrow C(Y, \mathbb{T})$ by $b(g, n)(y)=$
$\omega(n, g)\left(p_{1}(y)\right)$ and compute

$$
\begin{aligned}
& {\left[d b \sigma_{\omega, 1}\right]\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y) } \\
&= \omega\left(n_{1}, g_{1}\right)\left(p_{1}(y)\right) \omega\left(n_{2}, g_{2}\right)\left(p_{1}\left(g_{1}^{-1} y\right)\right) \\
& \cdot \overline{\omega\left(n_{1} n_{2}, g_{1} g_{2}\right)\left(p_{1}(y)\right)} \omega\left(g_{1} n_{1}, g_{2} n_{2}\right)\left(p_{1}(y)\right) \\
&= \omega\left(n_{1}, g_{1}\right)(x) \omega\left(n_{1} g_{1}, g_{2} n_{2}\right)(x) \omega\left(n_{2}, g_{2}\right)\left(g_{1}^{-1} x\right) \overline{\omega\left(n_{1} n_{2}, g_{1} g_{2}\right)(x)} \\
& \quad\left(\text { letting } x=p_{1}(y)\right) \\
&= \omega\left(n_{1}, g_{1} g_{2} n_{2}\right)(x) \omega\left(g_{1}, g_{2} n_{2}\right)(x) \omega\left(n_{2}, g_{2}\right)\left(g_{1}^{-1} x\right) \overline{\omega\left(n_{1} n_{2}, g_{1} g_{2}\right)(x)} \\
&= \omega\left(n_{1}, g_{1} g_{2} n_{2}\right)(x) \overline{\omega\left(n_{1} n_{2}, g_{1} g_{2}\right)(x)} \omega\left(g_{1}, n_{2}\right)(x) \omega\left(g_{1} n_{2}, g_{2}\right)(x) \\
&= \omega\left(g_{1}, g_{2}\right)(x) \omega\left(g_{1}, n_{2}\right)(x) \overline{\omega\left(n_{2}, g_{1}\right)(x)} \omega\left(n_{1}, n_{2}\right)(x) \omega\left(n_{1}, g_{1} g_{2} n_{2}\right)(x) \\
& \cdot \overline{\omega\left(n_{1} n_{2}, g_{1} g_{2}\right)(x) \omega\left(g_{1} n_{2}, g_{2}\right)(x) \overline{\omega\left(g_{1}, g_{2}\right)(x)} \omega\left(n_{2}, g_{1}\right)(x)} \\
& \cdot \overline{\omega\left(n_{1}, n_{2}\right)(x)}= \\
&= \sigma_{\omega}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y) \omega\left(n_{1}, g_{1} g_{2} n_{2}\right)(x) \omega\left(g_{1} n_{2}, g_{2}\right)(x) \overline{\omega\left(g_{1}, g_{2}\right)(x)} \\
&= \sigma_{\omega}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y) \omega\left(n_{2}, g_{1}\right)(x) \overline{\omega\left(n_{1}, n_{2} g_{1} g_{2}\right)(x) \omega\left(g_{1}\right)(x) \omega\left(n_{2} g_{1}, g_{2}\right)(x)} \\
&= \sigma_{\omega}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y),
\end{aligned}
$$

so that $\sigma_{\omega, 1}$, is cohomologous to σ_{ω}, as desired.

Proof of Theorem 2.2. By Lemma 2.3 and 2.4, we have $d_{i}([\omega])=\Pi_{i} \circ K^{*}$ $\left(\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega}\right]\right)\right), i=0,1,2$. We now write $\left[\sigma_{\omega}\right]$ as a product $\left[\tau_{\omega}\right] \cdot\left[m_{\omega}\right]$, where $\left[m_{\omega}\right],\left[\tau_{\omega}\right] \in H_{\tau_{2}}^{2}(G \times N, C(Y, \mathbb{T}))$ are defined by

$$
\begin{aligned}
m_{\omega}\left(\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right)\right)(y)= & j_{*}\left(\left[f_{\omega}\right]\right)\left(n_{1}, n_{2}\right)\left(p_{3}(y)\right) \\
& \text { for }\left(g_{1}, n_{1}\right),\left(g_{2}, n_{2}\right) \in G \times N, y \in Y,\left[f_{\omega}\right] \text { as in Eq. }
\end{aligned}
$$

and

$$
\begin{equation*}
\tau_{\omega}=\sigma_{\omega} m_{\omega}^{-1} \tag{2.20}
\end{equation*}
$$

We now write

$$
\xi_{(Z, N)}\left(\left[j_{*}\left(f_{\omega}\right)\right]\right)=\left[\left(C_{0}(Z) \otimes \mathcal{K}, \beta_{\omega}, N\right)\right] \in \mathrm{Br}_{N}(Z)
$$

and

$$
\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[m_{\omega}\right]\right)=\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left[m_{\omega}\right]}, G \times N\right)\right] \in \operatorname{Br}_{\left(G \times N, \tau_{2}\right)}(Y)
$$

Through direct computation, one checks that the action $\tau_{2} \otimes \beta$ of $G \times N$ on $C_{0}(Y) \otimes_{C_{0}(Z)}$ $C_{0}(Z) \otimes \mathcal{K} \cong C_{0}(Y) \otimes \mathcal{K}$ is exterior equivalent to $\gamma_{\left[m_{\omega}\right]}$. Thus

$$
\begin{aligned}
& \Pi_{i}(\left.K^{*}\left(\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega}\right]\right)\right)\right) \\
&=\Pi_{i}\left(K^{*}\left(\left[\left(C_{0}(Y) \otimes \mathcal{K}, \tau \otimes \beta_{\omega}, G \times N\right)\right]\right)\right) \\
& \quad=\Pi_{i}\left(\left[\left(\left(C_{0}(Y) \otimes \mathcal{K}\right) \times_{\tau} G, \beta_{\omega}, N\right)\right]\right), \quad i=0,1,2, \\
& \quad=\Pi_{i}\left(\left[\left(C_{0}(Z) \otimes \mathcal{K}, \beta_{\omega}, N\right)\right]\right) \\
& \quad=\Pi_{i}\left(\xi_{(Z, N)}\left(\left[j_{*}\left(\left[f_{\omega}\right]\right)\right]\right)\right), \quad i=0,1,2 .
\end{aligned}
$$

Now $\xi_{(Z, N)} \circ j_{*}: C\left(Z, H^{2}(N, \mathbb{T})\right) \rightarrow \operatorname{Br}_{N}(Z)$ is a splitting for the Mackey obstruction $\Pi_{0}=M_{N}: \operatorname{Br}_{N}(Z) \rightarrow C\left(Z, H^{2}(N, \mathbb{T})\right)$, so that $d_{0}([\omega])=\Pi_{0} \circ \xi_{(Z, N)} \circ j_{*}\left(\left[f_{\omega}\right]\right)=$ $\left[f_{\omega}\right]$. We now recall from [P2] and [PRW] that for $[(B, \beta, N)] \in \mathrm{Br}_{N}(Z)$, the element $\left[\left(B_{1}, \beta_{1}, N\right)\right]=[(B, \beta, N)] \cdot \xi_{(Z, N)}\left(j_{*}\left(M_{N}([(B, \beta, N)])\right)\right) \in \operatorname{Br}_{N}(Z)$ has trivial Mackey obstruction, so is locally unitary, in the sense of J. Phillips and I. Raeburn $[\mathrm{PhR}]$, by Theorem 2.1 of $[\mathrm{Ro}] . \Pi_{1}([(B, \beta, N)])$ is defined to be that element $[q] \in \check{H}^{1}(Z, \hat{\mathcal{N}})$ representing the principal \hat{N} bundle $\widehat{B_{1} \times_{\beta_{1}}} N \longrightarrow \hat{B}_{1}=Z$. It is evident from this definition that $d_{1}([\omega])=\Pi_{1}\left(\xi_{(Z, N)}\left(\left[j_{*}\left(\left[f_{\omega}\right]\right)\right)\right)=1_{\check{H}^{\prime}(Z, \hat{\mathcal{N}})}\right.$, and clearly
$d_{2}([\omega])=\Pi_{2}\left(\xi_{(Z, N)}\left(j_{*}\left(\left[f_{\omega}\right]\right)\right)\right)=\delta\left(\left[\left[\left(C_{0}(Y) \otimes \mathcal{K}\right) \times_{\tau} G\right]\right)=\delta\left(\left[C_{0}(Z) \otimes \mathcal{K}\right]\right)=1_{\text {Ȟ }^{2}(Z, \mathcal{S})}\right.$.
We now consider $K^{*}\left(\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right)\right),\left[\tau_{\omega}\right]$ as in (2.20). We first note that upon identifying the subgroup $\{1\} \times N$ of $G \times N$ with $N, \tau_{\omega /(\{1) \times N) \times(\{1] \times N)}$ can be written as $p_{3}^{*}\left(\omega_{N} \cdot j_{*}\left(\left[f_{\omega}\right]\right)^{-1}\right) \in H_{\mathrm{pt}}^{2}(N, C(Y, \mathbb{T}))$ by the exactness of sequence (2.6). Also, denoting $\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right)$ by $\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left[\tau_{\omega}\right]}, G \times N\right)\right]$, one checks that $\gamma_{\left[\tau_{\omega}\right]}$ is inner when restricted to the stabilizer subgroup $\{1\} \times N$ for the τ_{2} action on Y, and that $d\left(\left[\gamma_{\left[\tau_{\omega}\right]}\right]\right)=\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right]$, where $d: I_{\{1\} \times N}(Y) \rightarrow \Lambda_{\mathrm{pt}}(G \times N, N ; C(Y, \mathbb{T}))$ is as in (1.12), and ($\lambda_{\omega}, \mu_{\omega}$) are as defined in (2.7) and (2.8). By Theorem 1.5, the class of the locally trivial principal \hat{N} bundle over $Y /(G \times N)=Z$, given by $\left(\left(C_{0}(Y) \otimes K\right) \times_{\gamma_{\tau \omega 1}}\right.$ $G \times N)^{\wedge} \rightarrow Z$, is exactly $F_{\left(Y, \tau_{2}, G \times N\right)} \circ d\left(\left[\gamma_{\left[\tau_{\omega}\right]}\right]\right)=F_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\lambda_{\omega}, \mu_{\omega}\right]\right)$, which by results from [RW1] will lie in the subgroup $\left\{[F] \in \check{H}^{1}(Z, \hat{N}): p_{3}^{*}(F) \in \check{H}_{C}^{1}(Y, \hat{\mathcal{N}})\right\}$. Hence

$$
\Pi_{0}\left(K^{*} \circ \xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right)\right)=\Pi_{0}\left(\left(C_{0}(Y) \otimes \mathcal{K} \times_{\eta_{\tau_{\omega} \mid}} G, \gamma_{\left[\tau_{\omega}\right] / N}, N\right)\right)=1_{C(Z, \mathbb{T})}
$$

