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ON AN IRREDUCIBILITY THEOREM OF A. SCHINZEL
ASSOCIATED WITH COVERINGS OF THE INTEGERS

M. FILASETA, K. FORD AND S. KONYAGIN

ABSTRACT. Let f(x) and g(x) be two relatively prime polynomials having integer coefficients with
g(0) # 0. The authors show that there is an N N(f, g) such that if n > N, then the non-reciprocal part
of the polynomial f(x)x + g(x) is either irreducible or identically or -1 with certain clear exceptions
that arise from a theorem of Capelli. A version of this result is originally due to Andrzej Schinzel. The
present paper gives a new approach that allows for an improved estimate on the value of N.

1. Introduction

A covering of the integers is a system of congruences x =- aj (mod mj), where aj
and mj denote integers with mj > 0 for each j, such that every integer satisfies at
least one of the congruences. An open problem (which surfaced over 40 years ago)
is to determine whether a covering of the integers exists for which the indices j range
over a finite set and the mj are distinct odd integers > 1. The problem of whether
an "odd covering" of the integers, as we will call it, exists led Erd6s and Selfridge
to offer money to entice its solution while essentially betting on the outcome of the
answer. Erd6s, convinced that an odd covering does exist, offered $25 for a proof
that no odd covering exists; Selfridge, convinced (at that point) that no odd covering
exists, offered $300 for the first explicit example of an odd covering. No award
was promised to someone who gave a non-constructive proof that an odd covering
of the integers exists. Over the years, the prize money has varied (cf. 1, p. 251 ]).
Selfridge (private communication) has informed us that he is now increasing his award
to $2000.

This paper was motivated largely by related work of Schinzel [3] associated with ir-
reducible polynomials. Throughout this paper, unless specified otherwise, reducibil-
ity and irreducibility shall be in the ring Z[x] (in particular, and -1 are neither
reducible nor irreducible). It is well known (based on an appropriate covering argu-
ment) that there are infinitely many (even a positive proportion) of positive integers
k such that k 2n + is composite for all positive integers n (cf. [1, p. 77]). An
analogous problem is to determine whether there exists an f(x) Z[x] such that

f(x)xn + is reducible for all positive integers n. To make the problem non-trivial,
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one should add the condition that f (1) 1. A consequence of Schinzel’s result in
[3] is that if there is a polynomial f(x) Z[x] for which f(1) g: -1 and forwhich

f(x)xn + is reducible over the integers for every positive integer n, then there must
exist an odd covering of the integers. In fact, Schinzel established that the existence
of such an f(x) is equivalent to an explicitly described covering which is more re-
strictive than an odd covering. The argument he gives is based largely on obtaining
specific knowledge about the factorization of f(x)xn + when n is sufficiently large.
For the connection between the factorization of f (x)x + 1 and the odd covering
problem, the reader should consult Schinzel’s original argument [3].

In this paper, we concern ourselves with an alternative approach to establishing
information about the factorization of f(x)x + (information sufficient to carry out
the connection with the odd covering problem as in [3]). Our approach is to associate
the reducibility of the non-reciprocal part (defined below) of lacunary polynomials
with an elementary problem of independent interest concerning the distribution of
integers in residue classes. As a consequence, we are able to obtain new information
about the factorization of lacunary polynomials. In particular, we address the factor-
ization of f(x)Xn + g(x) where f(x) and g(x) are relatively prime polynomials in
Z[x] with f(0) 0 and g(0) - 0.

To help with the statements of our main results, we discuss notation here. The
expression a mod k will denote the unique integer b in [0, k) for which a b (mod k).
If u is a real number, [u] will denote the greatest integer < u and Ilu will represent
the minimal distance from u to an integer. We will use {u to denote u [u] unless
it is clear from the context that {u} refers to a set consisting of the single element

For a polynomial F(x) -=0 ajxdj, we define F J-fj=0 a. Also,U.

(x) xegF F(1/x) and is called the reciprocal of F(x). If F(x) -+,(x), then
F(x) is said to be reciprocal. The non-reciprocal part of F(x) is the quotient of F(x)
with the product of all of its irreducible reciprocal factors in Z[x] that have positive
leading coefficient to the multiplicity they occur as a factor of F(x). To clarify, if
g(x) is such a factor, then the content of g(x) (the gcd of its coefficients) is (since it
is irreducible in Z[x]). Also, since -g(x) will be a factor whenever g(x) is, we have
factored out only g(x) with positive leading coefficients to make the non-reciprocal
part well-defined.

