
ILLINOIS JOURNAL OF MATHEMATICS
Volume 43, Number 4, Winter 1999

HARDY-LITTLEWOOD THEOREMS FOR
A-HARMONIC TENSORS

CRAIG A. NOLDER

ABSTRACT. Conjugate A-harmonic tensors are generalizations of conjugate harmonic functions to dif-
ferential forms. They share common analytical properties such as integrability and Holder continuity.
Applications to quasiregular mappings follow.

1. Introduction

The theory of conjugate harmonic functions plays a central role in such areas of
mathematics as potential theory, harmonic analysis and the theory of HP-spaces.
Conjugate harmonic functions have many analytical properties in common, among
which are global LP-integrability and Htilder continuity. These discoveries essentially
began with the work of Hardy and Littlewood in the 1930’s; see [HLI and [HL2].
See [P] for an earlier.reference on H/51der continuity.

Here we mention three specific results.

THEOREM A. For each p > 0, there is a constant C such that

f lu u(O)lP dx dy <_ C f lv v(O)lP dx dy

for all analyticfunctions u + v in the unit disk D.

THEOREM B. For each 0 < k < 1, there is a constant C such that

IlUllLipk, < CIIvllLipk,

for all analytic functions u + iv in 11). Here I1" IILip, is the usual Lipschitz norm
over

THEOREM C. There is a constant C such that

Ilu BMO,D --< C v BMO,D

for all analyticfunctions u + iv in I. Here IIBMO, is the usual BMO norm over
D.
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614 CRAIG A. NOLDER

Conjugate A-harmonic tensors are interesting and important generalizations of
conjugate harmonic functions and p-harmonic functions, p > 1. See Definition 2.17.
They have recently found important applications in areas such as quasiregular map-
pings and the theory of elasticity; see [I] and [IM]. The main results of this paper,
Theorems 4.2, 5.5 and 6.7, generalize Theorems A, B and C to conjugate A-harmonic
tensors defined in domains in In which possess an appropriate geometry. Examples
show that in many ways the results are best possible.

For example, a p-harmonic function is a solution u to the p-harmonic equation

div(I ul p-2 u) O,

with p > 1. Its conjugate in the plane is a q-harmonic function v (often referred to
as the "stream function", see [A ]), with / 1, which satisfies

Or Or)(1.1) vulp-2 V u Oy’ Ox

Notice that when p q 2 we have the usual conjugate harmonic functions.
In the theory of elasticity as well as the theory of quasiregular mappings, the phe-

nomenon of p, q-conjugacy arises naturally for solutions to certain elliptic equations
for differential forms. More specifically, if u is a solution to

d*A(x, du) 0

in ]1n then its conjugate is a tensor v such that

(1.2) A(x, du) d*v.

As such, v is a solution to

dA- (x, d’v) O.

If A(x, ) - I1p, then A-I(x, ) I’1q with +/- + 1 1. See Section 2 for details.
P q

Notice that (1.1) can be rewritten to produce an example of (1.2) in N2.
A sharp regularity theorem for quasiregular mappings was recently proved using

certain conjugate A-harmonic tensors u and vj associated with a quasiregular map-
ping. See [I] and [IM]. As such, the results of this paper yield corollaries, for the
quasiregular tensors ut and vj. We discuss a few of these which are particularly
interesting in Section 7.

In Section 3 we prove the local integrability result for conjugate A-harmonic
tensors. This is the basic estimate, a result of the conjugacy, which is used throughout
the paper to obtain global results.

The next two sections investigate the global L’-integrability of conjugate A-
harmonic tensors. Here the global geometry of the domains of integration is im-
portant. The integrability exponents and the conjugacy exponents p and q directly
determine each other.
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In Section 4 the first main result, Theorem 4.2, appears. This is a generalization
of Theorem A to conjugate A-harmonic tensors in John domains in n.

In Section 5 we deal with more general domains than John domains, so-called
L’-averaging domains and obtain a weaker result than Theorem 4.2. Theorem 5.5
seems to be new even in the case of conjugate harmonic functions in the plane.