(as $\gamma_{\left\{\tau_{\omega}\right]}$ restricted to $\{1\} \times N$ is locally unitary), and by the definition of Π_{1} given above, $\Pi_{1}\left(K^{*} \circ \xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right)\right)=F_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right]\right)$. We now calculate

$$
\begin{aligned}
\Pi_{2}(& \left.K^{*} \circ \xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right)\right) \\
& =\Pi_{2}\left(K^{*}\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left\{\tau_{\omega}\right]}, G \times N\right)\right]\right. \\
& =\delta\left(\left[C_{0}(Y) \otimes \mathcal{K}\right] \times_{\eta_{\left.\tau_{\omega} / G \times \mid 1\right]}}(G \times\{1\})\right) \in \check{H}^{2}(Z, \mathcal{S})
\end{aligned}
$$

From the formula for τ_{ω}, one calculates that

$$
\begin{aligned}
{\left[\left(C_{0}(Y) \otimes \mathcal{K}, \gamma_{\left[\tau_{\omega} / G \times[1]\right.}, G \times\{1\}\right)\right] } & =\xi_{(Y, G)}\left(p_{1}^{*}([\omega])\right. \\
& =\left[\left(C_{0}(Y) \otimes \mathcal{K}, \alpha_{p_{1}^{*}[(\omega])}, G\right)\right] \in \operatorname{Br}_{G}(Y)
\end{aligned}
$$

It follows that
$\left.\delta\left(\left(C_{0}(Y) \otimes \mathcal{K}\right) \times_{\gamma_{\tau \omega 1}} G \times\{1\}\right)=\delta\left(\left(C_{0}(Y) \otimes \mathcal{K}\right) \times_{\alpha_{p_{1}^{*}(\omega)}} G\right)\right)=\delta\left(\left(C_{0}(Y) \times_{\tau, p_{1}^{*}(\omega)} G\right) \otimes \mathcal{K}\right)$,
the last equality given by the stabilization trick of [PR1]. But formulas for the Dixmier-Douady classes of twisted transformation group C^{*}-algebras where G acts freely and properly on Y have been given in [PR2, Cor 3.4 and ($* *$) on p. 604], and if the cocycle ω is continuous on $G \times G$ and not just Borel, so is $p_{1}^{*}(\omega)$, and Corollary 3.4 in [PR2] gives $\delta\left(\left(C_{0}(Y) \times_{\tau, p^{*}(\omega)} G\right) \otimes \mathcal{K}\right)$ as a 2-cocycle with representative given by the right-hand side of (2.12).

Finally, using the fact that $\Pi_{i}, i=0,1,2, K^{*}$, and $\xi_{\left(Y, \tau_{2}, G \times N\right)}$ are homomorphisms, we have $d_{i}([\omega])=\Pi_{i} \circ K^{*}\left[\xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\sigma_{\omega}\right]\right)\right]=\Pi_{i} \circ K^{*} \circ \xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[\tau_{\omega}\right]\right) \cdot \pi_{i} \circ$ $K^{*} \circ \xi_{\left(Y, \tau_{2}, G \times N\right)}\left(\left[m_{\omega}\right]\right), i=0,1,2$, which combined with our previous calculations completes the proof of Theorem 2.2 and establishes (2.12).

We now can determine conditions on [ω] under which a twisted transformation group C^{*}-algebra will be strongly Morita equivalent to a twisted transformation group C^{*}-algebra of the form $C_{0}(Z) \times_{\text {Id }, \bar{\omega}} N$ for $[\bar{\omega}] \in H^{2}(N, C(Z, \mathbb{T}))$.

Corollary 2.5. Let Y, X, Z, G, N, and $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$ be as in the statement of Theorem 2.2. Suppose that $d_{2}([\omega])=[1]_{\check{H}^{2}(Z, \mathcal{S})}$ and $d_{1}([\omega]) \in$ $\check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$, where d_{2} and d_{1} are the maps defined in Theorem 2.2. Then there exists $\widetilde{\omega} \in H^{2}(N, C(Z, \mathbb{T}))$ such that $C_{0}(X) \times_{\tau, \omega} G$ is strongly Morita equivalent to $C_{0}(Z) \times_{\mathrm{Id}, \tilde{\omega}} N$.

Proof. This follows directly from Theorem 2.2 together with Corollary 1.4.

For the next result, we make the additional assumption that ω restricted to $N \times N$ takes on its values in $p_{2}^{*}(C(Z, \mathbb{T})) \subseteq C(X, \mathbb{T})$.

Theorem 2.6. Let Y, X, Z, G, N, and $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$ be as in the statement of Theorem 2. Suppose in addition that ω is (cohomologous to) a cocycle which when restricted to $N \times N$ takes on its values in $p_{2}^{*}(C(Z, \mathbb{T})) \subseteq C(X, \mathbb{T})$. Then in order that $d_{2}([\omega])=[1]_{\breve{H}^{2}(Z, \mathcal{S})}$ and $d_{1}([\omega]) \in \check{H}_{C}^{1}(Z, \hat{N})$, it is necessary and sufficient that the following conditions hold:
(i) $\left[p_{1}^{*}([\omega])\right] \in \operatorname{Im} d_{(Y, G)} \subseteq H^{2}(G, C(Y, \mathbb{T}))$.
(ii) The map $p_{1}^{*}(\lambda): G \rightarrow C(Y, \hat{N})$ defined by

$$
p_{1}^{*}(\lambda)(g)(y)(n)=\omega(g, n)\left(p_{1}(y)\right) \overline{\omega(n, g)\left(p_{1}(y)\right)}
$$

is trivial in $H^{1}(G, C(Y, \hat{N})) ;(g, n) \in G \times N, y \in Y$.
If these conditions are satisfied, $C_{0}(X) \times_{\tau, \omega} G$ is strongly Morita equivalent to $C_{0}(Z) \times_{\mathrm{Id}, \omega_{N}} N$, where $\omega_{N} \in H^{2}(N, C(Z, \mathbb{T}))$ is obtained from $\omega_{\mid N \times N}$ by identifying $p_{2}^{*}(C(Z, \mathbb{T}))$ with $C(Z, \mathbb{T})$.

Proof. The proof of Theorem 2.2 combined with the results of Corollary 1.4 show that $C_{0}(X) \times_{\tau, \omega} G$ will be strongly Morita equivalent to $C_{0}(Z) \times_{\mathrm{Id}, \omega} N$ if $d_{2}([\omega])=[1]_{H^{2}(Z, \mathcal{S})}$ and $d_{1}([\omega]) \in \check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$. Since G acts freely and properly on Y, for any $[(\mathcal{C}, \gamma, G)] \in \operatorname{Br}_{G}(Y), \mathcal{C} \times{ }_{\gamma} G$ will be a continuous trace C^{*} - algebra with spectrum Z, and the map $\widetilde{\delta}: \operatorname{Br}_{G}(Y) \rightarrow \check{H}^{2}(Z, \mathcal{S})$ given by $\tilde{\delta}([(\mathcal{C}, \gamma, G)])=$ $\delta\left(\mathcal{C} \times_{\gamma} G\right)$ is an isomorphism. Hence by Prop 1.1 and (2.12), $d_{2}([\omega])=\left[\gamma_{i j k}(z)\right]=$ $\delta\left(\left(C_{0}(Y) \otimes \mathcal{K}\right) \times_{\left.\left.\gamma_{\left|p_{1}^{*}(|\omega|)\right|} G\right)\right)}=[1]_{\check{H}^{2}(Z, \mathcal{S})}\right.$ if and only if $p_{1}^{*}([\omega]) \in \operatorname{Im~} \mathrm{d}_{(Y, G)}$, establishing (i). Since $\omega_{\mid N \times N}$ takes on its values in $\left.p_{2}^{*}(C(Z, \mathbb{T})) \subseteq C(X, \mathbb{T})\right)$, the element $\mu_{\omega}: N \times N \rightarrow C(Y, \mathbb{T})$ defined in (2.8) takes on its values in $p_{3}^{*}(C(Z, \mathbb{T}))$ and is an element of $Z_{\mathrm{pt}}^{2}(N, C(Y, \mathbb{T}))$ so that $\left[\left(1, \mu_{\omega}\right)\right] \in \Lambda_{\mathrm{pt}}(G \times N, N ; C(Y, \mathbb{T}))$; and writing $\mu_{\omega}=p_{3}^{*}\left(\tilde{\mu}_{\omega}\right)$ where $\tilde{\mu}_{\omega} \in Z_{\mathrm{pt}}^{2}(N, C(Z, \mathbb{T}))$, we have $F_{(Y, G \times N)}\left(\left[\left(1, \mu_{\omega}\right)\right]\right)=$ $E_{(Z, N)}\left(\left[\tilde{\mu}_{\omega}\right]\right) \in \check{H}_{C}^{1}(Z, \hat{N})$. Since $d_{1}([\omega])=F_{(Y, G \times N)}\left(\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right] \in \check{H}_{C}^{1}(Z, \hat{\mathcal{N}})\right.$ by hypothesis, it follows that $\left.\left.F_{(Y, G \times N)}\left(\left[\left(\lambda_{\omega}, 1\right)\right]\right)=F_{(Y, G \times N)}\right)\left[\left(\lambda_{\omega}, \mu_{\omega}\right)\right]\right) \cdot F_{(Y, G \times N)}([(1$, $\left.\left.\left.\mu_{\omega}\right)\right]^{-1}\right) \in \check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$. Let $[\gamma]=F_{(Y, G \times N)}\left(\left[\left(\lambda_{\omega}, 1\right)\right]\right) \in \check{H}_{C}^{1}(Z, \hat{\mathcal{N}})$, and find $[\rho] \in H_{\mathrm{pt}}^{2}(N, C(Z, \mathbb{T}))$ with $E_{(Z, N)}([\rho])=[\gamma]$. Then $\left[\left(1, p_{3}^{*}(\rho)\right] \in \Lambda_{\mathrm{pt}}(G \times\right.$ $N, N ; C(Y, \mathbb{T}))$ and $F_{(Y, G \times N)}\left(\left[\left(1, p_{3}^{*}(\rho)\right)\right]\right)=[\gamma]=F_{(Y, G \times N)}\left(\left[\left(\lambda_{\omega}, 1\right)\right]\right)$. Since $F_{(Y, G \times N)}$ is injective, this implies that $\left[\left(\lambda_{\omega}, 1\right)\right]=\left[\left(1, p_{3}^{*}(\rho)\right)\right] \in \Lambda_{\mathrm{pt}}(G \times N, N ; C(Y$, $\mathbb{T})$. Now we adapt sequence (1.9) to obtain an exact sequence for $\Lambda(G \times N, N$; $C(Y, \mathbb{T})$):

