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PERIODIC MAPPINGS OF COMPLEX PROJECTIVE SPACE
WITH AN ISOLATED FIXED POINT

ROBERT D. LITTLE

ABSTRACT. If p 3 or 5 and 3 _< n < p + 3, then the homotopy type of Cpn contains only finitely
many PL homeomorphism types with a locally linear PL action of the cyclic group of order p fixing an
isolated point.

1. Introduction

A PL cohomology complex projective n-space is a piecewise linear, closed, ori-
entable 2n-manifold, MEn, such that there is a class x HE(M; Z) with the prop-
erty that H*(M; Z) Z[x]/(xn+l). The Pontrjagin class of MEn, p, (MEn)
H*(M; Q), is standard if p, (MEn) (1 d- x2)n+l Complex projective n-space,
Cpn, has a standard Pontrjagin class. Let p be an odd prime and let Gp denote the
cyclic group oforder p. IfMEn admits a locally linear PL Gp action, then the number
of components of the fixed point set, Mp, is at most p ([2], p. 378). If Mp consists

K’2k2of two components, then the action is said to be of Type II. If Mp F?k I,.J 2
then kl + k2 n ([2], p. 378) and we will say that the action is of Type IIk where
k min (k l, k2). Actions of Type II0 fix an isolated point and a codimension-2
locally flat submanifold, F2n-2.

An action of type II0 is regular if its restriction to the normal block bundle ofMp

is a multiple of one irreducible complex representation ofMp The degree of F2n-2

in M2n is the integer d if i,[F] is dual to dx where i" F2n-2 C MEn is the inclusion
mapping. An action of Type IIo is standard if it is regular and the degree of F2n-2 in
M2n is one.

THEOREM A. Suppose that M2n is a PL cohomology projective n-space which
admits a locally linear PL Gp action of Type Iio for p 3 or 5. Ifn < p + 5, then
the degree of the fixed codimension-2 submanifold is one. If n < p + 3, then the
action is standard and the Pontrjagin class ofM2n is standard.

It is not known if the bound on n in the first conclusion in Theorem A is best
possible. It is known that in some cases, one is the only possible degree of the
codimension-2 fixed submanifold. If n is odd and F2n-2 is a submanifold of CPn
which is fixed by a smooth Gp action of Type II0, then the degree of F2n-2 is one
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([6], Theorem A). The bound on n in the statement in Theorem A about Pontrjagin
classes is best possible. If p is any odd prime and n > p + 3, then there are infinitely
many PL homotopy complex projective n-spaces with nonstandard Pontrjagin classes
which admit locally linear PL Gp actions of Type II0 ([4], Proposition 0.3(e.e. PL)).
If n > 2p + 9, then there are infinitely many smooth homotopy complex projec-
tive n-spaces with nonstandard Pontrjagin classes which admit smooth Gp actions of
Type II0 ([4], Theorem 0.3 (diff.)). These two results imply that if d(p)(d’(p)) is the
smallest integer n such that there exists a smooth (PL) homotopy complex projective
n-space with a nonstandard Pontrjagin class and a smooth (e... PL) Gp action of
Type II0, then d’(p) < p + 3 andd(p) < 2p + 9. Itfollowsfrom these inequalities
and Theorem A that ifp 3 or 5, then d’(p) p + 3 and p + 3 <_ d(p) < 2p + 9.

IfM2n is a smooth cohomology complex projective n-space, then there is a constant
ct2n, which depends only on the Pontrjagin class of M2n, such that if M2n admits
a smooth Gp action of Type Ii0, then the action and the Pontrjagin class of M2n

are standard if p > ct2,, ([5], Theorem "A). It is known that ct:,, > n + 2 ([5],
Corollary 2.4). Theorem A improves these inequalities for p 3 or 5. If p 3 or
5 and M2n admits a locally linear PL Gp action of Type Iio, then the action and the
Pontrjagin class ofM2 are standard if p > n 2. In other words, if p 3 and
n < 5 or p 5 and n < 7 and M2n admits a locally linear PL Gp action of Type II0,
then the action and the.Pontrjagin class of M2 are standard. These results are new
except for the cases p 3 and n 3 or 4 and p 5 and n 4 ([5], Theorem C,
[6], Theorem E).

THEOREM B. Suppose that M2n is a PL cohomology projective n-space which
admits a locally linear PL Gp action of Type Iio. If n < p + 3 and the action is
standard, then the Pontrjagin class ofM2n is standard. Ifn < p + and the action
is regular, then the action is standard and the Pontrjagin class ofM2n is standard.

The bound on n in the first statement in Theorem B is sharp because if n >
p + 3, then there are infinitely many PL homotopy complex projective n-spaces
with nonstandard Pontrjagin classes which admit locally linear PL standard Gp

actions of Type II0 ([4], Proposition 0.3 (.. PL)). All the known examples of Gp

actions of Type II0 are standard and it is known that in certain cases, a standard action
is the only possibility. If n < 4 and M2n is a smooth cohomology projective n-space
with a smooth Gp action of Type II0, then the action and the Pontrjagin class of M2n

are standard ([4], Theorem A(i) (ii) (n < 3, p > 3, n 4, p > 5), [6], Theorem E
(n 4, p 3)). It is not known if every locally linear PL Gp action" of Type II0
on cPn is standard. If n is odd, then every smooth Gp action of Type II0 on CP" is
standard ([ 13], Theorem B).

If n > 3, then there are only finitelymany PL homotopy complex projective n-
spaces with a standard Pontrjagin class 14], so Theorems A and B imply that there are
only finitely many PL homotopy complex projective n-spaces with a locally linear
PL Gp action of Type II0 for certain values of p or for certain types of actions.
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THEOREM C. Ifp 3or5and3 < n < p+3, thenthereareatmost2[n/e]-I PL
homotopy complex projective n-spaces which admit a locally linear PL Gp action of
Type Iio.

