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REGULAR SUBDIVISION IN Z[ +2/ ]

SEAN CLEARY

ABSTRACT. In the ring Z[L.], there is a natural subdivision technique analogous to regular subdivision
in rational algebraic rings like Z[ 1/2 ]. The properties of this subdivision process are developed using the
matrix associated to the Fibonacci substitution tiling. These properties are applied to prove some finiteness
properties for a discrete group of piecewise-linear homeomorphisms.

1. Introduction

In rings of rational algebraic integers there are obvious regular subdivision pro-
cesses. For example, in the dyadic rationals Z[1/2], there is a subdivision process
given simply by division of intervals whose endpoints lie in Z[1/2] into two equal-
length pieces. By iterating this process, we can get arbitrary elements of Z[1/2] as
endpoints of intervals in our subdivision. The subdivisions of the unit interval ob-
tained in this way are regular subdivisions in the following sense: the points in the
subdivision are obtained by successive halving of intervals already in the subdivi-
sion.

In other algebraic rings, though, the analogue of this subdivision process is not so

obvious. In this work, we develop the analogue of this process for the ring Z[L],
inspired by the Fibonacci substitution tiling L LS, S L. This notion of subdi-
vision has essential features in common with regular rational subdivision, including
the property that any prescribed point can occur as the endpoint of an interval in
a regular subdivision. We obtain bounds on the number of steps required for this
process for a given point. These properties are applied to prove a finiteness the-
orem for a particular class of groups of piecewise-linear homeomorphisms of the
interval, which are variations of Thompson’s group F. Throughout, we will use

r for the golden ratio’ r 1_@. The author would like to thank the referees
for helpful comments which led to a more succinct presentation of the results in
Section 2.

2. z-Regular subdivision

One difficulty is to decide what our fundamental subdivision operation will be. In
Z[ ], our fundamental subdivision operation was dividing a specified interval into n
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equal pieces. The analogue, which would be subdivision into r pieces, can be accom-
plished by taking advantage of the characteristic polynomial of r, x2 x 0.
Thus r -1 is a root of x2 + x. We can thus consider the subdivision specified by
1 r-2 + r-1 as replacing an interval of length one with two intervalsma long one
of length r -1 and a short one of length r -9. Note that in Z[r], when subdividing an
interval of length A into two pieces (the long one of length r-lA and the short one
of length r -2 A), we have a choice about the order of the appearance of the two new
intervals. Either we can choose to have the long interval first or the short interval
appear first.

DEFINITION 2.1. A r-regular subdivision ofsize 2 ofthe unit interval [0, 1] is the
sequence {0, }.

Given a r-regular subdivision {0 co ck-1 1} of size k of [0, 1], we
construct z-regular subdivision ofsize k+ ofthe unit interval [0, 1] as follows:

For some 0 _< < k l, we replace the pair ci, i+1 with one of the following
sets of three points"

(1) C C .3f_ r 2A C .qt_

(2) Ci, Ci dr- r -1 A, C -31- 1

where A ci+ Ci.

We say a sequence {0 Cl Cn 1} is a r-regular subdivision of[0, 1] if it is
a r-regular subdivision of [0, 1] of size n for some n.

The two possibilities above for subdividing to increase the size of the subdivision
correspond to the two ways of dividing an interval of length A into pieces of lengths
Ar-1 and Ar -2, with either the shorter or the longer interval coming first.
We can understand which points p are obtainable at a particular level by considering

relatively uniform subdivisions, where the intervals in the subdivision are all one of
two possible lengths, within a factor of r.

DEFINITION 2.2. A r-regular subdivision of an interval [0, 1] is called almost
-Nuniform of level N if the lengths of the intervals in the subdivision are all either r

-N-1or r

Every r-regular subdivision of some size s that has a shortest interval of length
r-N can be further subdivided to an almost uniform subdivision of level N by merely
subdividing all the intervals longer than r- successively until they are all of length
either r-v or r-N-1 SO we will suppose in the rest of this section that our r-regular
subdivisions are almost uniform.

Given Ss, an almost uniform r-regular subdivision of level N, we can create Sv+l,
a r-regular subdivision of level N + by some simple replacement rules which are
related to the change of scale by a factor of r. In Ss, the long intervals are of length
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r-N and the short intervals are r-N-1 long. In the resulting SN+I, the long intervals
are of length r-s-1 and the short intervals are r-s-2 long. Each of the IN long
intervals in Ss will be subdivided into a long interval and short interval in Ss+l, and
each of the ss short intervals in Ss will remain unchanged in length but will now be
regarded as a long interval in Ss+l. This gives the relationship/N+I IN + Ss and

SN+I IN, which is the defining relationship for the Fibonacci sequence, denoted as
Fn with F1 1, F2 1.
We would like to show that the r-regular subdivision process described above has

properties similar to those of regular subdivision in rational algebraic rings. The most
important property is described in the following theorem.