$$
0 \rightarrow H^{1}(G, C(Y, \hat{N})) \xrightarrow{i} \Lambda(G \times N, N ; C(Y, \mathbb{T})) \xrightarrow{j}\left[H^{2}(N, C(Y, \mathbb{T}))\right]^{G}
$$

$$
\begin{equation*}
H^{2}(G, C(Y, \hat{N})) \tag{2.21}
\end{equation*}
$$

Hence $\left[p_{3}^{*}(\rho)\right]=j\left(\left[\left(1, p_{3}^{*}(\rho)\right)\right]\right)=j\left(\left[\left(\lambda_{\omega}, 1\right)\right]\right)=j \circ i\left(p_{1}^{*}(\lambda)\right]=[1]_{\left[H^{2}(N, C(Y, \mathbb{T})]^{G}\right.}$. Therefore

$$
\left[p_{3}^{*}(\rho)\right]=[1] \in H^{2}(N, C(Y, \mathbb{T}))
$$

and consequently

$$
\begin{gathered}
{\left[\left(1, p_{3}^{*}(\rho)\right)\right]=[1] \in \Lambda(G \times N, N ; C(Y, \mathbb{T})),} \\
i\left(\left[p_{1}^{*}(\lambda)\right]\right)=\left[\left(\lambda_{\omega}, 1\right)\right]=\left[\left(1, p_{3}^{*}(\rho)\right)\right]=[1]_{\Lambda(G \times N, N ; C(Y, \mathbb{T}))} .
\end{gathered}
$$

Since i is an injection, this implies that $\left[p_{1}^{*}(\lambda)\right]=1 \in H^{1}(G, C(Y, \hat{N}))$, as we desired to show .

Remark 2.7. Although the assumption that $\omega / N \times N$ takes on its values in $p_{2}^{*}(C(Z, \mathbb{T}))$ may seem very strong, there are subgroups N for which this will always happen, regardless of Y, X, Z, and G. In particular, if $N \cong \mathbb{Z}^{n}$ for some $n \in \mathbb{N}$, the sequences (1.8), (1.9) with $M=C(X, \mathbb{T})$ and (2.5) show first that $\omega / \mathbb{Z}^{n} \times \mathbb{Z}^{n} \in$ $\left[H^{2}\left(\mathbb{Z}^{n}, C(X, \mathbb{T})\right)\right]^{G}$, and second that $H^{2}\left(\mathbb{Z}^{n}, C(X, \mathbb{T})\right) \cong C\left(X, H^{2}\left(\mathbb{Z}^{n}, \mathbb{T}\right)\right)$, since $H_{\mathrm{pt}}^{2}\left(\mathbb{Z}^{n}, C(X, \mathbb{T})\right)$ is trivial. Consequently, $\left[H^{2}\left(\mathbb{Z}^{n}, C(X, \mathbb{T})\right)\right]^{G} \cong C\left(X / G, H^{2}\left(\mathbb{Z}^{n}\right.\right.$, $\mathbb{T})) \cong C\left(Z, H^{2}\left(\mathbb{Z}^{n}, \mathbb{T}\right)\right)$, and thus $\left.\omega\right|_{\mathbb{Z}^{n} \times \mathbb{Z}^{n}}$ is cohomologous to a cocycle taking on its values in $p_{2}^{*}(C(Z, \mathbb{T}))$.

3. Applications to twisted two-step nilpotent group C^{*}-algebras

In this section, we consider twisted group C^{*}-algebras $C^{*}(\Gamma, \mu)$, where Γ is a torsion free finitely generated two-step nilpotent group, i.e., where Γ is a central extension of \mathbb{Z}^{ℓ} by \mathbb{Z}^{n}, for $\ell, n \in \mathbb{N}$, and we establish conditions on $[\mu] \in H^{2}(\Gamma, \mathbb{T})$ analogous to conditions (i) and (ii) of Theorem 2.6 which will imply that $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$ where Γ_{0} is a subgroup of Γ of finite index and $\mu_{0}=\left.\mu\right|_{\Gamma_{0} \times \Gamma_{0}}$. Though the conditions as stated may appear somewhat specialized, they frequently arise when one is considering examples of multipliers $[\mu] \in H^{2}(\Gamma, \mathbb{T})$ which are not homotopic to the identity in $H^{2}(\Gamma, \mathbb{T})$. Let (Γ, μ) be as above, and suppose that Γ contains a central subgroup D which itself contains the commutator subgroup $C=[\Gamma, \Gamma]$, and suppose in addition the following conditions are satisfied:
(3.1) $\mu_{I D \times D}$ is trivial.
(3.2) The homomorphism $\phi_{D}(\mu): \Gamma \rightarrow \hat{D}$ defined in [PR3] by

$$
\phi_{D}(\mu)(\gamma)(d)=\mu(d, \gamma) \overline{\mu(\gamma, d)}, \gamma \in \Gamma, d \in D
$$

has closed (i.e., finite) range R in \hat{D}, so that $R=D_{0}^{\perp}$ for some subgroup $D_{0} \subseteq D$ of finite index.
(3.3) Setting $M=\operatorname{ker} \phi_{D}(\mu)$, the quotient group M / D_{0} (which we shall prove is abelian) splits as

$$
M / D_{0} \equiv D / D_{0} \oplus M / D
$$

(This final condition of course automatically happens if $M / D \cong \mathbb{Z}^{k}$ for some $k \in$ \mathbb{N}.

The commutator subgroup C of Γ will automatically satisfy (3.1) [LP1, Prop. 1], so if C also satisfies (3.2) and (3.3) for μ, we can take $D=C$.

Assuming that (3.1) and (3.2) hold, we obtain the following decomposition result.
Proposition 3.1. Let Γ be a finitely generated torsion free two-step nilpotent group, let $[\mu] \in H^{2}(\Gamma, \mathbb{T})$ and suppose there is a central subgroup D of Γ containing C such that (3.1) and (3.2) are satisfied. Then the twisted group C^{*}-algebra $C^{*}(\Gamma, \mu)$ is $*$-isomorphic to a twisted transformation group C^{*}-algebra $C\left(\mathbb{T}^{\ell}\right) \times_{\tau, \omega} G$, where ℓ is the rank of $D, G=\Gamma / D$, the action τ of G on $\mathbb{T}^{\ell}=\hat{D}$ is given by translation corresponding to the homomorphism $\phi_{D}(\mu): \Gamma \rightarrow \hat{D}$ of (3.2), and $[\omega] \in$ $H^{2}\left(G, C(X, \mathbb{T})\right.$), where $X=\mathbb{T}^{\ell}$. Moreover, letting $N=\left.\operatorname{ker} \tau \cong \operatorname{ker} \phi_{D}(\mu)\right|_{D}$, there is an l.c.s.c. free and proper G space (Y, G) such that the spaces $Y, X=Y / N$, $Z=Y / G=X / G$ satisfy the conditions of (2.1)-(2.3). If in addition we assume that (3.3) holds, then we can assume without loss of generality that $\left.\omega\right|_{N \times N}$ takes on values in $p_{2}^{*}(C(Z, \mathbb{T})) \subseteq C(X, \mathbb{T})$.

Proof. By definition, $C^{*}(\Gamma, \mu)$ is the twisted crossed product $\mathbb{C} \times{ }_{I d, \mu} \Gamma$, so that by the decomposition theory for twisted crossed products [PR1, Theorem 4.1]) we have $C^{*}(\Gamma, \mu)=\mathbb{C} \times_{\mathrm{Id}, \mu} \Gamma \cong C(\hat{D}) \times_{\tau, \omega} G$, where $G=\Gamma / D$ is abelian since $C \subseteq D$, and since $\left.\mu\right|_{D \times D}$ is trivial, $\mathbb{C} \times_{\mathrm{Id}, \mu} D \cong C^{*}(D) \cong C(\hat{D}) \cong C\left(\mathbb{T}^{\ell}\right)$ for some $\ell \in \mathbb{N}$ by the Fourier transform. The formulas given in [PR 1], Theorem 4.1, for τ and ω show that the action τ of G on $C(\hat{D})$ is translation corresponding to the homomorphism $\phi_{D}(\mu): \Gamma \rightarrow \hat{D}$, which, since $\left.\mu\right|_{D \times D}$ is trivial, factors through $\Gamma / D=G$. Choosing a cross-section $c: G \rightarrow \Gamma$ with $c\left(1_{G}\right)=1_{\Gamma}$, and writing

$$
\begin{equation*}
\eta\left(g_{1}, g_{2}\right)=c\left(g_{1}\right) c\left(g_{2}\right) c\left(g_{1} g_{2}\right)^{-1} \in D \cong \hat{\hat{D}}, \quad g_{1}, g_{2} \in G \tag{3.4}
\end{equation*}
$$

we can compute $\omega \in Z^{2}(G, C(\hat{D}, \mathbb{T}))$ as

$$
\begin{align*}
\omega\left(g_{1}, g_{2}\right)(x)= & \mu\left(c\left(g_{1}\right), c\left(g_{2}\right)\right) \overline{\mu\left(\eta\left(g_{1}, g_{2}\right), c\left(g_{1} g_{2}\right)\right)} \eta\left(g_{1}, g_{2}\right)(x) \\
& g_{1}, g_{2} \in G, x \in \hat{D} . \tag{3.5}
\end{align*}
$$