THEOREM D. If 3 < n < p + 3, then there are at most 2[n/]-I PL homotopy
complex projective n-spaces which admit a standard locally linear PL Gp action of
Type Iio. If 3 < n < p + 1, then there are at most 2[n/e]- PL homotopy complex
projective n-spaces which admit a regular locally linear PL G action of Type Iio.

Theorem B has been proved for smooth Gt, actions of Type II0 and the results
used to study the constants ct2,, in some special cases ([ 13], Theorems C and D). It
is useful to have Theorem B in the PL category because of the evident sensitivity of
the inequality n < p + 3 in this category and because not all PL homotopy complex
projective n-spaces are smooth ([ 14], 11 ], Theorems 1.1, 1.2 and 1.3). We will also
need Theorem B for the proof of Theorem A. This paper will contain other examples
of extensions of techniques used in the smooth category to the PL category. We will
also offer strengthened versions of parts of Theorem A. For example, the statement
in Theorem A about the degree of the codimension-2 fixed submanifold in the case
p 5 follows from Theorem E. Theorem F applies our results to complex projective
n-space.

THEOREM E. Suppose that Men is a PL cohomology projective n-space which
admits a locally linear PL G5 action ofType Iio fixing a codimension-2 submanifold
ofdegree d. Ifn < 9 or n 11, then d 1. Ifn 10, then d or 3.

THEOREM F. lfn < 9 or n 11, then CPn admits a locally linear PL "G action

of Type Iio ifand only ifthe action is standard.

This paper is organized as follows. Section 2 contains congruences for the degree
and the signatures ofthe self-intersections ofa codimension-2 locally flat submanifold
of a PL cohomology projective n-space and represents an extension of a smooth
category technique to the PL category. This section is independent of the discussion
of group actions. In Section 3, we return to group actions, associate parameters with
locally linear PL Gp actions of Type II0 and formulate a version of the Atiyah-Singer
g-Signature Formula (ASgSF) for this kind of action in terms of these parameters.
Section 4 contains a discussion of the properties of the algebraic numbers which
occur in this version of the Atiyah-Singer g-Signature Formula. Section 5 contains
the proofs of Theorems B and A when p 3, Theorems E and A when p 5,
Theorems C and D, and Theorem F in that order.

2. Codimension-2 locally fiat submanifolds

Suppose that Men is a PL cohomology complex projective n-space and that
i" K2n-2 C Men is the inclusion map of a closed, connected, orientable locally
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flat submanifold of codimension-2. We say that the degree of K2n-2 is d if i.[K] is
dual to dx. The degree of K2n-2 depends on the choice of a generatorx e HE(M; Z)
and orientations of K2n-2 and M2n. The orientations ofMEn and g2n-2 are chosen as
follows. A generator x H2(M; Z) is chosen and MEn is oriented by requiting that
x[M] is positive and K2n-2 is oriented by requiring that (i*x)n-l[K] is positive if
it is nonzero. With these conventions, the degree of K2n-2 is positive if it is nonzero
because (i*x)n-l[K] d We will use the notation I"2n-2

"’dx to indicate that K2-2 has
degree d. For example, Kx2-2 is a codimension-2 submanifold of degree one.

If K9-2 C MEn is a closed, connected, orientable locally flat submanifold and
s is a nonnegative integer, then the s-fold self-intersection of K in M is defined
inductively using transversality in the PL category: K() M2n, K (1) K, and if
K (s) C M and j" K(’) MEn is transverse to K, then Ks+l) j-I (K). The
dimension of KL) is 2(n s). For example, Kt") is a set of points. There is a chain of
locally flat submanifolds K") C K"-1) C C K C Mzn. We will be particularly
interested in the signatures Sign K<). They are zero if n s is odd. If n s is even,
then it will turn out to be convenient to keep track of these signatures in the fashion
indicated in our first definition.

Definition 2. I. Suppose that M2n is a PL cohomology projective n-space and
that k’2n-2 M2n

""dx C is a locally flat submanifold of degree d. If 0 < k < [n/2], then

Sign k" (2k)
dx n even,

(2.2) sk(d)
Sign .2k+l)dx n odd.

Note that so(d) Sign M2n + if n is even and the orientations are chosen
in the manner described above, and so(d) SignKdx if n is odd. Also, Sin
SignKd dn and we agreed at the beginning of this section that d is positive if
it is nonzero because of our choice of orientation for z2,,-2 It turns out that for"dx
the more interesting values of k, 0 < k < [n/2], sk(d) can be expanded in terms
of certain universal polynomials in d with rational coefficients and the signatures
of self-intersections of K2xn-2 and hence depend only on M2 and d ([ 12] p. 170).
These expansions are generally not practical, but they lead to useful congruences and
divisibility results. If n is a positive integer, then f(n) is n! divided by a maximal
power of 2.

PROPOSITION 2.3. Suppose that M2n is a PL cohomologyprojective n-space and
that K2d-2 C M2n is a locallyflat submanifold ofdegree d. IfO < k < [n/2], then

I f(n)d2k Sign K(x2k) mod (d2k(l -d2)),
(2.4) f (n)sk (d) | f(n)d2k+l Sign Kx2k+l)’ mod (d2k+l (1 d2)),

n even,
n odd.