Our first result is the following:

THEOREM 1. Let F(x) j=oajxdj Z[x], where 0 do < dl < < dr
and aoal "’at 7 O. Let ko be a real number >_ 2, and suppose that

deg F > max {2u+9zu- 292u-2 292u-2 ]+ ,ko where N=211FII2+2r-5.

Ifthe non-reciprocal part of F(x) is reducible in Z[x], then them is a positive integer
k [ko, deg F] such that the polynomial G(x, y) Yj=o aJxd ye is reducible in
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Z[x, y], where dj and ej are defined by

nod and dj kej + dj.

Note that the converse of the above comes close to holding. If G(x, y) is reducible,
then one can obtain a factorization of F(x) by simply taking y xk. But F(x) having
even a non-trivial factorization does not imply its non-reciprocal part is reducible.

Our second result is a modification of the above theorem. We introduce an extra
power of x factor into the statement of the theorem which enables us to decrease the
double exponential bound on the size of deg F. The extra power of x is transparent
in the statement of the result when one takes y xk.

THEOREM 2. Let F(x) Y’=0 aJxaj Z[x], where 0 do < dl < < dr
and aoal ar 7 O. Let ko be a real number > 2, and suppose that

degF>max{2x52N-l,k0(5-l+)} where N 211FII2 + 2r 5.

If the non-reciprocal part of F(x) is reducible in Z[x], then there is an integer
k [ko, 4(deg F)/3) satisfying:

(i) For each j {0, r}, the number dj mod k is in [0, k/4) U (3k/4, k).
(ii) Ifdj and j are defined by

dj (dj + [k/4]) mod k and dj + [k/4] kej + dj

and G(x, y) -j=0 aJxdj yej, then x-raG(x, y) is reducible in Z[x, y], where
m is a non-negative integer chosen as large as possible with the constraint that
x-mG(x, y) Z[x, y].

The condition k [ko, 4(deg F)/3) in Theorem 2 is sufficient to imply that
deg F + [k/4] > k. It follows that at least one of the exponents ej on y in the
polynomial G(x, y) is positive. Thus, x-raG(x, y) being reducible does not follow
immediately from F(x) being reducible.

As a consequence of Theorem 2, we obtain the following result.

COROLLARY. Let f (x) and g(x) be in Z[x] with f (O) 7 O, g(O) 5 O, and
gcd,(f(x), g(x)) 1. Let rl and r denote the number of non-zero terms in f (x)
and g(x), respectively. If

n>max{25EN-, 2max {deg f, degg} (5N- -t- ) }
where

N 2 f = + 2 IIg 119 + 2rl + 2r2 7,
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then the non-reciprocal part of f(x)xn + g(x) is irreducible or identically or -1
unless one ofthe following holds:

(i) The polynomial f(x)g(x) is a pth powerfor some prime p dividing n.
(ii) For either e or e -1, one ofef(x) and eg(x) is a 4th power, the other

is 4 times a 4th power, and n is divisible by 4.

In the case that f(x) (or, equivalently, g(x) 1), the corollary, without an
explicitly stated bound on n, is due to Schinzel [2, Theorem 5], [3, Lemma 4].

Observe that if (i) or (ii) of the corollary holds, the polynomial f(x)xn + g(x)
is reducible by an apparent factorization. This factorization shows that the non-
reciprocal part of f(x)xn + g(x) is reducible as well except possibly in the case that
f(x) -t-(x). However, in this case, f(x)xn + g(x) is itself reciprocal. Since it is
impossible for a reciprocal polynomial to have exactly one non-reciprocal irreducible
factor, we deduce that, in this case, the non-reciprocal part of f(x)xn + g(x) cannot
be irreducible. Thus, if (i) or (ii) holds, the non-reciprocal part of f(x)xn + g(x) is
not irreducible.