By assumption (3.2), the range R of $\phi_{D}(\mu)$ is a finite group which is isomorphic to G / N, for $N=\operatorname{Ker} \tau$. Hence N is of finite index in G and G / N acts freely and properly on $X=\hat{D}$ which is a locally trivial principal G / N-bundle over $\hat{D} / G / N=$ Z. Setting $D_{0}=R^{\perp} \subseteq D$, by the Pontryagin theory $Z=\hat{D}_{0}$, so that Z also has the structure of an ℓ-torus. By Proposition 2.1, there is a locally trivial principal G-bundle Y over Z such that $Y / N=X$, so that (2.1)-(2.3) are satisfied. To establish the last statement of the proposition, we let $\mu=\operatorname{Ker} \phi_{D}(\mu), C_{0}=\{c \in C: \mu(c, \gamma) \overline{\mu(\gamma, c)}=$ $1, \forall \gamma \in \Gamma\}$, and $D_{0}=\{d \in D: \mu(d, \gamma) \overline{\mu(\gamma, d)}=1, \forall \gamma \in \Gamma\}$. Since $C \subseteq D \subseteq M$, $C_{0} \subseteq D_{0} \subseteq M$. The argument of Theorem 1.2 in [PR3] shows that $\mu=\operatorname{Inf} \tilde{\tilde{\mu}}$ for
$\tilde{\mu} \in Z^{2}\left(\Gamma / D_{0}, \mathbb{T}\right)$. Furthermore there is an exact sequence

$$
\begin{equation*}
1 \rightarrow M / D_{0} \rightarrow \Gamma / D_{0} \rightarrow \Gamma / D_{0} / M / D_{0} \cong \Gamma / M \cong R \cong D_{0}^{\perp} \rightarrow 1 \tag{3.6}
\end{equation*}
$$

Since $D_{0}^{\perp}=\left[\widehat{D / D_{0}}\right]$ and is finite, by the theory of finite abelian groups we know that $D / D_{0} \cong \widehat{D / D_{0}}$. We now establish that M / D_{0} is abelian. Let $\Gamma_{1}=\Gamma / C_{0}$. Then μ, being the inflation of a multiplier on Γ / D_{0}, can also be viewed as a lift of a multiplier μ_{1} on the intermediate quotient group Γ_{1}. If $C_{0} \neq C, \Gamma_{1}$ is again a two-step nilpotent group with commutator subgroup $C_{1}=C / C_{0}$, and letting $\phi_{C_{1}}\left(\mu_{1}\right): \Gamma_{1} \rightarrow \hat{C}_{1}$, by construction $\phi_{1}(\mu)$ will be surjective, and by [PR3, Cor 1.3], $K_{1}=\operatorname{ker} \phi_{C_{1}}\left(\mu_{1}\right)$ is a normal abelian subgroup of Γ_{1} containing C_{1}. Now set $K=\left\{\gamma \in \Gamma: \gamma \cdot C_{0} \in\right.$ $\left.K_{1} \subseteq \Gamma_{1}=\Gamma / C_{0}\right\}$. Then $K=\operatorname{ker} \phi_{C}(\mu): \Gamma \rightarrow \hat{C}$, and since $K_{1}=K / C_{0}$ is abelian,$[K, K] \subseteq C_{0}$. Since $M=\operatorname{ker} \phi_{D}(\mu) \subseteq \operatorname{ker} \phi_{C}(\mu)=K$, it follows that $[M, M] \subseteq[K, K] \subseteq C_{0}$, and since $C_{0} \subseteq D_{0}$, we see that $M / D_{0}=M / C_{0} / D_{0} / C_{0}$ is abelian. Recalling that $N=M / D$, upon restricting $\eta \in Z^{2}(G, D)$ defined in (3.4) to $N \times N$, we obtain a cocycle $\eta_{N} \in Z^{2}(N, D)$. By the Bockstein exact sequence

$$
\begin{equation*}
H^{2}\left(N, D_{0}\right) \xrightarrow{i_{*}} H^{2}(N, D) \xrightarrow{\pi_{*}} H^{2}\left(N, D / D_{0}\right) \xrightarrow{\partial} H^{3}\left(N, D_{0}\right) \tag{3.7}
\end{equation*}
$$

it follows that $\left[\eta_{N}\right]=i_{*}([\kappa])$ for $[\kappa] \in H^{2}\left(N, D_{0}\right)$ if and only if $\pi_{*}\left(\left[\eta_{N}\right]\right)=$ [1] $H_{H^{2}\left(N, D / D_{0}\right)}$. It follows that η_{N} is cohomologous to a cocycle taking values in D_{0} if and only if the central extension M / D_{0} of $N=M / D$ by D / D_{0} corresponding to the cocycle $\pi_{*}\left(\eta_{N}\right): N \times N \rightarrow D / D_{0}$ splits, i.e., if and only if the group extension

$$
\begin{equation*}
1 \rightarrow D / D_{0} \rightarrow M / D_{0} \rightarrow M / D \rightarrow 1 \tag{3.8}
\end{equation*}
$$

splits. Consequently if M / D_{0} (which we know is abelian) is isomorphic to $D / D_{0} \oplus$ M / D, then, upon changing η by a coboundary if necessary, we can choose η so that η_{N} takes on values in $D_{0} \cong \hat{\hat{D}}_{0} \subseteq C\left(\hat{D}_{0}, \mathbb{T}\right) \cong p_{2}^{*}(C(Z, \mathbb{T}))$, where $p_{2}: X=\hat{D} \rightarrow$ $\hat{D} / G=\hat{D} / G=\hat{D} / R \cong \widehat{R^{\perp}} \cong \hat{D}_{0} \cong Z$. It follows that for ω as defined in (3.5), $\left.\omega\right|_{N \times N}$ will also be (cohomologous to) a cocycle taking on its values in $p_{2}^{*}(C(Z, \mathbb{T}))$, as we desired to show. Of course if $N=M / D$ is torsion free (hence by assumption isomorphic to \mathbb{Z}^{m} for some $m \in \mathbb{Z}^{+}$) then it will always be true that M / D_{0} will split as $D / D_{0} \oplus M / D$, so that it will always be true that ω can be chosen so that $\left.\omega\right|_{N \times N}$ takes on its values in $p_{2}^{*}(C(Z, \mathbb{T}))$. This is consistent with the results of Remark 2.7.

Remark 3.2. It follows from the above proposition that if (Γ, μ) is a groupmultiplier pair where Γ is a finitely generated nilpotent torsion free two-step nilpotent group and if there exists a central subgroup D containing the commutator subgroup for Γ such that D satisfies (3.1) and (3.2), then we can apply Theorem 2.2 to construct a continuous trace C^{*}-algebra B with spectrum \hat{D}_{0} and an action β of $M / D=N$ on B such that the induced action $\hat{\beta}$ is trivial on the spectrum Z and $B \times_{\beta} N$ is strongly Morita equivalent to $C^{*}(\Gamma, \mu)$. In general, the Dixmier-Douady class of
B in $\hat{H}^{2}(Z, \mathcal{S})$ and the Phillips-Raeburn obstruction $[\gamma] \in \hat{H}(Z, \hat{\mathcal{N}})$ associated to $[(B, \beta, N)] \in \operatorname{Br}_{N}(Z)$ can be non-trivial, as we will see in upcoming examples. For the next few results, however, we concentrate on finding conditions under which $C^{*}(\Gamma, \mu)$ will be strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where Γ_{0} is a subgroup Γ of finite index and $\mu_{0}=\left.\mu\right|_{\Gamma_{0} \times \Gamma_{0}}$.

COROLLARY 3.3. Let Γ be a finitely generated torsion free two-step nilpotent group, let $[\mu] \in H^{2}(\Gamma, \mathbb{T})$, and suppose there is a central subgroup D of Γ containing the commutator subgroup satisfying (3.1) and (3.2), and such that M / D is free abelian (so that (3.3) is also satisfied). Then there is a subgroup Γ_{0} of finite index in Γ such that, defining $\mu_{0}=\left.\mu\right|_{\Gamma_{0} \times \Gamma_{0}},\left[\mu_{0}\right]$ is in the path component of the identity in $H^{2}\left(\Gamma_{0}, \mathbb{T}\right)$.

Proof. The proof of Proposition 3.2 shows that we can define Γ_{0} to be the central extension of $M / D=N$ by D_{0} defined by $\eta_{N}: N \times N \rightarrow D_{0}$ which fits into the exact sequence

$$
1 \rightarrow D_{0} \rightarrow \Gamma_{0} \rightarrow M / D \rightarrow 1
$$

Note $\Gamma_{0} \subseteq M$. Since $\mu(d, m) \overline{\mu(m, d)}=1 \forall m \in M, \forall d \in D$ by definition of M, it follows that $\mu_{0}(d, \gamma) \overline{\mu_{0}(\gamma, d)}=1, \forall d \in D_{0}, \forall \gamma \in \Gamma_{0}$ so that $\mu_{0}=\operatorname{Inf}\left(\tilde{\mu}_{0}\right)$ for $\tilde{\mu}_{0} \in Z^{2}(M / D, \mathbb{T})$. But if M / D is free abelian, $H^{2}(M / D, \mathbb{T})$ is path-connected. Consequently $\left[\tilde{\mu}_{0}\right]$ is in the path component of the identity in $H^{2}(M / D, \mathbb{T})$, so that [μ_{0}] is in the path component of the identity in $H^{2}\left(\Gamma_{0}, \mathbb{T}\right)$.

Corollary 3.4. Let Γ be a finitely generated torsion free two-step nilpotent group and $[\mu] \in H^{2}(\Gamma, \mathbb{T})$. Suppose there exists a central subgroup $D \subseteq \Gamma$ containing the commutator subgroup of Γ such that (3.1)-(3.3) are satisfied, and suppose the multiplier $[\omega] \in H^{2}(G, C(X, \mathbb{T}))$ defined in (3.5) satisfies conditions (i) and (ii) of Theorem 2.6. Then $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where Γ_{0} is a subgroup of Γ of finite index and $\mu_{0}=\left.\mu\right|_{\Gamma_{0} \times \Gamma_{0}}$. If in addition, using the notation of Corollary 3.3, M / D is free abelian , $C^{*}(\Gamma, \mu)$ is $K K$-equivalent to $C^{*}\left(\Gamma_{0}\right)$.