Proof. Formula (2.4) is one of the generalizations of a smooth category technique
to the PL category promised in the introduction. It is the generalization to the
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PL category of these same congruences which hold in the smooth category ([ 12],
Theorem 1). The key point is that if 2n-2 M2n"’dx C is a locally flat submanifold of
degree d and s is a nonnegative integer such that n s is even, and L(M) is the total
Hirzebruch L-class of M, then

SignKd {tanh dxL(M)}[M].
This equation in the smooth category is found in the literature ([ 15], p. 84, take N
M, d 1, and keep in mind that x is an arbitrary cohomology class in this context). To
see that this equation holds in the PL category, recall that if KaZxn-2 C M2n is a locally
flat submanifold with normal block bundle v, then v is a real 2-plane bundle ([9],

(s) (s) .(s)[10], p. 254), and so the equation rM2nl.,,dx r..ax s(vl..a together with the

equations Sign e’(s) .,, -(s)r r,.(s) (s) s))s"dx t"dx )t"dx and L(s (VlKdx)) (dxl,=d coth’(dxlK))
and naturality yield (2.5). It follows that sk(d) is expandable in terms of rational
polynomials in d and the signatures sk(1) ([ 12], (2.9)) and (2.4) follows from this
expansion ([12], (2.10)). !-1

COROLLARY 2.6
that K- Suppose that M2n is a PL cohomology projective n-space and

C M2n is a locallyflat submanifold ofdegree d. IfO < k < [n/2], then

f(n)sk(d) =-- 0 (mod d2k), n even,
(2.7)

f(n)sk(d) ------ 0 (mod d2k+l), n odd.

Proof Formula (2.7) follows immediately from formula (2.4).

Formula (2.7) will be one of our main theoretical tools when we return to group
actions and try to show that d is one in certain situations, for example, n < p+ 5, p
3 or 5, in Theorem A. Once it has been established that d is one in a given situation,
the Pontrjagin class of M2n is studied via the next proposition which relates p.(M2n)
and the integers sk(1), 0 < k < [n/2], the signatures of the self-intersections of a
codimension-2 submanifold of M2n of degree 1.

PROPOSITION 2.8. IfM2n is a PL cohomology projective n-space, then the Pon-
trjagin class ofM2n is standard ifand only if sk (1) 1, 0 < k < m, if n 2m, or

ifand only ifs (1) 1, 0 < k < m, ifn 2m + 1.

Proof. If M2n is a smooth cohomology projective n-space, oriented as above,
then the Pontrjagin class of M2n is standard if and only if SignKx(’) for all
s such thatn-s is even and0 < s < n ([13], Lemma2.20). This is true if
M2" is a PL cohomology projective n-space because the arguments used to prove
the assertion involves only the determination of signatures via the Hirzebruch L-
polynomials and the cohomological properties of the self-intersections Kx(’) ([ 13],
Proof ofLemma 2.20) and these facts are the same in the PL category. The statement
in Proposition 2.8 translates the condition SignKx(’) for all s such that n s is
even and 0 < s < n into the terminology of the functions sk (d).
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3. Parameters for Type Iio Gp actions and the
Atiyah-Singer g-Signature Formula

Suppose that M2n is a PL cohomology projective n-space which admits a locally
linear PL Gp action of Type II0. We will associate two invariants with the action
exactly as was done in the smooth case ([7], p. 388): the degree of F2n-2, the
codimension-2 component of the fixed point set and the complex representation of
Gp determined by r,M2n, the restriction of the tangent block bundle to the isolated
fixed point. We will assume that the orientations of M2n and F2n-2 are chosen as
indicated in the first paragraph of Section 2. Since the degree of F2-2 satisfies
d 0 (mod p) ([2], pp. 378-383), d must be positive. This integer is the first
invariant to be associated with a locally linear PL Gp action of Type II0.

The orbit space M2/Gp is a manifold near the image of F2n-2 and the latter
is a locally flat submanifold of codimension-2 and hence has a PL normal bundle
with the structure of a real 2-plane bundle ([9], 10], p. 254). The pull back of this
normal bundle to M2 is therefore a PL bundle with the structure of an equivariant
2-plane bundle. We will assume that a generator g of the group Gp has been chosen
so that the eigenvalue of the action of g on an equivariant complex structure of the
normal bundle of F2-2 in M2n is L exp(2zr i/p). The second invariant associated
with a Gp action of Type II0, r,Mn, is a complex representation of Gp of complex
dimension n, and with the right choice of complex structure, this representation is a
sum of 1-dimensional complex representations with eigenvalues contained in the set
{.J" < j </x}, where/z (p- 1)/2. Letmj be the multiplicity of the eigenvalue
.J, < j </z. Note that m + m2 +... +m n. Taking the two invariants d and
r,M2n together, a (/x + 1)-tuple (d; m, m2 m) of integers is associated with
the Gp action of Type II0. Let DEp (M2n) (for degrees and eigenvalues) be the set of
all such (/z + 1)-tuples of integers arising from locally linear PL Gp actions of Type
II0 on the PL cohomology complex projective n-space M2. Note that a Gp action
ofType II0 is regular if and only if its (/z + 1)-tuple has the form (d; n, 0 0), that
is, m n and mj O, 2 < j < tx, and it is standard if and only if its (# + l)-tuple
has the form (1;n, 0 0). Let aj (.J + 1)(.J 1)

THEOREM 3.1. (ASgSFfor Locally Linear PL Gp Actions ofType IIo). Suppose
that M2n is a PL cohomology projective n-space and that p is an odd prime. If
(d; ml, mE mu) E DEp(MEn), then

(3.2)
n=2m+l.