In Section 6 we treat the local Lipschitz spaces and BMO spaces and obtain
generalizations of Theorems B and C. We use the integrability result in [Me] for
Lipschitz functions to extend the definition of local Lipschitz spaces to differential
forms. Again the relationship between p, q and the Lipschitz exponents is seen
to be the best possible. A global Lipschitz result holds in the plane for so-called
Lipk,k,-extension domains.

2. Exterior algebra, Sobolev spaces and elliptic equations

Let e, e2 en denote the standard unit basis of ]1n. For 0, n, the
linear space of e-vectors, spanned by the exterior products el ei A ei: A A eie
correspondingtoallorderede-tuples I (i, i2 ie), < il < i2 < < ie < n,
is denoted by A A (n). The Grassman algebra A A is a graded algebra
with respect to the exterior product. For c Otl et 6 A and/ Y fll el 6 A,
the inner product in A is given by

with summation over all g-tuples I (i ie) and all integers g 0, n.
We define the Hodge star operator .: A --> A by the rule

,1 el A e2 A / en

and

for all ,/ Ae, g 1,2 n. Then the norm of A is

c 12 (or, a) .(a A * a) A

The Hodge star is an isometric isomorphism on A with ,: A - An-e and,

(_l)e(n-e): A Ae.
Throughout this paper if2 is an open subset ofIRn We write Lp (f2, ]R), 0 < p < cx),

for the usual Lt’ space of real-valued functions with respect to Lebesgue measure.
The norm of f 6 LP(, ]R) is denoted
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for 0 < p < cx and

We also write

Ilfllo, esssup{If (x)llx

LlPoc(g2, ) LP(’, JR)

where the intersection is over all ’ compactly contained in f2. The Sobolev space
Wp (2, ) is the subspace of Lp (, ) whose distributional first derivatives are also
in Lp(, ). Similarly we have the local space Wp,oc(, ).
A differential e-form o) on 2 is a Schwartz distribution on f2 with values in A (lln).

We denote the space of differential e-forms by 79’(, Ae). We write Le (f, Ae) for
the e-forms o)(x) _,(.ot(x)dxt -r.oi,i2...ie(x)dxi, / dxi2 / / dxie with

(.Ol - LP(, ) for all ordered e-tuples I. Thus LP(, Ae) is a Banach space with
norm

]](.O[]p,f (f [O)(X)] p dX)
Itoz (x) 2 dx

l/p

Similarly Wp (f2, Ae) are those differential e-forms on whose coefficients are in

We (g2, ) The notations AWp,oc(f2, 11) and Wp,oc(g2 are self-explanatory. We
denote the exterior derivative by

d: D’(f2, Ae) --> 79’(f2, ATM)

for e 0, 1,2 n. Its formal adjoint (the Hodge codifferential) is the operator

d*: 79’(, ATM) ---> /9’(, Ae)

given by

d* (- 1)ne+ , d*
on/9’ (f2, Ae+ ), e 0, n. We require a version of the Poincar6 inequality for
differential forms.

The details of the following constructions and results can be found in [IL]. Given
doo LP(Q, Ae), < p < oo, we construct the closed e-form (.DQ 79’(Q, Ae)
used below When e 0, (.DQ is the average value of o) over the cube Q. Otherwise
it plays a similar role in the Poincar6-Sobolev inequalities.
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Wp (Q, Ae) and

(2.2)
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If o9 D’(Q, Ae) and do9 LP(Q’, Ae+l), then o9 o90

I1o- oallp, a C(n, p) diam alldoollp, o,.

for < p < cx. Moreover,

(2.3) [Iogallp, O < C2(n, p)llogllp, a.

As in the case when ogQ is an average value, we have the following lemma.

LEMMA 2.4. There exists a constant C, depending only on n and p, such that

(2.5) I1o ogallp, a < Clio9 cllp, a

for all o9 Lp (Q, Ae) and all c 79’ (Q, Ae) with dc O. Here < p < cxz. When
p we have

(2.6) I1o oallp, a <_ C(n) diam QIlo cllp, a.