Proof. By Proposition 3.1 we can write $C^{*}(\Gamma, \mu)$ as $C(X) \times_{\tau, \omega} G$, where $G=$ $\Gamma / D, X=\hat{D}$, and $[\omega]$ is as defined in (3.5). Furthermore from the results of Prop 3.1 and by hypothesis, this transformation group C^{*}-algebra satisfies all the conditions of Theorem 2.6, so that $C_{0}(X) \times_{\tau, \omega} G$ is strongly Morita equivalent to $C_{0}(Z) \times_{\text {Id, } \omega_{N}} N \cong$ $C_{0}\left(\hat{D}_{0}\right) \times_{\text {Id }, \omega_{N}} N$. But as in the proof of Proposition 3.1, $C_{0}\left(\hat{D}_{0}\right) \times_{\text {Id }, \omega_{N}} N$ is isomorphic to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where Γ_{0} is the central extension of $N=M / D$ by D_{0} corresponding to the two-cocycle $\eta_{N} \in Z^{2}\left(N, D_{0}\right)$. Hence we have shown that $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$. Finally, if we assume N is free abelian, then by Corollary 3.3, $\left[\mu_{0}\right]$ is in the same path component as $[1]_{H^{2}\left(\Gamma_{0}, \mathbb{T}\right)} \in H^{2}\left(\Gamma_{0}, \mathbb{T}\right)$, so that by [PR 3, Cor 2.8], $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$ is KK-equivalent to $C^{*}\left(\Gamma_{0}\right)$. Hence $C^{*}(\Gamma, \mu)$ is KK-equivalent to $C^{*}\left(\Gamma_{0}\right)$.

Example 3.5. Let Γ be a lattice in the $(2 n+1)$-dimensional simply connected Heisenberg Lie group for $n \geq 2$ and let [μ] be any multiplier of Γ (the structure of the lattice subgroups Γ and multipliers [μ] were discussed in [LP1]). The center \mathcal{Z} of Γ is isomorphic to \mathbb{Z} so that $\Gamma / \mathcal{Z} \cong \mathbb{Z}^{2 n}$. Since $H^{2}(\mathcal{Z}, \mathbb{T})=H^{2}(\mathbb{Z}, \mathbb{T})$ is trivial, without loss of generality we can assume that $\left.\mu\right|_{\mathcal{Z} \times \mathcal{Z}}=1$, so that as in Proposition 3.1, $C^{*}(\Gamma, \mu)$ decomposes as $C(\mathbb{T}) \times_{\tau, \omega} \mathbb{Z}^{2 n}$, where the action of τ corresponds to translation coming from the homomorphism $\Phi_{Z}(\mu): \Gamma \rightarrow \hat{\mathcal{Z}}=\mathbb{T}$ which factors through $\Gamma / \mathcal{Z}=\mathbb{Z}^{2 n}$. Let $M=\operatorname{ker} \phi_{\mathcal{Z}}(\mu)$ and set $N=M / \mathcal{Z}$. The range R of $\phi_{\mathcal{Z}}(\mu)$ is finite for dimension $n \geq 2$ [LP1], i.e., $R=Z_{0}^{\perp}$ where Z_{0} is a finite index subgroup of \mathcal{Z}. Since M / \mathcal{Z} is torsion free, we have a splitting

$$
M / Z_{0}=\mathcal{Z} / Z_{0} \oplus M / \mathcal{Z}
$$

so that conditions (3.2) and (3.3) listed in the first part of this section are also satisfied. Thus, we can apply Proposition 3.1 and Theorem 2.6 to deduce that $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$ if we can show that the multiplier $[\omega] \in$ $H^{2}\left(\mathbb{Z}^{2 n}, C(\mathbb{T}, \mathbb{T})\right.$) defined in (3.5) satisfies conditions (i) and (ii) of Theorem 2.6. Now (i) is satisfied automatically, since $\check{H}^{2}(Z, \mathcal{S})=\check{H}^{3}(\mathbb{T}, \mathbb{Z})=\{0\}$. We thus consider whether (ii) is satisfied, i.e., whether or not $\left[p_{1}^{*}(\lambda)\right] \in H^{1}(G, C(Y, \hat{N}))$ defined by

$$
\left[p_{1}^{*}(\lambda)\right](g)(y)(n)=\omega(g, n)\left(p_{1}(y)\right) \overline{\omega(n, g)\left(p_{1}(y)\right)}, \quad g \in G, n \in N, y \in Y
$$

is trivial. Now from the exact sequence (2.21), the map $i: H^{1}(G, C(Y, \hat{N})) \rightarrow$ $\Lambda_{\mathrm{pt}}(G \times N, N ; C(Y, \mathbb{T}))$ is injective, and by Theorem 1.5, $F_{(Y, G \times N)}: \Lambda_{\mathrm{pt}}(G \times$ $N, N ; C(Y, \mathbb{T})) \rightarrow \check{H}^{1}(Z, \check{\mathcal{N}})$ is injective. Thus, $F_{(Y, G \times N)} \circ i: H^{1}(G, C(Y, \hat{N})) \rightarrow$ $\check{H}^{1}(Z, \hat{\mathcal{N}})$ is injective. But as $Z \cong \mathbb{T}$ and $\hat{N} \cong \hat{\mathcal{Z}}^{2 n}=\mathbb{T}^{2 n}$, we have $\check{H}^{1}(Z, \hat{N}) \cong$ $\check{H}^{1}\left(\mathbb{T}, \mathcal{S}^{2 n}\right) \cong \check{H}^{2}\left(\mathbb{T}, \mathbb{Z}^{2 n}\right) \cong\{0\}$, and it follows from the vanishing of cohomology groups that $\left[p_{1}^{*}(\lambda)\right]$ must be trivial. We thus obtain another proof of the following result, which was first proved in [LP2]:

COROLLARY 3.6. Let Γ be a lattice in the $(2 n+1)$ dimensional simply connected Heisenberg Lie group and let $[\mu] \in H^{2}(\Gamma, \mathbb{T})$. Then there is a subgroup Γ_{0} of Γ of finite index such that the twisted group C^{*}-algebra $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where $\left[\mu_{0}\right]=\left[\mu / \Gamma_{0} \times \Gamma_{0}\right]$ is in the path component of the identity in $H^{2}\left(\Gamma_{0}, \mathbb{T}\right)$.

Proof. If $n=1$, it follows from [LP1, Theorem 3.6] that every multiplier on Γ is homotopic to the identity, so that there is nothing to prove. If $n \geq 2$, we have shown in the above analysis that $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to $C^{*}\left(\Gamma_{0}, \mu_{0}\right)$, where Γ_{0} is the central extension of M / \mathcal{Z} by Z_{0}, for $M=\operatorname{ker} \phi_{\mathcal{Z}}(\mu)$. Since M / \mathcal{Z} is free abelian, by Corollary 3.3, $\left[\mu_{0}\right]$ is in the path component of the identity in $H^{2}\left(\Gamma_{0}, \mathbb{T}\right)$.

Next, we give several examples where the invariants do not all vanish, yet are computable.

Example 3.7. Let Γ be the following two step nilpotent group of rank 5: Γ is a central extension of \mathbb{Z}^{3} by \mathbb{Z}^{2} corresponding to the cohomology class $[\eta] \in$ $H^{2}\left(\mathbb{Z}^{3}, \mathbb{Z}^{2}\right)$ given by

$$
\eta\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)=\left(a x_{3} x_{1}^{\prime}, d x_{3} x_{2}^{\prime}\right), \text { where } a, d \in \mathbb{N}, a / d
$$

As a set, Γ can be identified with $\mathbb{Z}^{2} \times \mathbb{Z}^{3}$. Define $\mu \in \mathbb{Z}^{2}(\Gamma, \mathbb{T})$ by

$$
\begin{aligned}
& \mu\left(\left(m_{1}, m_{2}, x_{1}, x_{2}, x_{3}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}, x_{1}^{\prime},\right.\right. \\
& \left.\left.\quad x_{2}^{\prime}, x_{3}^{\prime}\right)\right)=e^{\frac{2 \pi i}{a} x_{2} m_{1}^{\prime}}, \\
& \quad\left(m_{1}, m_{2}, x_{1}, x_{2}, x_{3}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in \Gamma .
\end{aligned}
$$

For $a>1$ it can be verified that $[\mu]$ is not in the path component of the identity element in $H^{2}(\Gamma, \mathbb{T})$. By Proposition 3.1 , we can write $C^{*}(\Gamma, \mu) \cong C\left(\mathbb{T}^{2}\right) \times_{\tau, \omega} \mathbb{Z}^{3}$, where $\tau: \mathbb{Z}^{3} \rightarrow \mathbb{T}^{2}$ is given by

$$
\tau\left(x_{1}, x_{2}, x_{3}\right)=\left(e^{2 \pi \frac{i}{a} x_{2}}, 1\right)
$$

and $\omega: \mathbb{Z}^{3} \times \mathbb{Z}^{3} \rightarrow C\left(\mathbb{T}^{2}, \mathbb{T}\right)$ is defined by

$$
\omega\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)\left(z_{1}, z_{2}\right)=\left(z_{1}\right)^{a x_{3} x_{1}^{\prime}}\left(z_{2}\right)^{d x_{3} x_{2}^{\prime}}
$$

Through direct calculation we check that condition (3.3) is satisfied, so that by Proposition 3.1 again, with $G=\mathbb{Z}^{3}$ and $N=\mathbb{Z} \oplus a \mathbb{Z} \oplus \mathbb{Z}$, we can find a principal G-bundle $Y=\mathbb{R} \times \mathbb{T} \times \mathbb{Z} \times \mathbb{Z}$ over $\mathbb{Z}=\mathbb{T}^{2} / G$ (which can also be identified with \mathbb{T}^{2}), where the action of $G=\mathbb{Z}^{3}$ on Y is given by

$$
\begin{aligned}
\left(r, z, n_{1}, n_{3}\right) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(r+x_{2}, z, n_{1}+x_{1},\right. & \left.n_{3}+x_{3}\right) \\
& \left(r, z, n_{1}, n_{3}\right) \in Y,\left(x_{1}, x_{2}, x_{3}\right) \in G
\end{aligned}
$$