THEOREM 1. For anypoint p in Z[r f3 [0, ], there exists a r-regular subdivision
of [0, 1 with p as an endpoint ofat least one ofthe intervals in the subdivision.

Before proceeding with the proof ofTheorem 1, we develop some of the properties
of r-regular subdivisions. First, we consider the representation of a specified point
p 6 Z[r] [0, 1] with respect to powers of r.

m nLEMMA Foranypositive p in Z[r] there exists N Z suchthat p 7-+ r-T-4T
for some m, n Z+. Furthermore, N can be chosen large enough so that the ratio
m_ is arbitrarily close to r.

Proof Since p 6 Z[r], p has an expression as a polynomial in r with integer
coefficients. Since r2 1 + r, we can easily rewrite this expression as an expression
ofthe form p l0+, where 10, so are integers, not necessarily positive. We consider
the.subdivision process described above as a Markov chain, with each successive state
representing the number of long and short intervals for progressively smaller-scale
representations of p. This process is governed by the matrix equation

(ll 10)(Isii)= \Si+l)(li+l
Since the transition matrix is the Fibonacci matrix, satisfying

we have

SO loFN+l + SoFN loFN t_ SoFN_I 1N SN
P=/0+-- +

r rN rNq-1 rN rN+I

r is the dominant eigenvalue for the Fibonacci matrix and noting that the conjugate
rn--(--r)-n. Since the originalf -r-1 we have the Binet formula (see [8]) Fn 43

fixed quantity p is positive, so is/or +s0. We iterate this subdivision process until both
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li and Si are positive. Since limk-->oo r for large N we have loF:+l + soF:vF.
(Io: + so)Fv and loFv + SoFlv-i (Io + so)Fv-l, and both are positive.

For the "furthermore" part of the lemma, we note that

lim l lim
I0 Fk+l + SoF

oo Sk oo o Fk + So Fk-1
The ratio of long intervals to short intervals in the subdivision thus approaches z. El

Thus we can realize an arbitrary point of Z[r] as a combination of long and short
intervals on some scale. We would further like to realize this quantity explicitly as a
segment of subdivision of rn intervals of length r-v and n intervals of length r -:+1.
We cannot realize an arbitrary expression in such a way as, in particular, there is no
way to get 3 short intervals in a row at any scale. However, an expression in which
the approximate ratio of long intervals to short intervals is r can be realized as the
initial segment of some z-regular subdivision which can actually be obtained from
an appropriate length interval, such as [0, ].

DEFINITION 2.3. An expression for a point p Z[r] q [0, 1] of the form p
m nr- + for some m, n, N Z is called obtainable at level N if there is a r-regular
subdivision S of [0, such that there is an initial segment in the subdivision S which
has exactly m intervals of length r-N and exactly n intervals of length r-v-1 and no
other intervals.
A point p is called obtainable if there is some expression of the form above for

which p is obtainable at level N.
A pair of integers (m, n) is called obtainable at level N or an obtainable long-short

m npair at level N if p r-w + is obtainable at level N, and similarly we define a
pair of integers (m, n) to be an obtainable long-short pair if it is obtainable at some
level N.

We would like to show that any quantity in Z[r]N[0, has an obtainable expression
which we do through the following series of lemmas:

m nLEMMA 2. If an expression p r-w + r-wZr is obtainable at level N, then the
quantity q + is obtainable at level M for M > N.

0 is obtainable at level M N by simply iteratingProof. The quantityr+ rM_:+l
the subdivision rule which always chooses the long interval to be first, starting from
the interval [0, 1]. From that subdivision, we can obtain the expression for q by
applying the sequence of subdivisions of [0, 1 that yielded p to the leading interval
of length rM-: to get the desired expression for q. El

Now we prove that the complete subdivisions of the unit interval are related to
pairs of the Fibonacci numbers Fn.
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LEMMA 3. The quantities given by Fibonacci pairs (En+l, Fn) for expressions
P r" + are obtainable at all levels N _> n _> 1.

Proof. By induction on n.
For n 1, we have p + 7r + which is obtainable as a subdivision

of the entire interval [0, by one application of a subdivision rule, and thus for all
higher levels N by Lemma 2.

Fn-I isForn > 1, we assume the lemma for is true for n 1, sop +
obtainable at all levels M > n > 1. If we take the subdivision process from the
inductive hypothesis that yielded p at level n 1 and merely subdivide all the Fn
intervals of length z"-(n-l) into Fn intervals of length z"-n and F intervals of length
z"-(n+l), then we have

Fn Fn-1 Fn
"+" Fn Fn-1 Fn+ Fn

which is the case for n. Thus, by Lemma 2, we have Lemma 3 for all levels M > N,
and by induction, the lemma is proven.