2. A preliminary problem on the distribution of residues

Suppose that al, a2 ar are distinct non-negative integers written in increasing
order and that we wish to determine an integer k > 2 such that aj mod k < k/2 for
each j 6 1,2 r }. The value k 2ar -t" satisfies this property. Examples of
sets S {a ar for which this choice of k > 2 is minimal are given by {3, 5}
and {50, 68,125}. We begin this section by showing that for each r, there exists an
A(r) such that ifar > A(r), then there is ak 6 [2, ar] satisfying aj modk < k/2 for
every j 6 1,2 r (take k0 2 in Lemma 2 below). At the same time we pursue
finding an estimate for A (r). This problem will play a crucial role in the proof of
Theorem 1, the estimate for A (r) producing the bound on deg F given there. For the
proof of Theorem 2, we then consider the analogous problem in which the condition
aj mod k < k/2 is replaced by aj =_ dj (mod k) for some dj (-k/4, k/4). We
note that the techniques in this section can easily be extended to deal with similar
problems in which the aj are restricted to a smaller selection of residues modulo k.

LEMMA 1. Let (0, 1/2], and let r be an integer > 2. Set

or3 (16)
2-

nr nr(Ol) "- "
Ifxl, X2 Xr are numbers in [0, 1] with x > x2 > > Xr, then there exists
a real number b 1, Br such that {bxj < ot for each j 1, 2 r }.



ON AN IRREDUCIBILITY THEOREM OF A. SCHINZEL 637

Proof. Define X1 1, X2 0/, and

X=- for j > 3.

Ifx < X, then the lemma holds with b 1. Now, we consider the case thatx > X.
Take the maximal (necessarily > 2) satisfying x >_ X for j 1, 2 }. Thus,
ift+l <j_<r, then

(1) Xj < Xt+l < Xt+l.
By Dirichlet’s box principle, there exists a positive integer e satisfying Ilg.xj < xjot/2
for each j 6 {2, 3 }. Furthermore, we may take

=:x o- 8 2"

The number b + c/2 < Bt satisfies the inequalities {bxl} c/2 < ct, and
{bxj < xjot < for every j 6 {2, 3 t}. Finally, for j > t, by (1) we have

bxj < Btxj < BtXt+l -’-or.

This completes the proof of the lemma.

LEMMA 2. Let r be a positive integer, and let ko be a real number > 2. Set

A(r)=max{292r-12r +29x2r-2 ko29X2-2}
Let al, a2 ar be non-negative integers satisfying al < a2 < < ar and
ar >_ A(r). Then there exists an integer k [ko, ar] such that aj mod k < k/2 for
each j 1, 2 r }.

Proof. If r 1, the result holds trivially by considering k ar. If r 2, the
result can be established by considering the cases k a2 (if al < a2/2), k [a/2]
(if a2/2 < al < 3(a2 2)/4), and k al (if 3(a 2)/4 < al < a2).
We deal now only with r > 3. For ct (0, 1/2), we define

Br(ct)
Cr(ot) max + Br(ot), koBr(u) },

where Br() is as defined in Lemma 1. For an appropriate choice of or, we show that
Cr(ot) < A(r). We also show that, for any ot (0, 1/2), the lemma holds even with
the condition ar >_ A (r) replaced by ar >_ Cr(ot). The lemma will then follow.

Consider

O 2-1-22-r.
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Then

Note that

Br’- Br(ot) < "
2 --2

29x2r-2.

I---- > 1---- -->-
n n e 4

forn > 4.

Taking n 2r-1 we deduce (1/2) ot > 2-r from the implications

2

2-7-_ > == 2r-1
> === 2 2

> c === -ot >

The inequality

Cr(ot) < max {292r-2r--292r-2, ko292r- } A(r)

follows easily.
Now, suppose the conditions of the lemma hold with ar >_ Cr (0t) instead of ar >_

A(r) (and ot 6. (0, 1/2) arbitrary). Letxj ar+-j/ar for each j 6 {1,2 r},
and consider b 6 [1, Br] as in Lemma 1. Let x ar/b and k [x]. Observe that
ar >_ Cr(ot) and b 6 [1, Br] imply that ko < x < ar so that k 6 [ko, ar]. For each
j 6 {1, 2 r} we have {aj/x} {bXr+l-j} < ot so that

{all} <_ {a.//,c}+( ) ( ara <o+
t (ar /Br

ar ) BZr 1
ot-k- <

ar /Br ar Br 2

It follows that aj mod k < k/2 for each j 6 1, 2 r} as required.