The map $p_{1}: Y \rightarrow X=Y / N=\mathbb{T}^{2}$ is given by

$$
p_{1}\left(r, z, n_{1}, n_{3}\right)=\left(e^{2 \pi i \frac{r}{a}}, z\right)
$$

The map $p_{2}: X=\mathbb{T}^{2} \rightarrow Z=\mathbb{T}^{2}$ is given by $p_{2}\left(z_{1}, z_{2}\right)=\left(z_{1}^{a}, z_{2}\right)$, so that $p_{3}=$ $p_{2} \circ p_{1}: Y \rightarrow Z$ is given by $p_{3}\left(r, z, n_{1}, n_{3}\right)=\left(e^{2 \pi i r}, z\right)$. Using the notation of Theorem 2.6, one computes that $\left[p_{1}^{*}(\omega)\right] \in H^{2}(G, C(Y, \mathbb{T}))$ is defined by

$$
\begin{aligned}
& {\left[p_{1}^{*}(\omega)\right]\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)\left(r, z, n_{1}, n_{3}\right)=e^{2 \pi i r a x_{3} x_{1}^{\prime}} z^{d x_{3} x_{2}^{\prime}}} \\
& \quad\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in G,\left(r, z, n_{1}, n_{2}\right) \in Y .
\end{aligned}
$$

and $\left[p_{1}^{*}(\lambda)\right] \in H^{1}\left(G, H^{1}(N, C(Y, \mathbb{T}))\right.$ is defined by
$\left[p_{1}^{*}(\lambda)\right]\left(\left(x_{1}, x_{2}, x_{3}\right),\left(j_{1}, j_{2}, j_{3}\right)\right)\left(\left(r, z, n_{1}, n_{3}\right)\right)=\left(e^{2 \pi i r x_{3}}\right)^{j_{1}}\left(z^{d a x_{3}}\right)^{j_{2}}\left(e^{-2 \pi i r x_{1}} z^{-d x_{2}}\right)^{j_{3}}$.

Identifying $\hat{N} \cong \hat{\mathbb{Z}}^{3}$ with \mathbb{T}^{3}, we can write $H^{1}\left(G, H^{1}(N, C(Y, \mathbb{T}))\right) \cong H^{1}(G$, $C(Y, \hat{N})) \cong H^{1}\left(G, C\left(Y, \mathbb{T}^{3}\right)\right)$ and with respect to this identification, we can view $p_{1}^{*}(\lambda)$ as being defined by

$$
\begin{aligned}
p_{1}^{*}(\lambda)\left(\left(x_{1}, x_{2}, x_{3}\right),\left(r, z, n_{1}, n_{3}\right)\right)=\left(e^{2 \pi i r x_{3}},\right. & \left.z^{d a x_{3}}, e^{-2 \pi i r x_{1}} z^{-d x_{2}}\right) \\
& \left(x_{1}, x_{2}, x_{3}\right) \in G,\left(r, z, n_{1}, n_{3}\right) \in Y .
\end{aligned}
$$

We note now that as in Example 3.5, condition (i) of Theorem 2.6 is automatically satisfied since $\check{H}^{2}(Z, \mathcal{S}) \cong \breve{H}^{2}\left(\mathbb{T}^{2}, \mathcal{S}\right)=\check{H}^{3}\left(\mathbb{T}^{2}, \mathbb{Z}\right)=\{0\}$. However condition (ii) does not hold. We can check that if $f: Y \rightarrow \mathbb{T}^{3}$ is defined by $f=\left(f_{1}, f_{2}, f_{3}\right)$ where the maps $f_{i}: Y \rightarrow \mathbb{T}, i=1,2,3$ are given by the formulas

$$
\begin{aligned}
& f_{1}\left(r, z, n_{1}, n_{3}\right)=e^{2 \pi i r n_{3}} \\
& f_{2}\left(r, z, n_{1}, n_{3}\right)=z^{d a n_{3}} \\
& f_{3}\left(r, z, n_{1}, n_{3}\right)=e^{-2 \pi i r n_{1}}
\end{aligned}
$$

then

$$
\begin{aligned}
& p_{1}^{*}(\lambda) d f\left(\left(x_{1}, x_{2}, x_{3}\right),\left(r, z, n_{1}, n_{3}\right)\right)=\left(1,1, z^{-d x_{2}}\right) \\
&\left(x_{1}, x_{2}, x_{3}\right) \in G,\left(r, z, n_{1}, n_{3}\right) \in Y .
\end{aligned}
$$

Let $[\rho]=\left[p_{1}^{*}(\lambda) d f\right] \in H^{1}\left(G, C\left(Y, \mathbb{T}^{3}\right)\right)$.
By using the definition of the bundle $F_{(Y, G \times N)}\left(i^{*}[\rho]\right)$ given in [RW1] and the method outlined in [PR2, Lemma 3.2], we verify that if $\left\{N_{i}\right\}_{i=1} \subseteq Z=\mathbb{T}^{2}$ is a local trivialization of $p_{3}: Y \rightarrow Z$ and $c_{i}: N_{i} \rightarrow Y$ are sections, with $c_{i}(z)=c_{j}(z) \nu_{i j}(z)$ where $\nu_{i j}: N_{i j} \rightarrow G$, then the transition functions for the \hat{N}-bundle over Z represented by $F_{(Y, G \times N)}\left(i^{*}([\rho])\right)$ are

$$
\lambda_{i j}(z)=\left[\rho\left(v_{i j}(z), c_{i}(z)\right)\right]^{-1}, z \in N_{i j}
$$

It is evident that the $G=\mathbb{Z}^{3}$-bundle Y over $Z=\mathbb{T}^{2}$ is the product of the non-trivial \mathbb{Z}-bundle \mathbb{R} over \mathbb{T} and a trivial \mathbb{Z}^{2}-bundle over the second factor of \mathbb{T}, so that we can write $N_{i j}=N_{i j}^{\prime} \times \mathbb{T}$ where $\left\{N_{i j}\right\} \subseteq \mathbb{T}$ is a local trivialization of the projection $p: \mathbb{R} \rightarrow \mathbb{T}$. Using this notation we have

$$
v_{i j}\left(\left(z_{1}, z_{2}\right)\right)=\left(0, v_{i j}^{\prime}\left(z_{1}\right), 0\right),\left(z_{1}, z_{2}\right) \in N_{i j}
$$

where $v_{i j}^{\prime}: N_{i j}^{\prime} \rightarrow \mathbb{Z}$ are the transition functions associated to the bundle $p: \mathbb{R} \rightarrow \mathbb{T}$ via the formula $c_{i}^{\prime}\left(z_{1}\right)=v_{i j}^{\prime}\left(z_{1}\right) c_{j}^{\prime}\left(z_{1}\right)$, and where, as usual, $c_{i}: N_{i}^{\prime} \rightarrow \mathbb{R}$ are local sections. Using this notation, we see that for $\left(z_{1}, z_{2}\right) \in N_{i j}=N_{i j}^{\prime} \times \mathbb{T}$ we have

$$
\begin{aligned}
\lambda_{i j}\left(\left(z_{1}, z_{2}\right)\right) & =\left[\rho\left(\left(0, v_{i j}^{\prime}\left(z_{1}\right), 0\right),\left(c_{i}^{\prime}\left(z_{1}\right), z_{2}, 0,0\right)\right)\right]^{-1} \\
& =\left(1,1, z_{2}^{d v_{i j}^{\prime}\left(z_{1}\right)}\right)
\end{aligned}
$$

By the method outlined in Lemmas 3.2 and 3.3 of [LP2], the cocycle $\left\{\lambda_{i j}^{(\prime)}\right\} \in$ $\check{H}^{1}\left(\mathbb{T}^{2}, \mathcal{S}\right)=\check{H}^{2}\left(\mathbb{T}^{2}, \mathbb{Z}\right) \cong \mathbb{Z}$ defined by the formulas

$$
\left\{\lambda_{i j}^{(\prime)}\left(\left(z_{1}, z_{2}\right)\right)\right\}=z_{2}^{v_{i j}^{\prime}\left(z_{1}\right)},\left(z_{1}, z_{2}\right) \in N_{i j}
$$

corresponds to the element $e_{2} \wedge e_{1}=-e_{1} \wedge e_{2}$ in $H^{2}\left(\mathbb{T}^{2}, \mathbb{Z}\right) \cong \Lambda^{2}\left(\mathbb{Z}^{2}, \mathbb{Z}\right)$ (recall $e_{1} \wedge e_{2}$ is the standard generator of $H^{2}\left(\mathbb{T}^{2}, \mathbb{Z}\right)$), hence $\left\{\lambda_{i j}\right\} \in \check{H}^{1}\left(\mathbb{T}^{2}, \mathcal{S}^{3}\right) \cong \check{H}^{2}\left(\mathbb{T}^{2}, \mathbb{Z}^{3}\right) \cong$ \mathbb{Z}^{3} can be represented by the element $\left(0,0,-d e_{1} \wedge e_{2}\right)=(0,0,-d)$ (upon viewing $e_{1} \wedge e_{2}$ as a standard generator in the third coordinate). Using the notation of Theorem 2.6, it follows that $d_{1}([\omega])=(0,0,-d) \in \check{H}^{1}\left(\mathbb{T}^{2}, \mathcal{S}^{3}\right) \cong H^{2}\left(\mathbb{T}^{2}, \mathbb{Z}^{3}\right)$. Finally, one calculates that $d_{0}([\omega])=\left[c_{\omega}\right]$ where $c_{\omega}: \mathbb{T}^{2} \rightarrow Z^{2}(N, \mathbb{T})$ is defined by

$$
\begin{aligned}
c_{\omega}\left(z_{1}, z_{2}\right)\left(\left(j_{1}, a j_{2}, j_{3}\right),\left(j_{1}^{\prime}, a j_{2}^{\prime}, j_{3}^{\prime}\right)\right)= & \left(z_{1}\right)^{j_{3} j_{1}^{\prime}}\left(z_{2}\right)^{a j_{3} j_{2}^{\prime}} \\
\left(z_{1}, z_{2}\right) & \in Z=\mathbb{T}^{2},\left(j_{1}, a j_{2}, j_{3}\right),\left(j_{1}^{\prime}, a j_{2}^{\prime}, j_{3}^{\prime}\right) \in N .
\end{aligned}
$$

Thus $C^{*}(\Gamma, \mu)$ is strongly Morita equivalent to a crossed product $\left(C\left(\mathbb{T}^{2}\right) \otimes \mathcal{K}\right) \times{ }_{\beta} N=$ $\left(C\left(\mathbb{T}^{2}\right) \otimes \mathcal{K}\right) \times_{\beta} \mathbb{Z}^{3}$, where $\left[\left(C\left(\mathbb{T}^{2}\right) \otimes \mathcal{K}, \beta, \mathbb{Z}^{3}\right)\right] \in B r_{N}(Z)$ has the invariants computed above.