Proof When c is closed, ca c; see [IL]. Using (2.3) we obtain

IIo ogallp, a I1(o c) (oa Ca)llp, a
Ii(o c) (o c)allp,a

< (1 / c(n, P))llo9 cllp, a.

We consider solutions to equations of the form

(2.7) d*A (x, dog) 0.

Here A" 2 x Ae(n)
__

Ae(n) satisfies the assumptions

IA(x, )l < allp-

(2.8) (A(x, ), ) > ]lp

for almost every x 6 f2 and all 6 Ae (/,). Here a > 0 is constant and < p < cx
is a fixed exponent associated with (2.7). The exponent p will denote this exponent
throughout the rest of this paper. A solution to (2.7) is an element of the Sobolev
space Ae-Wp,oc(f2, such that

(A(x, dog), do) =0

for all o Wp (g2, Ae-l) with compact support. Such differential forms are called
A-harmonic tensors; see [I] and [IL].

It is important that the Euler-Lagrange equations of certain variational integrals
are of the form (2.7).
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Let r/ C(aQ), r/ in Q and IV01 c__)[Ql-l/n. Using the test form
-or/P for (2.7) and using the inequalities (2.8) we get Theorem 2.9.

THEOREM 2.9. Let 09 be a solution to (2.7) in and let cr > 1. There exists a
constant C, depending only on a, p and n, such that

C
(2.10) IIdollp, a <

(or 1) diam Q I1o cllp,a

for all cubes Q with cr Q c f2 and all closedforms c.

We extend this result for the positive and negative parts of the form 09 to obtain the
weak-reverse H61der inequality (2.15). Our proofs are modifications of the proofs of
theorems in [HKM]. We present the details ofthose modifications. First, if u A ()
we write

Also we write

u+ max{u,0},
u- min{u, 0}.

oo+

_
oo-]-dxt,

o- _, o-/dx

THEOREM 2.1 1. Let o be a solution to (2.7) in f2 and q > O. There exists a
constant C, depending only on a, p, q and n, such that

(2.12) f [w+lqldw+lPoP < C f Iog+lq+PlVoI p

for all nonnegative O C(2). Also, (2.12) holds with o- in place ofo9+.

Proof. Using the test form 0 -o+ r/p for (2.7) we get

(2.13) f ldo+lPoP <_c f loo+lPlVolP.

See [HKM], Lemma 3.27. Next, let T dxt where > 0. Then 09 T is also

a solution to (2.7) and as such satisfies (2.13) as well.
For > 0, consider the sets

A {x I(o- T)+I- 0},
B U{x (wt-t)+ >0},

C {x Io+1 > t},

Ol {xlw/+ > t}.
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Now Dt C B A C C for all I. Hence with dv ]deo+lPrlp, and using (2.13) we
get

leo+l q dv C f (O)/-b)q dp

Cl q q-I dvdt

0 Dt

< CI E q

0

tq-I fl d(w T)*lPrlp dt ]
< c2ftq-lfld(og-T)+lPoPdt

0 B

<_ c2 f leo+lq+PlVrll p.

THEOREM 2.14. Let o be a solution to (2.7) in f2, tr > and 0 < s, < o.
Then there exists a constant C, depending only on s, t, a, p, tr and n, such that

for all cubes Q with r Q c

Proof It is enough to show that (2.15) holds forw+ and o9-. From the calculations
for Theorem 3.34 in [HKM] (with w+ in place of u+ and Q in place of B), using
(2.12) and the Moser iteration technique we get

IIo+ll,,o ClQl(p-’)/p’l[og+llp,= a.

Using Theorem 2 from [IN] we can improve the weak reverse H61der inequality to
get (2.15) for o+. The same arguments hold for o-.

Next suppose that u is a solution to (2.7) in g2. At least locally in a ball B, there
exists a form v Wq (B, Ae+l), 7 + 1, such that

A(x, du) =d*v.
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From (2.8) we obtain

Idulp- <_ Id*vl _< aldulp-

or

Idu.I p <_ Id*vlq <_ aqldul p.