Proof. The ASgSF holds for tame actions ([ 16], p. 189) and any locally smooth
ap action in which the components of MGp are either 0-dimensional or of
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codimension-2 is tame ([4], Theorem 1.1), and so the ASgSF holds for locally linear
PL Gp actions ofType Iio. The ASgSF for smooth Gp actions ofType II0 on a smooth
cohomology projective n-space M2n is exactly the same as (3.2) except that sk(d) is
replaced by Sign F(2k) if n 2m and by Sign F(2k+l) if n 2m + 1, where F2n-2

is the codimension-2 component of Mp ([ 13], Theorem 2.1). Therefore (3.2) holds
because of the above remarks about the validity of the ASgSF for locally linear PL
Gp actions of Type II0 and the fact that if the degree of F2n-2 is d, then the signatures
of the self-intersections of F2-2 in M2n are the functions sk (d) (Definition 2.1).

Formula (3.2) is a special case of a version of the ASgSF which exhibits the g-
signature as an element of the ring Z[Cl, a2 ap-l and separates topology and
number theory in the ASgSF in the sense that topology is concentrated in the integer
coefficients in the expression for the g-signature and number theory is concentrated in
the various powers of ctj, < j < p 1, present in the expression for the g-signature
([1 ],Theorem 2.2). Formula (3.2) exposes the two invariants we have associad with
Gp actions ofType II0, the degree of.the codimension-2 fixed submanifold, d, and the
representation at the isolated fixed point as determined by the string of multiplicities
mj, < j < lz. Formula (3.2) leads to an ASgSF in terms of d, the signatures Sk (1),
and aj, < j < lz ([7], Theorem 4.4, 13], Theorem 2.6 and Table 3.5).
We now turn to some important special cases of (3.2). We present our results first

and then the proofs which involve pure number theory of the numbers cj, < j <
which will not be used in the rest of the paper.

PROPOSITION 3.3. (ASgSFfor Regular Locally Linear PL Gp Actions of Type
Iio.) Suppose that M2n is a PL cohomology projective n-space and that p is an odd
prime. If(d; n, 0 O) E DEp(M2n) and m = [n/2], then

(3.4)
m

ffl
2m "+- (012 1) s (d)ot2’-2.

k=l

Note that G3 actions are automatically regular since/z and so it is useful to
record (3.4) in the case p 3. It is also useful at this point to introduce the notation
Dp(M2n) for the projection of DEp(M2n) on its first factor, i.e., Dp(M2n) is the set
of degrees of codimension-2 submanifolds which are fixed by a locally linear PL
Gp action of Type II0 on M2n. Note that DE3(M2n) D3(M2n). If is a positive
integer, let e(t) (3 d- (-l)t-l)/4. The next corollary follows immediately from
(3.4) and the fact that ctl -.i// if p 3.

COROLLARY 3.5. (ASgSFfor Locally Linear PL G3 Action ofType IIo) Suppose
that MEn is a PL cohomology projective n-space. Ifd D3(M2n) and m [n/2],
then

m

(3.6) e(m) (--l)k-i3m-kSk(d).
k=l
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It is clearly desirable to be able to simplify (3.2) for a given prime p to something
like (3.4), a single equation for n 2m and n 2m + and an equation in which
the 4- ambiguity on the left hand side is gone. We will see that p 3 is not the only
prime for which this is possible.

Definition 3.7. We will say that an odd prime p has a special Type II0 ASgSF if
(d; m, m2 mu) E DEp(M2n) and m [n/2], then (3.2) reduces to

(3.8)
m

Orl r2 .r, -- (Ol2 |) E sk(d)l2k-22 tx/z
k-’l

where rj is a nonnegative even integer, < j <_ /z. If n 2m, then r m l, if
n 2m + 1, then r m 1, and, for every n, rj mj, 2 < j < lz.

Note that if p has a special Type II0 ASgSF and rl, r2 r, satisfy the conditions
in Definition 3.7, then, in particular, rj > O, < j < lz, and rl + r2 +... + r, 2m.
Since (3.4) holds for every d in DE3(M2n) D3(M2n), it follows that p = 3 has
a special Type II0 ASgSF. Our next result shows that a few more primes have this
property.

PROPOSITION 3.9. If p 3, 5, 7, or 13, then p has a special Type IIo ASgSF.
In particular, if p 3, 5, 7, ll or 13 and (d; ml, m2 mu) DEp(MEn), then
rn n(mod 2) and mj is even, 2 <_ j <_

We are now ready to begin the proofs of Propositions 3.3 and 3.9. To do this, we
need to review results about the image of the ASgSF in the ring of integers mod 4. Let
W Z + 2Z[,k] and Wp) Z[l/p] + 2Z[)/p]. Note that Z[c, ct2 Otp_l] C
Wp), i.e., potj W, < j < p ([1], Lemma 4.3). The g-signature is therefore
an element of Wp) ([ ], Theorem 2.2).

LEMMA 3.10 ([1], Lemma 7.8). There are 2p-2 distinct ring homomorphisms
rl" Wp) -- Z/4Z.satisfying the conditions r/(l) l, r/(ctj) +l, and

(p-3)/2

(3.11) r/(ctj) + E r/(2,2/+1)J),
k=O

ifl <j <p--l.

The homomorphisms r/are constructed by considering the 2p-2 distinct additive
homomorphisms ’: Z[.]/2Z[L] -- Z/2Z and then noting that the maps r/can be
constructed in such a way that 0(2.j) 2’(.J) and (3.2) is satisfied ([ ], proof of
Lemma 7.8). We will see very soon that distinct mappings r/on W(p) may agree on
all the numbers cj, _< j _< p 1. Note that a given " takes an odd number of the
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powers ,, 2 p-l in Z[.]/2Z[.] to in Z/2Z and hence the total number of
such "s is (P]-’)+ (P")+... p-l+ (p-.2) 2p-2 We will associate with each, and its
induced 0, a binary number of lengthp with an odd number of l’s, a in position
k indicating that .k is sent to 1, subscripts indicating the positions of the l’s. For
example, ’1 sends,k to 1, others to0. Note that for p 5, 04(Oj) 01,2,3(Oj) +1,
j 1, 2, and 04 (aj) 0.2,3 (cj) -1, j 3, 4, i.e., for p 5, 04 and 0,2,3 agree
on the ring Z[Ctl, a2, ct3, an] and yet are distinct as mappings on W(5). We will use
this control over 4-1 in the proofs that follow.