Example 3.9. We end the paper by considering a twisted group C^{*}-algebra associated to a rank six nilpotent discrete group where all of the cohomological invariants coming from Theorem 2.6 are non-trivial. Let Γ be the central extension of \mathbb{Z}^{3} by \mathbb{Z}^{3} corresponding to the two-cocycle $\eta: \mathbb{Z}^{3} \times \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ defined by

$$
\begin{aligned}
& \eta\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)=\left(2 x_{3} x_{2}^{\prime}, 2 x_{3} x_{1}^{\prime}, 2 x_{2} x_{1}^{\prime}\right) \\
&\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in \mathbb{Z}^{3}
\end{aligned}
$$

so that setwise, Γ is identified with $\mathbb{Z}^{3} \times \mathbb{Z}^{3}$:

$$
\Gamma=\left\{\left(m_{1}, m_{2}, m_{3}, x_{1}, x_{2}, x_{3}\right): m_{i}, x_{i} \in \mathbb{Z}, i=1,2,3\right\}
$$

Define the multiplier $\mu: \Gamma \times \Gamma \rightarrow \mathbb{T}$ by

$$
\mu\left(\left(m_{1}, m_{2}, m_{3}, x_{1}, x_{2}, x_{3}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}, x_{1}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)=(-1)^{x_{1} m_{1}^{\prime}+x_{2} m_{2}^{\prime}+x_{3} m_{3}^{\prime}} .
$$

Again, one can check that $[\mu]$ is not in the path component of the identity in $H^{2}(\Gamma, \mathbb{T})$, and it follows from Prop. 3.1 that $C^{*}(\Gamma, \mu)$ is $*$-isomorphic to the twisted transformation group C^{*}-algebra $C\left(\mathbb{T}^{3}\right) \times_{\tau, \omega} G$, where $G=\mathbb{Z}^{3}$, the action τ of G on $C\left(\mathbb{T}^{3}\right)$ corresponds to the homomorphism $\tau: G \rightarrow \mathbb{T}^{3}$ given by $\tau\left(x_{1}, x_{2}, x_{3}\right)=\left(e^{\pi i x_{1}}\right.$, $\left.e^{\pi i x_{2}}, e^{\pi i x_{3}}\right),\left(x_{1}, x_{2}, x_{3}\right) \in G$, and the two-cocycle $\omega: G \times G \rightarrow C\left(\mathbb{T}^{3}, \mathbb{T}\right)$ is given by

$$
\begin{aligned}
\omega\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)\left(z_{1}, z_{2}, z_{3}\right)= & z_{1}^{2 x_{3} x_{2}^{\prime}} z_{2}^{2 x_{3} x_{1}^{\prime}} z_{3}^{2 x_{2} x_{1}^{\prime}} \\
& \left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{T}^{3}=X,\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in \mathbb{Z}^{3}=G .
\end{aligned}
$$

Using the notation of Proposition 3.1, we have $D=\mathbb{Z}^{3}=\left\{\left(n_{1}, n_{2}, n_{3}\right), n_{i} \in\right.$ $\mathbb{Z}, i=1,2,3\}$, and $D_{0}=2 \mathbb{Z} \oplus 2 \mathbb{Z} \oplus 2 \mathbb{Z}=\left\{\left(2 n_{1}, 2 n_{2}, 2 n_{3}\right), n_{i} \in \mathbb{Z}, i=1,2,3\right\}$, $Y=\mathbb{R}^{3}$, with the $G=\mathbb{Z}^{3}$ action on Y defined by
$\left(r_{1}, r_{2}, r_{3}\right)\left(x_{1}, x_{2}, x_{3}\right)=\left(r_{1}+x_{1}, r_{2}+x_{2}, r_{3}+x_{3}\right), \quad\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{R}^{3},\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3}$.
Letting $N=2 \mathbb{Z} \oplus 2 \mathbb{Z} \oplus 2 \mathbb{Z}$, the maps p_{1}, p_{2} and p_{3} are given by

$$
\begin{gathered}
p_{1}: Y \rightarrow X=Y / N=\mathbb{T}^{3} \\
p_{1}\left(r_{1}, r_{2}, r_{3}\right)=\left(e^{\pi i r_{1}}, e^{\pi i r_{2}}, e^{\pi i r_{3}}\right), \quad\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{R}^{3}, \\
p_{2}: X \rightarrow Z=Y / G=\mathbb{T}^{3} \\
p_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}^{2}, z_{2}^{2}, z_{3}^{2}\right), \quad\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{T}^{3}=X
\end{gathered}
$$

so that

$$
p_{3}\left(r_{1}, r_{2}, r_{3}\right)=\left(e^{2 \pi i r_{1}}, e^{2 \pi i r_{2}}, e^{2 \pi_{i} r_{3}}\right), \quad\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{R}^{3} .
$$

Applying the notation of Theorem 2.2 and its subsequent remark, we see that $\left[p_{1}^{*}([\omega])\right] \in H^{2}(G, C(Y, \mathbb{T}))$ is given by

$$
\begin{aligned}
& p_{1}^{*}([\omega])\left(\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)\right)\left(r_{1}, r_{2}, r_{3}\right)=e^{2 \pi i r_{1} x_{3} x_{2}^{\prime}} e^{2 \pi i r_{2} x_{3} x_{1}^{\prime}} e^{2 \pi i r_{3} x_{2} x_{1}^{\prime}} \\
&\left(x_{1}, x_{2}, x_{3}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \in G,\left(r_{1}, r_{2}, r_{3}\right) \in Y .
\end{aligned}
$$

and $d_{2}([\omega]) \in \check{H}^{2}(Z, \mathcal{S})$ is defined by the formulas

$$
\left(d_{2}([\omega])\right)_{i j k}(z)=\left\{p_{1}^{*}([\omega])\left(\lambda_{i j}(z), \lambda_{j k}(z)\right)\left(c_{i}(z)\right)\right\}_{i j k}
$$

where $\left\{N_{i}\right\} \subseteq \mathbb{T}^{3}$ is a local trivialization for the bundle $p_{3}: \mathbb{R}^{3} \rightarrow \mathbb{T}^{3}$ decribed above, the maps $c_{i}: N_{i} \rightarrow \mathbb{R}^{3}$ are local sections, and $c_{i}(z)=\lambda_{i j}(z) c_{j}(z), z \in N_{i j}$. Now define $\sigma: \mathbb{Z}^{2} \times \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by

$$
\sigma\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right)=n m^{\prime}
$$

let $\left\{V_{i}\right\}$ be a local trivialization for the principal \mathbb{Z}^{2} bundle $\mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$, and let $\epsilon_{i}: V_{i} \rightarrow$ \mathbb{R}^{2} and $\rho_{i j}: V_{i} \cap V_{j}=V_{i j} \rightarrow \mathbb{Z}^{2}$ be the corresponding local sections and transition functions. Define $\theta_{i}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{2} i=1,2,3$ by

$$
\theta_{i}\left(z_{1}, z_{2}, z_{3}\right)= \begin{cases}\left(z_{2}, z_{3}\right), & i=1 \\ \left(z_{1}, z_{3}\right), & i=2 \\ \left(z_{1}, z_{2}\right), & i=3\end{cases}
$$

Let

$$
\begin{aligned}
& \left\{N_{i j k}^{(1)}=\theta_{1}^{-1}\left(V_{i j k}\right) \subseteq \mathbb{T}^{3}\right\}, \\
& \left\{N_{i j k}^{(2)}=\theta_{2}^{-1}\left(V_{i j k}\right) \subseteq \mathbb{T}^{3}\right\}, \\
& \left\{N_{i j k}^{(3)}=\theta_{3}^{-1}\left(V_{i j k}\right) \subseteq \mathbb{T}^{3}\right\}
\end{aligned}
$$

Define cocycles $\left\{\eta_{i j k}^{(1)}\right\},\left\{\eta_{i j k}^{(2)}\right\},\left\{\eta_{i j k}^{(3)}\right\} \in \check{H}^{2}\left(\mathbb{T}^{3}, \mathcal{S}\right)$ with respect to the open covers $\left\{N_{i j k}^{(1)}\right\},\left\{N_{i j k}^{(2)}\right\},\left\{N_{i j k}^{(3)}\right\}$ by

$$
\begin{array}{ll}
\eta_{i j k}^{(1)}\left(\left(z_{1}, z_{2}, z_{3}\right)\right)=z_{1}^{\sigma\left(\rho_{i j}\left(\left(z_{2}, z_{3}\right)\right), \rho_{j k}\left(\left(z_{2}, z_{3}\right)\right)\right)}, & \left(z_{1}, z_{2}, z_{3}\right) \in N_{i j k}^{(1)}, \\
\eta_{i j k}^{(2)}\left(\left(z_{1}, z_{2}, z_{3}\right)\right)=z_{2}^{\sigma\left(\rho_{i j}\left(\left(z_{1}, z_{3}\right)\right), \rho_{j k}\left(\left(z_{1}, z_{3}\right)\right)\right)}, & \left(z_{1}, z_{2}, z_{3}\right) \in N_{i j k}^{(2)}, \\
\eta_{i j k}^{(3)}\left(\left(z_{1}, z_{2}, z_{3}\right)\right)=z_{3}^{\sigma\left(\rho_{i j}\left(\left(z_{1}, z_{2}\right)\right), \rho_{j k}\left(\left(z_{1}, z_{2}\right)\right)\right)}, & \left(z_{1}, z_{2}, z_{3}\right) \in N_{i j k}^{(3)} .
\end{array}
$$