If A is invertible, then v satisfies the following conjugate equation

(2.16) dA-(x,d*v) 0

where A-1 (x, ) has associated exponent q.
Notice that w .v satisfies

d*A-l (x, dw) O.

Since the Hodge star operator is an isometry, v satisfies versions of (2.10) and (2.15).

Definition 2.17. When u and v satisfy (1.2) in g2, and A- exists in f2, we call u
and v conjugate A-harmonic tensors in

Of particular interest are p, q-harmonic functions mentioned in the introduction;
see (1.1).
We remark that the polar angle 0 is p-harmonic for all < p < o in the domain

{reiO [r > O, -re < 0 < re }.
The quasi-radial p, q-harmonic tensors in 2 are described in [A l] and [A2].

These tensors are represented by functions of the form u rkf(0) and to reg(O)
where k, e 6 and r and 0 are the usual polar coordinates in lI2. It is necessary that

(2.18) p(k- l)=q(e- l).

We will use the following examples later.

Examples 2.19.

(1) p q 2. Here u and w are conjugate harmonic functions. Notice that log r
and 0 are conjugate harmonic functions in f2 {reilr > 0 and zr < 0 <
zr }. The only quasi-radial conjugate harmonic functions must have k e and
are of the form rk cos kO and rk sin kO.

(2) Ifp, q 2, k (p-2)/(p-l)and --O, thenu (p-l)rp-2)/P-)/(p-2)
and v * 0 are conjugate p, q-harmonic tensors in 2.

(3) Ifp :/: 2, k Oande (q-2)/(q- 1),thenu Oandv -,(q-
l)r(q-Z)/(q-l)/(q 2) are conjugate p, q-harmonic tensors in 21.
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(4) If q > 2 and (2.18) holds, then there exists conjugate p, q-harmonic tensors in
fa of the form

U rkf(tp),
v --.reg(o)

where f(o) and g(o) are bounded.

Notice that if u and w are conjugate p, q-harmonic functions in 2, then they can
be embedded as conjugate p, q-harmonic tensors in IRn. There are many ways to do
this. One such is as follows:

u(xi,x2 Xn) t/(xI,x2),
V(Xl, x2 Xn) --W(Xl, X2) dXl A dx2.

The following is an interesting example of conjugate harmonic tensors in IR3"

u(x) 31xl -,
3

l)(x) E l)ij(x)dxi A dxj
i<j

where

Uij(X XiXj(X4i ) IXI H(X + X)
k<e

See [D for this and other examples.
The study of equations of the form (2.7) is intimately connected with and partially

motivated by the theory of quasiconformal and quasiregular mappings. In this case
(2.7) is the Euler-Lagrange equation for a functional defined in terms of the exterior
powers of the matrix dilatation of the quasiregular mapping. See [BI], [V], [IM], [I],
[HKM] and [N].

Applications of the main results of this paper are given for quasiregular mappings
in the last section.

3. The local norm comparison

THEOREM 3.1. Let u and o be conjugate A-harmonic tensors in fa C ]Rn, cr > 1,
and 0 < s, < oo. There exists a constant C, independent ofu and v, such that

clip(3.2) Ilu uall,,a < CIQlllo Clllt,trQ

and

IIP/qIlo OQII.Q CIQl-P/qllu c2,,..Q
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for all cubes Q with r Q c 92. Here c is anyform in Wp,loc(92 A) with d*cl O,
c2 is anyform in Wq,loc(, A) with dc2 0 and

q( )/=-+--- +
s n p

Proof Choose p so that p3 or. We prove the first inequality in (3.2). The
second follows similarly. First we use the weak reverse HiSlder inequality (2.1 5) and
the Poincar6 inequality (2.2) to get

Ilu uoll,,a ClQlP-’)/’Wllu
< C diam alalP-L)/P’lldullp,pa.