ProofofProposition 3.3.
immediately from (3.2) that

Suppose that (d; n, 0 0) E DEp(M2n). Itfollows

m

k=l

Assume that (3.12) holds with a minus sign on the left hand side. If any of the
homomorphisms r/of Lemma 3.10 are applied, the result is the contradiction
(mud 4) because 0(eta) 4-1. Therefore, (3.12) must hold with the plus sign on the
left hand side and this is (3.4). I"1

ProofofProposition 3.9. The proof begins by noting that p 3 has a special
Type II0 ASgSF because of Proposition 3.3 and the fact that G3 actions are automati-
cally regular. As for p 5, 7, 11 or 13, the argument begins with the observation that
for each of these primes, Lemma 3.10 implies that there is a map 0: Wp) Z/4Z
such that P0(otj) + 1, < j </z, and for each j, < j < #- 1, there is a map
lpj: W(p) Z/4Z such that l[tj(Olj) -1 and l[tj(Olk) +1, j < k < /z. The
table below describes these ring homomorphisms by recording the exponents in the
powers of L sent to (mod 2) by the inducing homomorphism .

5 7 11 13

P0 4 4 8 1,2,3,4,5,6,7
3 5 1,2,6 11

lp2 6 7 1,6,9
1/t3 10 8
1/t4 9 10

5 12

For example, if p 5, then uP0 74 and 1 73 in the notation described
above.

Armed with these mappings, we can complete the proof of the proposition. The
map 0 can be used to show that (3.2) must hold with the plus sign, because assuming
the minus sign leads to the contradiction -1 --_ (mud 4) after application of 0.
Similarly, pj, < j </z 1, can be used to show that m n (mud 2) and mj is
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even, 2 < j < Ix 1. It follows that mtt is even and so the primes p 5 7, 11 and
13 have a special Type II0 ASgSF.

We remark that there are some general results of this type. If the first factor of the
class number of p is odd, then for smooth actions of Type II0, m n (mod 2) and
mj is even, 2 < j < IX ([8], 3.11).

4. The algebraic numbers

If p is an odd prime and IX (p 1)/2, the polynomial

(4.1) mp(X) P

=o 2k+l
x"-’

will play an important role when we apply the special signature formulas (3.4), (3.6),
and (3.8) (for p 5, 7, 11 or 13) to the study of Type II0 Gp actions.

PROPOSITION 4.2. If p is an odd prime and tx (p 1)/2, then mp(Ot) 0,
< j <_ Ix. In particular, if < s < Ix, then

ts= P 2s+l<t ,t2,...,ts<l2

where the summation in (4.3)is taken over all possible () products t ot2t2 ot,
<_ tl,t2 ts <_ Ix.

Proof. The equation (% + 1)(% 1)-I 2.J implies that (% + I)P (cj )P
and so the binomial theorem implies that mp(Ot?) O, < j < Ix. Equation (4.3)
follows from the standard interpretation of the coefficients of a monic polynomial in
terms of its roots. I:!

Proposition 4.2 establishes that %, < j < Ix, is an algebraic number, and that

ctj-, _< j _< Ix, is an algebraic integer. The polynomial mp(x) is. irreducible over
Q by Eisenstein’s Criterion and is well known ([ 16], pp. 220-221).

COROLLARY 4.4. The polynomial mp(X) is the minimal polynomial over the ra-
tionalsfor ot, < j < Ix.
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The two extreme cases of (4.3), s and s =/z, are especially interesting and
we record them here. We will use the first of these in Section 5.

(4.5)
(p 1)(p 2)

(4.6) 2 2 2 (_ 1)u p-1o ct2 "//x
There is an interesting family of relations for the numbers otj, < j < #, which

contains elementary formulas like (4.5). If x , then the function ((x)) is defined
by the conditions ((x)) x- Ix]- 1/2 ifx Zand ((x)) 0ifx Z. If
q

_
0 (mod p), then the Dedekind sum s(q, p) ([3], p. 92) is defined by the equation

(4.7)
p

s(q’P)==l ((%)) (())"
THEOREM 4.8 ([3], (3) p. 100). Ifp is an odd prime.and q 0 (mod p), then

(4.9) OlkOlkq -2ps(q, p).
k=l

It follows fromDedekind reciprocity ([3], p. 93) that s(l, p) (p- l)(p-2)/12p
and so (4.5) is (4.9) in the special case q 1.
We close this section with two results about divisibility by the polynomial mp(X).

The first is a result which is valid for any odd prime and is entirely elementary and
will be stated without proof. The second is a special result for the polynomial rn5 (x).

LEMMA 4.10. If a(x) Yqk=oakXk and b(x). = Ek=0q-lt bkxk
nomials where q >_ lz and a(x) mp(x)b(x), then

are rational poly-

(4.11) ak be, 0 < k < q,
e=0 p-2(k-e)

(4.12)
q

ak 2p-l be.
k=0 e=0

Ifak Z, 0 < k < q-lz, then be Z, 0 < e < q-Iz andak Z, q-/z-I-I < k < q.
In particular, ifa, Z, 0 < k < q lz, then a, Z, 0 < k < q, and

(4.13)
q

Z ak 0(mod2p-l).
k=0
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LEMMA 4.14. If a(x) .qk=O akxk is a polynomial with rational coefficients
such that a(x) =_ 0 (modms(x)), then

9a2 5al + 5a0 0,
(4.15) q=2"

2az al 0.