LEMMA 3. Let r be a positive integer, and let ko be a real number > 2. Set

A’(r) max { 2 52r-1

Let a, a2 ar be non-negative integers satisfying al < a < < ar and
ar > A’(r). Then there exists an integer k 6 [ko, 4ar/3) such that aj mod k is in
[0, k/4) t3 (3k/4, k) for each j 6 1, 2 r}.

Proof We will establish that if D is a positive integer with < D <

/r/(5r- v/’i"), then one may take

(2)
ar ar )k 6

5r_l D + (1/4)’ D (1/4)

In particular, taking D will give k 6 [ko, 4at/3) as in the statement of the lemma.
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Let xj aj/ar for j 1, 2 r }. We want to show that there is an integer k
satisfying (2) and integers cl, c2 Cr such that

k
(3) la -ckl < for < j < r.

By the Dirichlet box principle, there is an integer d satisfying D < d < 5r-1 D, Did,
and

(4) Ildxj _< for < j < r- 1.

Clearly, (4) holds with j r as well. Observe that the upper bound on D above
implies that d < /ar/10. For < j < r, let cj denote the nearest integer to dxj.

For the moment, suppose cj : 0 (so that cj > 1) for each j 1, 2 r }. Then
(3) follows provided - x xj

ar Cj + (1/4)’ cj (1/4)l<j<r

For each j 6 1, 2 r }, since cj < d, we deduce from (4) that

dxj d (1/5) cj (1/5) dxjd+(1/5)
> cj + (1/5)

> and < <
d+ (1/4) cj + (1/4) cj + (1/4) d (1/4) cj (1/4) cj (1/4)

Hence, (3) holds provided

k (d+(1/5)d-(1/5) )(5) --ar d"’---I--"(’))’ d(d (1/4))

The length of the interval on the right is

10(d2 Od2 ar

so that k exists satisfying (5). Observe that (5) and the definition ofd imply (2) holds.
Now, suppose some cj 0 with j 6 1, 2 r }. We again choose k so that (5)

holds. For each cj O, the above argument gives laj cjkl < k/4 as in (3). On the
other hand, if cj 0, then (4) and the definitions of cj, xj, and k imply

5daj _< ar < k
(d-l-1/2)

< ’4
Hence, (3) holds for such cj as well, completing the proof of the lemma. El

It is of some interest to know whether the values given for A(r) and A’(r) are
best possible. In particular, must the lower bound on ar in Lemma 2 have double
exponential growth and must the lower bound on ar in Lemma 3 have exponential
growth? We end this section with two examples which show that this is indeed the
case.
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Example 1. We describe a choice of {a, a2 ar with ar 22r/2-1 and, for
each k [2, at l, aj mod k >_ k/2 for some j. Let s be a positive integer, and define
xl 1, xg. 1/2, and

x2j+2 - and xej+ xej -xej+e for j {1, 2 s- 1}.

Equivalently, x and

2eJ-1
xg.J=2ej_ forj{1,2 s} and xej+=2ej/_ forje{1,2 s-l}.

Let b be a real number in [1,22s-). We will show that the inequalities

(6) {bxj} < for j e {1, 2 2s}

cannot all hold. Once this is established, one can take r 2s and aj 22s-lxr+l_j
Xr+I_j/X for j {1, 2 r} to obtain positive integers al, ae ar with ar
22r/2-1 and maxl<_j<_r{aj mod k} >_ k/2 for each integer k e [2, ar] (for such k,
consider b 1/(kxr) in (6)).

Assume that (6) holds. We claim that {bxej} < XEj/2 for j e {1, 2,..., s}. We
prove this by induction on j. Since {bxe} < 1/2, we have {2bx:z} 2{bx2}, or
{bx2} {2bxe}/2. But {2bx2}/2 {bXl}/2 < 1/4. We obtain {bx2} < 1/4
x2/2. Now we suppose that {bxej < xej/2 for some j < s and establish that

{bx:zj+e} < x:zj+e/2. Set n 22 so that

2 xej(7) n
X2j X2j+2

The induction hypothesis and (7) imply {bxej} < xej/2 1In. The relationships
xej++x2j+2 x2j, {bx2j+l} < 1/2, and{bxej+2} < 1/2imply{bx2j} {bx2j+l}+
{bx2j+2}. Therefore, {bx:j+2} < {bx2j} < l/n, and we have {nbx2+:} n{bx2j+2}
or, by (7), {bxej} n{bxj+2}. We deduce that {bx2j+z} {bx2j}/n < 1/n2

x2j+2/2. Thus, by induction, {bx2j} < x2j/2 for j 6 {1, 2 s}. Now, we take
j s to obtain {bxzs} < x2./2. Since b > 1, we obtain bx2s > 1. Hence,
b > 1/X2s 2s-1 a contradiction. Thus, (6) does not hold.