Now using the inequality Idul p < l* dvlq we get

q/pIlu uall,,a <_ ClOl(pn-sn+sp)/spnlld(,v)llq,pa.
Next, v satisfies (2.1 6) so applying the Caccioppoli estimate (2.10) and using (2.15)
again, we obtain

Ilu u 011,,a < Clalpn-sn+sP-qs)/spnl[ , o ,c[[ q/pq,p2 Q

<_ CIQIIIo-

For a weighted version of Theorem 3.1 see [D2].

4. The global result in John domains

In this section we restrict our attention to 0-forms u 6 D’(92, A). As such the
conjugate forms v are 2-forms in 92 C/1n.

Definition 4.1. We call a bounded domain 92 3-John, 3 > 0, if there exists a point
x0 6 92 which can be joined with any other point x 6 92 by a continuous curve , C 92
so that

d(, a) >_ lx 1
for each 6 ,. Here d(, 092) is the Euclidean distance between and 02.

Bounded quasiballs and bounded uniform domains are John domains. See [MS]
and [M]. In such domains we have the following global result. For given n, p and q
we write

(t)
npt

nq + t(q p)
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THEOREM 4.2. Letu D’(f2, A) and v 79’(2, A2) be conjugate A-harmonic
tensors. If is 3-John, q < p, v c L (f2, A2) and

(4.3) s (t)

then u UQo . L (g2, A) and moreover, there exists a constant C, independent of
u and v, such that

(4.4) Ilu UQol[s,f2 < Cl[u ell alpt,g2

Here c is anyform in Wq.Joc(f2, A) with d*c 0 and Qo is the distinguished cube of
Lemma 4.5.

We remark that since f2l < c we can increase or decrease s using HiSlder’s
inequality.

To facilitate the proof of Theorem 4.2, we use the following lemmas.

LEMMA 4.5.
satisfy

Each 2 has a modified Whitney cover of cubes W Qi which

(4.6) U ai ,
Qw

for all x n and some N > and if Qi f’) Qj 13, then there exists a cube
R ( W) in Qi o Qj such that Qi u Qj c NR. Moreover if g2 is 3-John, then
there is a distinguished cube Qo W which can be connected with every cube
Q W by a chain ofcubes Qo, Q Qk Q from W and such that Q c p Qi,

O, 1,2 k, for some p p (n, ).

Proof. All except the last assertion follows immediately from the properties of
a usual Whitney cover {Wi} (see [Ste]) if we let Qi 57-Wi. If f2 is 6-John,
let Q0 be a member of W containing x0. Given Q 6 W let x be the center of Q.
By Definition 4.1 there is a distinguished curve , C f2 joining x0 to x. The chain
Q0, Q Qk arises as those cubes ai W such that ?’ tq ai . It is easy to
see that

(4.7) Q c p Qi

for 0, 1,2 k with p 4,v/-(5 + 1/8). Also

(4.8) max(IQil, IQi+I) < NIQi F] Qi+ll

for/=0,1,2 k-l.
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LEMMA 4.9. Suppose that 0 < s < c, g2 is 6-John, W is the Whitney decom-
position of2 and u is a distribution, u l)’(2, A). Iffor each cube Q W there
exists a constant bQ such that

(4.10) Ilu ualli.a <_ ba,

then there exists a constant C, depending only on s, n and 3, such that

(4.11) Ilu uaoll ’,,a -< C bQ.
Qw

To prove Lemma 4.9 we need the next lemma. A proof appears in [B].

LEMMA 4.12. If < s < , 0 < p < c, Q is an arbitrary collection ofcubes
in Nn and {aQ are nonnegative numbers, then there is a constant C, depending only
on s, n and p, such that

(4.13) aQXpoIl.,., <_ CII aQXQII.,,,,.
Q Q

We now prove Lemma 4.9. Assume that W is a cover of f2 of the form described
in Lemma 4.5. Using the properties (4.6) we get