(4.16)

(4.17)

(4.18)

3:117a3 9a2 + 5al 5a0 O,
q I 19a3 lOa2 + 5al O.

161a4 85a3 + 45a2 25al + 25ao O,
q =4:

36a4-- 19a3+lOa2--5al =0.

305a5 161a4 -k 85a3 -45a2 d-- 25al 25a0 0,
q 5"

341a5 180a4 -+- 95a3 50a2 q- 25al 0.

Proof The proof of the above equations is very elementary and very tedious.
By Corollary 4.4, a(x) =- 0 (modmp(X)) if and only if a(c2) 0. It follows from

Proposition 4.2 in the special case p 5 that c -5.-243 and c -5 +243
5 "5’

Equations (4.15) through (4.18) follow from the equation a(-5-2"/3) 0 and the
irrationality of

5. TypeIlo G3 and G5 actions

In this section, we return to locally linear PL Gp actions of Type II0 on a PL
cohomology complex projective n-space. We will prove Theorems B, A in the case
p 3, E, A in the case p 5, C and D, and F, in that order. We will rephrase these
results using the notation of Sections 2 and 3. We begin by rephrasing Theorem B.

THEOREM 5.1. Suppose that M2n is a PL cohomology projective n-space and
that p is an odd prime. If n < p + 3 and (1; n, 0 0) 6 DEp(M2"), then the
Pontrjagin class ofM2n is standard. Ifn < p + and (d; n, 0 0) DEp(M2n),
then d and the Pontrjagin class ofM2n is standard.

Proof Suppose (d; n, 0 O) DEp(M2n). It follows from (3.4) that if
m [n/2], then

m

(5.2) E (sk (d) 1) ot
2k-2 0.

k=l

Now suppose that (1; n, 0 0) DEp(MZn). It follows that (5.2) holds with
d and, since s (d) dn, we have Sm (1) and so

m-1

(5.3) E(Sk(1) 1)Ctl2k-2 0.
k=l
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If n < p + 3, then m- 2 < /z and so (5.3)implies that sk(1)= 1, 0 < k < m,
since mp(X) is the minimal polynomial over Q of c2 (Corollary 4.4) and the degree
of mp(X) is/z. If n is odd and e Dp(M2n) then s0(1) SignKx SignF +1,
if orientations are chosen as in Section 2 ([6], Lemma 4.1). It therefore follows from
Proposition 2.8 that the Pontrjagin class of M2n is standard and we have verified
the first statement of the Theorem. To verify the second statement, suppose that
(d; n, 0 0) DEp(M2n) and consider (5.2) again. Ifn < p+ then m- <
and so (5.2) and Corollary 4.4 imply that Sm (d) dn and so d and the
Pontrjagin class of M2n is standard by the first statement.

Theorem 5.1 is the same as Theorem B in the introduction. Theorem 5.1 can be
applied to PL homotopy complex projective n-spaces. If M2n is a PL homotopy
cpn and n > 3, then the PL homeomorphism type of M2 is determined by an
(n 2)-tuple of splitting invariants (0"2, 0"3 0"n-l) 14]. The splitting invariants
are integers and mod 2 integers and 0"k often appears as s2, ([16], p. 191). The
splitting invariants with even subscript, 0"2, 0"4 0"2[n-1)/2], are integers which
determine the Pontrjagin class of M2n ([ 14], [11 ], Theorem 3.1). If n s is even,
then Sign K’) + 80"n_ and 0"0 0 because K(xn) is a point, and so, with the
orientation conventions as in Section 2, We have Sign Kxn) 14]. Theorem 5.1 was
proved for smooth cohomology Cen ([ 13], Theorem 2.21) but not all PL homotopy
complex projective n-spaces are smooth ([ 11 ], Theorems 1.1, 1.2, and 1.3) and so our
next result uses the validity of Theorem 5.1 for all PL homotopy complex projective
n-spaces.

PROPOSITION 5.4. Suppose that M2n is a PL homotopy complex projective n-
space where n > 3 and m [n/2]. If M2n has integral splitting i.nvariants
0"2, 0"4 0"2[(n-1)/2] and (1; n, 0 0) DEp(M2n), then if n 2m + 1,
0"2m O, and ifn is arbitrary, then

(5.5)
m-I

0/k-2- 0"2(m-k) 0.
k=l

Ifn > p + 3 and 0"2, 0"4 0"2[(n-1)/2] is a collection ofintegers with the properties
that if n 2m + 1, then 0"2m 0 and, if n is arbitrary, then (5.5) holds, then
there exists a PL homotopy complex projective n-space M2n with integral splitting
invariants 0"2, 0"4 0"2[n-1)/21 and (1; n, 0 0) DEp(MZn).

Proof. Suppose that M2n has integral splitting invariants 0"2, 0"4 0"2[(n-1)/2]
and (1;n,0,...,0) 6 DEp(Mzn). Ifn--2m + 1, then SignKxl) SignF +1
([6], Lemma 4.1)and so 0"2m 0. Ifn is arbitrary and (1; n, 0 0) DEp(MZn),
then (5.3) holds and (5.5) is just (5.3) witten in terms of the splitting invariants. If
n > p-4- 3 and 0"2, 0"4 0"2[(n-1)/2] is a collection of integers with the properties that
if n = 2m + 1, then 0"2rn 0 and, if n is arbitrary, then (5.5) holds, then there exists
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a PL homotopy complex projective n-space M2n with integral splitting invariants
tr2, tr4 cr2[n-2)/2] and (1; n, 0 0) E DEp(M2n) ([4], Theorem 0.3 (e.e. PL).
Note that (5.5) appears here as P(L) 0 ([4], p. 494) and rk is written as SZk and
the equation is written in terms of c-2).