By [LP2, Lemmas 3.2 and 3.3], the cocycles $\left\{\eta_{i j k}^{(1)}\right\},\left\{\eta_{i j k}^{(2)}\right\},\left\{\eta_{i j k}^{(3)}\right\}$ correspond to the elements $e_{1} \wedge e_{2} \wedge e_{3}, e_{2} \wedge e_{1} \wedge e_{3}$ and $e_{3} \wedge e_{1} \wedge e_{2}$ in $\Lambda^{3}\left(\mathbb{Z}^{3}, \mathbb{Z}\right) \cong \check{H}^{3}\left(\mathbb{T}^{3}, \mathbb{Z}\right) \cong$ $\check{H}^{2}\left(\mathbb{T}^{3}, \mathcal{S}\right)$, and by passing to refinements, one can verify that the product $\left[\left\{\eta_{i j k}^{(1)}\right\}\right]$. $\left[\left\{\eta_{i j k}^{(2)}\right]\right] \cdot\left[\left\{\eta_{i j k}^{(3)}\right]\right]$ is cohomologous to $\left[\left(d_{2}([\omega])\right)_{i j k}\right] \in \check{H}^{2}\left(\mathbb{T}^{3}, \mathcal{S}\right)$. Hence $\left[\left(d_{2}([\omega])\right)_{i j k}\right]$ can be represented by the invariant $e_{1} \wedge e_{2} \wedge e_{3}+e_{2} \wedge e_{1} \wedge_{3}+e_{3} \wedge e_{1} \wedge e_{2}=$ $e_{1} \wedge e_{2} \wedge e_{3} \in \check{H}^{3}\left(\mathbb{T}^{3}, \mathbb{Z}\right) \cong \mathbb{Z}$ (recall that $e_{1} \wedge e_{2} \wedge e_{3}$ is the standard generator for $\check{H}^{3}\left(\mathbb{T}^{3}, \mathbb{Z}\right)$). We now compute $d_{1}([\omega])$ and show that it also is non-trivial. We calculate $\left[p_{1}^{*}(\lambda)\right]=H^{1}\left(G, H^{1}(N, C(Y, \mathbb{T}))\right.$ as follows:

$$
\begin{aligned}
& p_{1}^{*}(\lambda)\left(\left(x_{1}, x_{2}, x_{3}\right),\left(2 n_{1}, 2 n_{2}, 2 n_{3}\right)\right)\left(r_{1}, r_{2}, r_{3}\right) \\
& =e^{2 \pi i \cdot 2\left(r_{2} x_{3}+r_{3} x_{2}\right) n_{1}} e^{2 \pi i \cdot 2\left(r_{1} x_{3}-r_{3} x_{1}\right) n_{2}} e^{-2 \pi i \cdot 2\left(r_{1} x_{2}+r_{2} x_{1}\right) n_{3}}, \\
& \quad\left(x_{1}, x_{2}, x_{3}\right) \in G,\left(2 n_{1}, 2 n_{2}, 2 n_{3}\right) \in N,\left(r_{1}, r_{2}, r_{3}\right) \in Y .
\end{aligned}
$$

As in Example 3.5 we identify $H^{1}\left(G, H^{1}(N, C(Y, \mathbb{T}))\right.$ with $H^{1}(G, C(Y, \hat{N}))=$ $H^{1}\left(\mathbb{Z}^{3}, C\left(\mathbb{R}^{3}, \mathbb{T}^{3}\right)\right)$ to get

$$
\begin{aligned}
& p_{1}^{*}(\lambda)\left(\left(x_{1}, x_{2}, x_{3}\right),\left(r_{1}, r_{2}, r_{3}\right)\right) \\
&=\left(e^{2 \pi i \cdot 2\left(r_{2} x_{3}+r_{3} x_{2}\right)}, e^{2 \pi i 2\left(r_{1} x_{3}-r_{3} x_{1}\right)}, e^{-2 \pi i \cdot 2\left(r_{1} x_{2}+r_{2} x_{1}\right)}\right. \\
&\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3},\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{R}^{3}=Y .
\end{aligned}
$$

Now define $f: \mathbb{R}^{3} \rightarrow \mathbb{T}^{3}$ by

$$
f\left(r_{1}, r_{2}, r_{3}\right)=\left(e^{2 \pi i 2 r_{2} r_{3}}, 1, e^{-2 \pi i 2 r_{1} r_{2}}\right)
$$

Again, one checks that

$$
p_{1}^{*}(\lambda) \cdot d f\left(\left(x_{1}, x_{2}, x_{3}\right),\left(r_{1}, r_{2}, r_{3}\right)\right)=\left(1, e^{2 \pi_{i} 2\left(r_{1} x_{3}-r_{3} x_{1}\right)}, 1\right) .
$$

Then methods similar to those outlined in Example 3.5 allow one to calculate that $F_{(Y, G \times N)}\left(i_{*}\left(\left[p_{1}^{*}(\lambda)\right]\right)\right) \in \check{H}^{1}\left(\mathbb{T}^{3}, \mathcal{S}^{3}\right) \cong \check{H}^{2}\left(\mathbb{T}^{3}, \mathbb{Z}^{3}\right)$ is identified with the element $\left(0,-4 e_{1} \wedge e_{3}, 0\right)$ upon using the identification of $\check{H}^{2}\left(\mathbb{T}^{3}, \mathbb{Z}^{3}\right)$ with $\Lambda^{2}\left(\mathbb{Z}^{3}, \mathbb{Z}\right) \oplus$ $\Lambda^{2}\left(\mathbb{Z}^{3}, \mathbb{Z}\right) \oplus \Lambda^{2}\left(\mathbb{Z}^{3}, \mathbb{Z}\right)$. (Recall that $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}$ and $e_{2} \wedge e_{3}$ are the standard generators for $\Lambda^{2}\left(\mathbb{Z}^{3}, \mathbb{Z}\right)$.) Hence $d_{1}([\omega])=\left(0,-4 e_{1} \wedge e_{3}, 0\right)$ and is also nontrivial. Finally, one calculates $d_{0}([\omega])=\left[c_{\omega}\right]$ where $c_{\omega}: \mathbb{T}^{3} \rightarrow Z^{2}(N, \mathbb{T})$ is defined by

$$
\begin{aligned}
& c_{\omega}\left(z_{1}, z_{2}, z_{3}\right)\left(\left(2 n_{1}, 2 n_{2}, 2 n_{3}\right),\left(2 n_{1}^{\prime}, 2 n_{2}^{\prime}, 2 n_{3}^{\prime}\right)\right)=z_{1}^{4 n 3 n_{2}^{\prime}} z_{2}^{4 n n_{3}^{\prime} n_{1}} z_{3}^{4 n_{2} n_{1}^{\prime}} \\
& \left(2 n_{1}, 2 n_{2}, 2 n_{3}\right),\left(2 n_{1}^{\prime}, 2 n_{2}^{\prime}, 2 n_{3}^{\prime}\right) \in N,\left(z_{1}, z_{2}, z_{3}\right) \in Z \cong \mathbb{T}^{3} .
\end{aligned}
$$

References

[CKRW] D. Crocker, A. Kumjian, I. Raeburn, and D. Williams, An equivariant Brauer group and actions of groups on C^{*}-algebras, J. Funct. Anal. 146 (1997), 151-184.
[H] J. Huebschmann, Group extensions, crossed pairs and an eight term exact sequence, J. Reine Angew. Math. 321 (1981), 150-172.
[KRW] A. Kumjian, I. Raeburn, and D. Williams, The equivariant Brauer groups of free and proper actions are isomorphic, Proc. Amer. Math. Soc. 124 (1996), 809-817.
[LP1] S. T. Lee and J. A. Packer, Twisted group C^{*} - algebras for two-step nilpotent and generalized discrete Heisenberg groups, J. Operator Theory 34 (1995), 91-124.
[LP2] , K-theory for C^{*}-algebras associated to lattices in Heisenberg Lie groups, J. Operator Theory, 41 (1999), 291-319.
[P1] J. A. Packer, Transformation group C^{*}-algebras: A selective survey, Comptemporary Mathematics, no. 167 (Robert S. Doran, ed.), Amer. Math. Soc., Providence, R.I., 1994, pp. 183-217.
[P2] , Moore cohomology and central twisted crossed product C^{*}-algebras, Canadian J. Math. 48 (1996), 159-174.
[PR1] J. A. Packer and I. Raeburn, Twisted crossed products of C^{*}-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), 293-311.
[PR2] _, Twisted crossed products of C^{*}-algebras II, Math. Ann. 287 (1990), 595-612.
[PR3] , On the structure of twisted group C*-algebras, Trans. Amer. Math. Soc. 334 (1992), 685-718.
[PRW] J. A. Packer, I. Raeburn, and D. Williams, The equivariant Brauer groups of principal bundles, J. Operator Theory 36 (1996), 73-105.
[PhR] J. Phillips and I. Raeburn, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), 215-241.
[Ra] I. Raeburn, Induced C*-algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (1988), 369-387.
[RR] I. Raeburn and J. Rosenberg, Crossed products of continuous trace C^{*}-algebras by smooth actions, Trans. Amer. Math. Soc. 305 (1988), 1-45.
[RW1] I. Raeburn and D. Williams, Moore cohomology, principal bundles, and actions of groups on C^{*}-algebras, Indiana Univ. Math. J. 40 (1991), 707-740.
[RW2] _ The relation between group cohomology and actions of groups on C^{*}-algebras, unpublished manuscript.
[Ri] M. Rieffel, "Applications of strong Morita equivalence to transformation group C^{*}-algebras" in Operator Algebras and Applications, Proceedings of Symposia in Pure Mathematics, vol. 38, Part 1, Amer. Math Soc., Providence, R.I., 1982, pp. 299-310.
[Ro] J. Rosenberg, "Some results on cohomology with Borel cochains, with applications to group actions on operator algebras" in Advances in invariant subspaces and other results, Operator Theory: Adv. Appl., vol. 17, Birkhäuser, Boston, 1986 , pp. 301-330.

Department of Mathematics, National University of Singapore, Singapore 119260, Republic of Singapore
matjpj@leonis.nus.edu.sg