(4.14) Ilu ueolli,a _< 2s Ilu uolli.o + 2 Y Iluoo
QeW aw

We can estimate the first sum on the right-hand side in (4.14). With (4.6),

s,a-- Q"
QW QEW

To estimate the second sum in (4.14) we first fix Q 6. W and let Q0, Q Qk Q
be the chain from Lemma 4.5. Using (4.8), we have

lUQ, UQi+, [s ai A ai+l 1-1 IluQ, UQ,+, ’.,,Q,Q,+,
i+1

< g2’ E Iaj I- Ilu UQj
j=i

i+1

<_ C Iayl-lbQ
j=i

for 0, k 1. Next, by (4.7),

i+1

(x) < C y Q -bQj )(.pQj (X)]UQi UQi+l )(.Q
j=i



A-HARMONIC TENSORS 625

for 0, k 1. And so, by the triangle inequality,

I/slUQ,,- UQIXQ(X) <_ C v IQI l/Sba ;tpQ(X)
Qew

for all x 6 n. Using Lemma 4.5 we get

I/s(4.16) IluQ0- ualli,a <_ eli Ial l/’bQ XpQII.,w,.
QW QW

When 0 < s < 1, (4.16) becomes

Ilua0- ualli,Q <_ C Ial-loalba
QW QW

C-ba.
QW

Now (4.11) follows from this and (4.15). On the other hand if < s < oo, then we
apply Lemma 4.12 and (4.16) becomes

QW QW

< C-ba.
Qew

Again we obtain (4.11).
We are now ready to prove Theorem 4.2. If s and are related by (4.3), then with

a /2, (3.2) becomes

Ilu ualli a < Clio cll q’/pt,aQ"

Choosing bQ lip Cll qs/pt., Q, we conclude from Lemma 4.9 that

Ilu- Ua,,ll < C bQ
Qew

Now when s (t) and q < p it follows that qs/pt > 1. In this case we conclude
from above that

Ilqs/pIlu ua,,lli,, _< Clio c ,,
This completes the proof of Theorem 4.2.
We now show that the condition (4.3) is essentially best possible at least when n

2. Here we use the conjugate p, q-harmonic tensors given by Example 2.19 (4) with
k, e < 0. It is easy to see that Ilu I1.,,, < if and only if s < -2/k and o I1., <
if and only if < -2/e. Furthermore with the condition p(k 1) q(e 1) we
have (-2/e) -2/k.
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Remark 4.17. Letq < pand0 < to < 2q/(p-q). The above mentioned
p, q-harmonic pair of quasi-radial solutions in satisfies

IIq/P

for all t, 0 < < to but only for s(t) < do(t) + e(t, to) where e(t, to) 0 as --> to.
To see this choose e -2/to so that to -2/e and define

e(t, to) -2/k do(t)

dO(to) do(t).

5. Global results in LL-averaging domains

Definition 5.1.
that

We call f2 L’-averaging, s > 1, if there exists a constant M such

(5.2) IQ01- U Uaoll -L,a -< M sup IQI-t IIU UQIII.Q
Qc

for some cube Q0 c 2 and for all U 6 Lo (f2, ). Here the supremum is over all
cubes Q c

These domains were introduced in [St]. See also [H]. It turns out that if fl is
g-John, then 2 is L’-averaging for all s. See [St].

In [St], condition (5.2) is characterized by the global L’-integrability of the quasi-
hyperbolic metric k(x, xo). Theorem 5.3 follows from results in [St].

THEOREM 5.3.
such that

If f2 is LS-averaging and cr >_ 1, then there exists a constant N

(5.4) Ia01-llu UQ,,III, < N sup IQI-IIU UQIII.Q
crQc

for all U Lioc (2, ). Here the supremum is over all cubes Q with tr Q c

THEOREM 5.5. Suppose that u D’(f2, A) and v D’(, A2) are conjugate
A-harmonic tensors in f2 and that f2 is L-averaging. If v c L (f2, A?), q < p
and

nq
(5.6) ,

p-q

then u Ua,, L (g2, A) and there exists a constant C, independent of u and v,
such that

--IIq/P(5.7) Ilu- UQ,,II.. < Claoll/’llo c,,,..