We are now ready to turn to the proof of Theorem A. We begin with the special
case p 3 of Theorem A. Note that when Theorem B (Theorem 5.1) is applied to
p 3, we learn that if M2n admits a standard e.e. PL G3 action of Type II0 and
n < 6, then the Pontrjagin class ofM2n is standard. If we establish that n < 8 implies
that the degree of any codimension-2 submanifold fixed by an .. PL G3 action of
Type II0 is one, we will have established the second statement and the first statement
of Theorem A in the case p 3 because G3 actions of Type II0 are automatically
regular and hence standard if the degree is one. If f(n) is n! divided by a maximal
power of 2 (Proposition 2.3) and e(t) (3 + (-1)/-1)/4 (Corollary 3.5), then let
a(n) f(n)e([n/2]). Theorem A in the case p 3 follows from our next result
and Theorem 5.1 in the case p 3.

THEOREM 5.6. Suppose that M2n is a PL cohomology projective n-space. If
d D3(M2n), then d2 divides a(n) ifn is even and d divides a(n) ifn is odd. In
particular, ifn < 8, then d 1.

Proof. The first statement follows from a multiplication of both sides of (3.6)
by f(n) and then applying (2.7). A computation shows that if n < 8, then these
divisibility conditions and the fact that d . 0 (mod 3) ([2], pp. 378-383) imply that
d=l. 121

The divisibility conditions in Theorem 5.6 are extensions of divisibility conditions
for the smooth category to the PL category. The possible divisors of d have been
computed for n < 22 ([ 12], p. 175).
We now turn to the proof of Theorem A in the case p 5. As in the case p 3,

our strategy will be to take advantage of Theorem B (Theorem 5.1) in the case p 5.
This result asserts that if n < 8, the existence of a standard action produces a standard
Pontrjagin class. We will prove Theorem A in the case p 5 by first showing that
if n < 8, every action is regular and then proving Theorem E which implies that if
n < 10, then the degree of the fixed codimension-2 submanif01d is one. This will
complete our proof of Theorem A in the case p 5: we will have the statement
about the degree and the fact that n < 8 implies every action is standard, and so the
Pontrjagin class is standard by Theorem 5.1. We begin with the regularity.

THEOREM 5.7. Suppose that M2n is a PL cohomology projective n-space. If
(d;m,m2) DEs(M2n), then m2 =-0 (mod8). ln particular, if n < 8, then
m2 O, that is, (d; m, m2) (d; n, O) or the action is regular.
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Proof. It follows from Proposition 3.9 in the case p 5, formula (3.8), and
formula (4.5) in the case p = 5, that if (d; ml, rn2) DEs(M2n), then there are
nonnegative even integers r and r2 such that r2 m2 and, if rn .= [n/2], then
r + r2 2m and

(5.8)
m

It follows from (5.8) and (4.13) that (--3)r2/2 (mod 16) and this is 3m2/2

(--1)m2/2 (mod 16) since r2 m2, and so m2 0 (mod 8). Since n > m2 it is clear
that n < 8 forces rn2 0. UI

We now turn to the task of showing that ifn < 10 and (d; m., m2) DEs(M2n),
then d 1. The proof is elementary but a good deal more tedious than the proof
of the regularity in Theorem 5.7. The idea is to use (5.8), for appropriate values of
m, together with Lemma 4.14. The homogeneous expressions in the coefficients ak,

0 < k < q, in Lemma 4.14, will lead to inhomogeneous expressions in Sk (d), 0 <
k < m, with integer coefficients to which we can apply formula (2.7) to conclude
that d 1. We will take advantage of the facts, that (5.8) is indexed by rn [n/2]
and the second statement of Theorem B in the case p 5 and Theorem 5.7 imply
that actions are standard, and hence Pontrjagin classes are standard by Theorem B, if
n < 6 or rn < 3. Our computations will start at rn 3.

LEMMA 5.9. Suppose that M2n is a cohomology projective n-space. If (d; m l,

m2) DE5(M2n) and (rl, r2) is the pair ofnonnegative integers in (5.8) with m
In/2] corresponding to (m, m2), then the equations below hold where sk sk(d),
l<k<m.

rn = 3(n 6, 7), (r, r2) (6, 0)"

(5.10)

(5.12)

9s3 5s2 -- 5s1 9,
(r, r2) (6, 0)"

2s3 s2 1.

rn 4(n 8, 9), (r, rz) (8, 0), (0, 8)"

17s4 9s3 -I- 5s2 5s1 8,
(r, r2) (8, 0)"

19s4 lOs3 + 5S2 14.

123s4 65s3 q- 35s2 25Sl 68,
(r, r2) (0, 8)"

55S4 29s3 + 15s 5s -36.

m 5(n 10, 11), (r, r2) (10, 0), (2, 8)"
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161s5 85s4 4- 45S3 25S2 + 25Sl 121,
(r l, r2) (10, 0)"

36s5 19s4 + 10s3 5s2 22.

233s5 123s4 + 65s3 35s2 + 25sl 21,
(5.14) (rl, r2) (2, 8):

521s5 275s4 4- 145s3 75s + 25s --19.