Example 2. For r be a positive integer and j 6 1, 2 r }, define aj 3j-1.
We show that for each k 6 [2, 4ar ], at least one of the r numbers aj mod k is not in
[0, k/4) t..J (3k/4, k). Each k 6 [2, 4ar] belongs to at least one interval [4 3j-2, 4
3J- with j 1, 2 r }. On the other hand, if k 6 [4 3j-2, 4 x 3J-1 for some
j, then

k 3k
<3J-l=aj <

4- 4"
The desired conclusion follows.
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3. Proofs of the main results

Proofof Theorem 1. We consider the non-reciprocal part of F(x) to be reducible.
We begin the proofby constructing non-reciprocal polynomials u(x) and v(x) in Z[x]
such that F(x) u(x)v(x). Let g(x) be an irreducible non-reciprocal factor of F(x).
Either (x) is also a factor of F(x) or it is not. If it is, then take u(x) and v(x) so
that (x) f u(x) and g(x) f v(x). Observe that if ot is a root of g(x), then it will be
a root of u(x) but 1/or will not; this implies u(x) is not reciprocal. Similarly, v(x)
is not reciprocal. If (x) is not a factor of F(x), then there is some irreducible non-
reciprocal h(x) (x) such that g(x)h(x) divides F(x). If (x) also divides F(x),
then we take u(x) and v(x) so that/t(x) f u(x) and h(x) f v(x) and get (analogous to
before) that u(x) and v(x) are non-reciprocal. So we are left with the possibility that
both (x) and t(x) do not divide F(x). Take u(x) and v(x) so that g(x)lu(x) and
h(x)lv(x). Since g(ct) 0 implies u(ct) 0 and u(1/ot) : 0 (which follows from
the fact that the irreducible polynomial having 1/or as a root, namely (x), is not a
factor of F(x)), we deduce u(x) is non-reciprocal. Similarly, v(x) is non-reciprocal.

Define

W(x) u(x)(x).

The polynomials F(x), F(x), W(x), and W(x) are each ofdegree dr. Since u(x) and

v(x)are non-reciprocal, the greatest common divisor of F(x) with either of W(x)
and W(x) is of degree < dr. Observe that

(8) F(x)F(x) u(x)v(x)(x)(x) W(x)W(x).

Note that the coefficient ofxdr on the left side of (8) is IIFII 2 and the coefficient ofxdr

on the right side of (8) is IlWll =. Hence, IlWll 2 IIFII 2. We write W(x) in the form
W(x) =0 bJxej where the bj are non-zero and 0 eo < el < < es dr.
Then IlWll 2 -IIFII implies s < IIFII2- 1. Consider the set

T {dl,d: dr}U{dr-dl,dr-d2 dr-dr-}
t3 {el, e2 es-1} t_J {es el, e e2 e. es-1 }.

Observe that ITI < 2 IIFll 2 -+- 2r 5. We use the lower bound on dr deg F in the
statement of the theorem together with Lemma 2 to deduce that there is an integer
k e [ko, dr] such that mod k < k/2 for every T. Fix such an integer k.

Define d and j as in the theorem, and definej and my similarly by j ej mod k
-’ (for 0 < j < r)and-’ (forand ej kmj + "j (for 0 < j < s). Define dj, ej ej, mj

0 < j < s) by dj dr dj mod k, dr dj k) + dj,-e es ej mod k, and
-’ Define G (x y) G(x, y) (as in the statement of the theorem),e. e km) + ey.

, mG2(x, y) ayxdj y , H1 (x, y) byx’j ymj and H2(x, y) bjxe y .
j=0 =0 =0
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Observe that the definition of k implies that the exponent in each power ofx appearing
in these expressions for Gj(x, y) and Hj(x, y) is < k/2. Also,Gi (x, xk) F(x),
G.(x, x) r(x), H1 (x, x) W(x), and HE(X, x) W(x). In particular,
G1 (x, y) divides neither H1 (x, y) nor HE(x, y).