Ifp q, then (5.7) holds with oo. Here c is anyform in D’(g2, A2) withd*c O.
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Proof. By using hypothesis (5.6) the result (3.2) becomes
IIq/P(5.8) IQI /’llu uoll,,e < Clllo llt,EQ

for all cubes Q with 2Q c f2. Since f2 is L’-averaging we can use (5.4) combined
with (5.8) to obtain

Iaol-/’llu-ua011,, < C2 sup IIo-cllq/pt,2Q
2Qc

_tq/p_< C2 v -II t,,

This is (5.7) for q < p. Next if p q, then we obtain from (3.2), for 2Q c

Ilu uall,,a <_ c31al(l/’-l/t)llv cllt,2a
<_ c31all/’llv cll,.

In particular, it follows that if f u + v is analytic, or more generally quasiregular,
in an L’-averaging domain f2, and if v e L(g2, ), then u Uao L’(f2, ). In
an L’-averaging domain we then get (5.7) with

If we invert the relationship between s and hypothesized in Theorem 4.2, then
we get

-1 (s)
nqs

np+ s(p q)

Whenq _< p ands > 0, -(s) is increasing. Moreover lim -l(s) nq/(p-q),

namely (5.6). Now in a John domain g2, if v -c
L (f2, A) for all s < cxz. (Simple examples show that s x is false in general.)
This is consistent with the fact that a John domain is L’-averaging for all s.

Remark 5.9. When n 2, condition (5.6) is sharp. Examples include quasi-
radial p, q-harmonic functions in planar domains with cusps.

6. Lipschitz conditions and BMO

Definition 6.1.
BMO(2, Ae) if

Assume that w 6 Loc(f2, Ae), 0, n. We write

(6.2) sup IQl-llo-wolll,e <
Qcf2

for some cr > 1. Similarly, we write o9 6 loc Lipk (f2, Ae), 0 < k < 1, if

(6.3) sup IQl-<"+)/"llo- o11, <

for some cr > 1. Also we denote the expressions in (6.2) and (6.3) by IlogllocLipk,
where k >_ 0. When co is a 0-form, (6.2) is the classical definition of BMO(f2). It
turns out that these spaces are independent of the expansion factor
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A continuous 0-form which satisfies (6.3) is in the usual space loc Lipk (f). This
result is in [Me]. It, along with the natural connection to the BMO space, inspires
(6.3) for forms. We see below that in many ways this definition is natural. The usual
local Lipschitz space, loc Lipk (f2,.N), was introduced in [GM].

Furthermore we write Lipi(Q, Ae) for those forms whose coefficients are in the
usual Lipschitz space with exponent k and write IltollLipk,a for this norm.

THEOREM 6.4. Let to be a solution to (2.7). Thefollowing are equivalent:

(a) to E [BMO(2, A);
(b) sup{Ial(P-n)/pnlidtollp, Qlr Q C 2} < oefor some cr > 1.

Similarly thefollowing are equivalent:

(c) to E loc Lip(f2, A);
(d) supllQlP-Pk-")/P"lldo)llp, Olr a f2} < oforsome cr > 1.

Proof Assume (a) or (c). Then by (2.10) and (2.15),

Ildtollp, a < Ca(n, p)lQl-/nllto to2allp,,/a
< C2(n, p)IQI(n-p-nP)/PnIIto o92011,20.

The results (b) and (d) follow by taking the supremum over all cubes Q with 2tr Q c
Next assume (b) or (d).

By HNder’s inequality and (2.2),

IIw wQIll,Q _< IQl(P-)/Pllto toQllp, Q
<_ C3(n, p)lQl(P+P-)/Plldoollp, Q.

We now take the supremum over all cubes Q with 2Q c f2 to obtain (a) or (c).

In view of Theorem 6.4 we get the following results.