Proof. Formula (5.10) follows by considering (5.8) with rn 3 and (r, r2)
(6, 0) and then applying (4.15) with ak_l sk-l, < k < 3. Formula(5.11) follows
from (5.8) with m 4and (r, r2) (8, 0) and (4.16) withak_ s- 1, < k < 4.
Formula (5.12) follows from (5.8) with rn 4 and (r, r2) (0, 8) and (4.17) with

a4 s4--1, a3 s3--$4--8, a2 s2-s3-24, a s-s2-32andao l-s-16.
Formula (5.13) follows from (5.8) withm 5 and (r, r2) (10, 0) and (4.17) with
a_ s 1, < k < 5. Formula (5.14) follows from (5.8) with rn 5 and (rl,
r) (2, 8) and (4.18) with a5 s5 1, a4 s4 s5 8, a3 s3 s4 24,
a.=s-s3-32, a =Sl-S2-16, anda0= l-s. I"1

THEOREM 5.15. Suppose that M2n is a PL cohomology projective n-space and
that d Ds Mn). Ifn < 9 or n l, then d l. Ifn 10, thend= or 3.

Proof. If n < 6 and d Ds(M2n), then d because by Theorem B and
Theorem 5.7, actions are standard and so, in particular, d 1. If n 6 or 7, then we
know that (rl, r2) (6, 0) by Theorem 5.7, and so (5.10) holds. If n 6 and the
second equation listed in (5.10) is multiplied by f(6) 45 and then (2.7) is invoked,
the conclusion is that d4 divides 45 and hence d 1. If n 7, multiply this same
equation by f(7) 315 and conclude that d5 divides 315 by (2.7) and so d 1. For
n 8 or 9, Theorem 5.7 says that (r, r2) (8, 0) or (0, 8) and so we must consider
(5.11) and (5.12). First (r, r) (8, 0) and (5.11): forn 8andn 9 multiply the
second equation in (5.11) by f(8) and f (9), respectively, and conclude by (2.7) that
d4 divides 14f(8) and d5 divides 14f(9), respectively. In both cases, the conclusion
isd 1. Now (rl,r2) (0,8) and(5.12): forn 8andn 9, add the first
equation listed in (5.12) to -5 times the second equation listed in (5.12) to eliminate
s and multiply the resulting equation by f(8) and f(9), respectively. If (2.7) is
invoked, the conclusions are d4 divides 31 f (8) and d5 divides 31 f (9), respectively,
and so d 1. For n 10 or 11, Theorem 5.7 says that (r, r2) (10, 0) or (2, 8),
and so we must consider (5.13) and (5.14). First (r, r2) (10, 0) and (5.13): for
n 10 and n 11, multiply the second equation by f (10) and f(11), respectively,
and conclude that d4 divides 22f(10) and d5 divides 22f 11 ), respectively, by (2.7).
In the case n 10, the conclusion is d or 3 and in the case n 11, we conclude
that d 1. Now (rl, r) (2, 8) and (5.14): for n 10 and n 11, subtract the
second equation from the first in (5.14), simplify, and multiply by f (10) and f(11),
respectively, and conclude that d4 divides 5f(10) and d5 divides 5f(11), respectively,
by (2.7). In the case n 10, we conclude that d or 3, and ifn 11, we conclude
that d 1.
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n d

2
3
4
5
6
7
8
9
10 1,3
11

Table 5.17

(m l, m2) Pontrjagin Class
(, 0)
(2, 0) standard
(3, 0) standard
(4, 0) standard
(5, 0) standard
(6, 0) standard
(7, 0) standard

(8, 0), (0, 8) standard and exotic
(9, 0), (1, 8) standard and exotic
(10, 0), (2, 8) standard and exotiC
(11,0), (3, 8) standard and exotic

Note that Theorem 5.15 is the same as Theorem E. We are now ready to state
Theorem A in the case p 5 in terms of the notation of Section 3 and prove it using
Theorems B, 5.7 and 5.15.

THEOREM 5.16. Suppose that M2n is a cohornology projective n-space and that
(d;ml,m2) E DEs(M2n). If n < 10, then d 1. If n < 8, then (d;ml,m2)--
(1; n, O) and the Pontrjagin class ofM2n is standard.

Proof. The first statement is contained in Theorem 5.15. If (d; ml,m2) E

DEs(M2n) and n < 8, then m2 0 by Theorem 5.7 and d by Theorem 5.15,
that is, (d; m,m2) (1; n, 0). In other words, ifn < 8 and M2n admits an e.e. PL
G5 action of Type II0, then the action is standard and so the Pontrjagin class of M2"

is standard by Theorem B (Theorem 5.1). !-’1

We offer a summary table which contains the possible values of (d; m l, m2)
DEs(M2n), n < 11. We remark that our table only gives an upper bound for
DEs(M2) as only the standard action (1; n, 0) DEs(CP) is known to exist. The
classifications standard and exotic in the table for the Pontrjagin class for < n < 11
means that the classes must be standard, 2 < n < 7, and can be either standard or
exotic if 8 < n < 11. The case n is included for completeness.

Proofs of Theorems C and D. Both theorems follow from the fact that the Pontr-
jagin class of a PL homotopy complex projective n-space is standard if and only the
integral splitting invariants of M2n vanish (Proposition 2.8). The number of mod 2
splitting invariants at level n is n 2 (n 1)/2] [n/2] 1, and so the number of
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distinct PL homotopy complex projective n-spaces with a standard Pontrjagin class
is 2I"/21- I’1

Proofof Theorem F. The proof will be complete if we show that if n < 9 or
n 11 and (d; m, m2) e DEs(CP"), then d I, m n and m2 0. Ifn < 8,
then this follows from Theorem 5.16. If n 8, 9 or 11, then d by Theorem 5.15
and so sk(d) sk(l) 1, < k < In/2], by Proposition 2.8. Equations (5.12) and
(5.14) are not satisfied bY these values of sk and so m n and m2 0. I--I
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