Corresponding to (8), we establish next that

(9) Gl(X, y)G2(x, y) Hi(x, y)HE(x, y).

Expanding the product on the left-hand side of (9) we obtain an expression of the
form y].=ogj(x)y where possibly some gj(x) are 0 but, in any case, deggj < k for
each j. Since

J

F(x)(x) Gl(x, x)GE(x,xk) ygj(x)xkj,
j=0

we deduce that the terms in gj (x)xkj correspond precisely to the terms in the expan-
sion of F(x)F(x) having degrees in the interval [kj, k(j + 1)). Furthermore, J is
determined by the degree of F(x)F(x) (namely, J [2dr/k]). Similarly, writing
the right-hand side of (9) in the form Y’jJ’=0 hj(x)yJ, we get deg hj < k for each j
and the terms in hj(x)xj correspond to the terms in the expansion of W(x)(x)
havingdegrees in the interval [kj, k(j + 1)). Also, J’ is determined by the degree of
W(x)W(x) (so that J’ [2dr/k]). We see now that (9) is a consequence of (8).

Since G1 (x, y) divides neither H1 (x, y) nor HE(X, y), we deduce by unique fac-
torization and (9) that G1 (x, y) is reducible. Since G(x, y) G1 (x, y), the theorem
follows. [21

Proofof Theorem 2. We proceed as in the proofofTheorem 1. We choose the set
T in precisely the same manner. The integer k is chosen using Lemma 3. Defining
G(x, y) as in the statement of Theorem 2, we obtain G(x, xk) xtk/alF(x). We
define G (x, y) G(x, y) and the polynomials GE(x, y), H1 (x, y), and H2(x, y) in
an analogous manner to the definition of G(x, y) so that we have

(10) GE(x, x) "-X [k/4l /(X), Hi(x, xk)=x[k/a]w(x) and H2(x, X)=X[k/4lr(X).

Writing G1 (x, y)GE(x, y) Y=ogj(x)yj, we deduce here that the terms in gj(x)
correspond precisely to the terms in the expansion of x2[k/g]F(x)(x) having de-
grees in the interval [kj, k(j + 1)). A similar conclusion holds for the terms in
H (x, y)H2(x, y), and we obtain (9) as before. From (10), given either of H (x, y)
and H2(x, y), G1 (x, y) will have a factor different from x that does not divide it. The
theorem follows. E!

Proofof the corollary. We use Theorem2 with F(x) Yj=o ajxdj f(x)xn +
g(x) and ko 2 max{deg f, deg g }. For such F(x), there is a non-negative integer
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p such that g (x) --,jP=o ajxdj and f(x) Y4=p+ ajxdj-n. Suppose k is as in
Theorem 2. Since k > 2dp, we have dj + [k/4] < k for j e {0, 1 p}. Hence,
each of 1, g2 gp is 0. We claim that the numbers ep+l, p+9. r are all
equal. Assume s : t with p + 1 < s < _< r. The ordering on the dj and the
definition of the j in (ii) of Theorem 2 imply , > s. By (i) of Theorem 2 and the
definition of dj, each dj is in [0, k/2). Hence, by the definition of the j in (ii) of
Theorem 2, we obtain

k k
> deg f.dt ds k(e, es)+(d, ds)>k

2 2

This contradicts f(x) Y4=p+ ajxd-n. Hence, p+l, go+2 er are all equal. It
follows that the polynomial x-m G(x, y) in Theorem 2 can be written as x-m G(x, y)
f(x)xdye+g(x)xd’ for some positive integer (see the comment after the statement of
Theorem 2) and some non-negative integers d and d’ (with at least one being 0). The-
orem 2 implies that the non-reciprocal part of F(x) is reducible only ifx-mG(x, y) is
reducible. A straightforward application of Capelli’s theorem (cf. [4, p. 91]) implies
that if (i) and (ii) of the corollary do not hold, then x-raG(x, y) is not reducible. It
follows that if (i) and (ii) of the corollary do not hold, then the non-reciprocal part of
F(x) is either irreducible or 4-1. This completes the proof.
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