COROLLARY 6.5. Suppose that to is a solution to (2.7) in 2.
If the coefficients of to, tot, are in BMO(f2), then to BMO(f, A). If the coeffi-

cients ofto are in loc Lipk (g2), then to loc Lipk (f2, A).
Conversely, if to BMO(g2, A), .then the coefficients ofto toQ are in BMO(Q),

and if to loc Lip,(f2, A), then to toQ Lipt,( Q, A) for all cubes Q c

THEOREM 6.6. Suppose that 0 < k, e <_ satisfy p(k 1) q( 1). There
exists a constant C such that

Ilu IIPoc Lipk,a(6.7)
C

o IIoc LiPe,a
C Ilu IIPo Lip,a

for all conjugate A-harmonic tensors u and v in



A-HARMONIC TENSORS 629

Proof We prove the first inequality from the local result (3.2). The second
inequality follows similarly. From Definition 6.1,

(6.8) IlUlllocLipk, C sup IQl-//llu uall,a.
2Qcff2

Next, using the condition p(k 1) q( 1), (3.2) becomes

(6.9) IQl-n+k)/nllu UQII,Q Cl(IQl-/e/llo clll,2Q)q/p

for all cubes Q with 2Q c f2. Now choose c so that .c (rl))2Q. The first inequality
follows from (6.8) and (6.9).

Now we have the following global result over a cube.

THEOREM 6.10. There exists a constant C such that

Ilu no IlLipk,a/C * 0 CllLip,a
C U U Lipt Q

for all conjugate A-harmonic tensors u and v in a cube Q c n. Here 0 < k <
and .c .(*v) Q.

For conjugate A-harmonic functions in 2 we have a global version of Theo-
rem 6.10.

Definition 6.11. We call f2 a Lipk,k,-extension domain, 0 < k’ _< k _< 1, if the
following equivalent conditions are satisfied. Here cr > 1.
(a) Given (6.13), there exists a constant M, depending only on n, k, cr and N, such
that each pair of points x l, x2 6 f2 can be joined by a continuous curve y C g2 with

(6.12) d(y(s), 02)k-l ds < MlXl x2lk’.

(b) Given (6.12), there exists a constant N, depending only on n, k, tr and M, such
that

(6.13) IIUllLip,, < N sup IIUllLip,B

for all U: f2 . Here the supremum is over all balls B with cr B C

The class of Lipk,k-extension domains is wide including quasiballs and uniform
domains. Certain internal cusps however are ruled out; see [GM] and [L].
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THEOREM 6.14. Suppose that g2 C ]12 is a Lipk,k,-extension domain. There is a
constant C such that

]lUilLipk,, < CllVlllocLipe,

for all conjugate A-harmonic tensors u and v in .
Remark 6.15. The quasi-radial p, q-harmonic functions in Example 2.19 again

show that Theorem 6.7 is sharp with respect to k and in the plane.

7. Quasiregular mappings

We record here some interesting inequalities for conjugate A-harmonic tensors
that arise from a quasiregular mapping f (f, f2 fn).

The following function u and two-form v are conjugate A-harmonic tensors, (see
[IM]):

u __fl,
V ,f2df3 A’" A dfn.

We state this special case of Theorem 4.2 over the unit ball W’ for simplicity.

COROLLARY 7.1. There is a constant C such that

(7.2) l/(n-l)IIf- f (0)ll., _< C[[fZdf3 A A dfn[lsn/[n(n_l)+s(n_Z)l,B,,

for all K-quasiregular f (fl, f2 fn): Bn ]n. Here C depends only on s,
n and K.

When n 2, (7.2) reduces to

Since a coclosedform may be added inside the norm on the right-hand side, we also
have

(7.3) f f (0)Ils,B2 < C f2 f2(O)

This result appears in [IN] where in fact it is shown to hold in all dimensions. As
such we can replace f f (0)I1.,. in (7.2) by f f(0)I1,,. In particular, in
dimension 3, (7.2) becomes

(7.4) f f(0)I1,,, c

_
j=l

1/2

3s/(s+6),B
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COROLLARY 7.5. If is an L’-averaging domain, then there is a constant C such
that

(7.6) l/(n--l)IIf- f(O)ll,,a _< CIIf2df A i dfnllnl(n_2),

for all K-quasiregular mappings f (fl, f2 fn). g2 --+ n. Here C depends
only on n, s and K.

In 3-dimensions, notice that 7.6 reads

3

f f (0)II,,,r _< c
j=l

1/2

3,f
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