If there is room, there are always some obtainable long-short pairs, occurring in
consecutive blocks"

LEMMA 4. Ifa FN+ then there is some long-short pair (a, a’) which is ob-
tainable at level N. If b < FN then there is some long-short pair (b’, b) which is
obtainable at level N. Furthermore, if < b < Fly 2 and (b", b) is obtainable
then (b", b) is one ofa series ofat least three contiguous obtainable long-shortpairs
of theform (b’, b) and (b’ + 1, b).

Proof. Since FN+ + the pair (EN+l, FN) is obtainable with FN+ long.t-N -N+I
intervals. Since a _<. FN+I, there is some initial segment of that subdivision which
has exactly a long intervals, so some pair (a, a’) is obtainable.

For the short intervals, the same argument shows that (b’, b) is obtainable for some
b’. To show that there is always a series of at least three consecutive obtainable pairs,
we consider the initial segment I of the subdivision SN of level N which realizes
the long-short pair (b’, b), with b’ the smallest number of long intervals which are
obtainable at level N for our fixed b short intervals. The last interval in I must be
a short interval, else there would be a realizable long-short pair with smaller b’. We
consider the subsequent 2 intervals after I in SN. If they are both long intervals,
then (b’ + 1, b) and (b’ + 2, b) are both obtainable, and we have a string of three
consecutive obtainable pairs as desired. If first interval following I is a long interval
and the second a short interval, then we consider the subdivision SN- of level N
from which we obtained SN. The last short in I and the first long after I must
have come from the same long interval in SN- since if they came from different
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Level N-I" 1

Level N"

Level N-I"

becomes

l 1

I
Level N" s

Figure 1. Changing subdivision types to yield nearby pairs for case

Level N-l" 1 1

Level N" , s
I

becomes

Level N-I" l

Level N" , _._ S/ 1
I

Figure 2. Changing subdivision types to yield nearby pairs for case

intervals in SN-, we can change the subdivision type from "long-short" to "short-
long" for long interval in SN- that yielded the final short in I and get a (b, bt) with
a smaller number of long intervals. Thus, the first short interval following I would
have come from a long interval in SN- and we can change the subdivision type from
"short-long" to "long-short", thus yielding two long intervals after I and a string of
three consecutive obtainable pairs. This type of subdivision change is pictured in
Figure 1.

Since three short intervals in a row are not obtainable with this subdivision process,
the remaining case is when the short interval in I is followed by another short interval
and then a long interval. In this case, when we consider the adjacent long intervals
in SN- which were subdivided to yield the adjacent Short intervals in Sv, we can
change the 6rder of both subdivisions as illustrated in Figure 2 to obtain the short
interval followed by two long intervals, and thus again we have three consecutive
obtainable long-short pairs for a fixed b.
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In these obtainable subdivisions, the ratio of long intervals to short intervals will
be close to r, and in fact we can prove the following, which is essentially a converse
to that observation:

m nLEMMA 5. If an expression p - + for a quantity p [0, 1] has the
property that Im nrl < r then that expressionfor p is obtainable at level N.

Proof Note first that since p 6 [0, 1] and rF-u + r-W, we necessarily
have m < FN and n < FN-. Also note that the quantity Im nrl is merely the
horizontal Euclidean distance from the integer lattice point (m, n) in the plane to the

xlineL" y=7.
We prove this by contradiction. Out of all possible integer pairs for which (m, n)

are within horizontal distance r of the line L which are NOT obtainable at level N,
rn nwhere N is the smallest N for which + < and (m, n) is not obtainable at

level N, we consider a pair with the smallest n.
By assumption, this pair (m,n) is not obtainable, and we consider the pair (n,m -n),

a potential preimage to (m, n) at level N 1, whose horizontal distance to the line
L is less than re, due to the fact that the inverse matrix to the subdivision matrix
above stretches horizontal distances to L by a factor of r. If the pair (n, rn n) has
horizontal distance to L less than r then it would be obtainable by the assumption that
(m, n) was the first non-obtainable pair that close to L. If (n, rn n) is obtainable at
level N 1, then the pair (m, n) would be obtainable at level N by subdividing every
long into a long and a short to get (m, n), contradicting the assumption that (m, n)
was not obtainable at level N.

So (n, rn n) is not obtainable and we consider its horizontal distance to the line
L which must be between : and r2. We consider two cases.

Case I. If (m, n) is below the line L, then the pair (n, rn n) will be above the
line L. It would lie at distance between r and re from L so the pair immediately to
the right (n + 1, m n) will be within distance less than r of L at, since re r.
So since m n is less than m, by minimality of our alleged counterexample, it would
be obtainable since it is close enough to L. Since (n + 1, rn n) is obtainable at
level N 1, (m 4- 1, n 4- 1) is obtainable at level N by subdivision. We consider the
possible last two intervals at the end of the initial segment I of SN, the subdivision
which realizes (m 4-1, n 4-1). If the last two intervals in I are a long and short interval,
then there is an initial segment realizing (m, n), contradicting our assumption. If the
last two intervals of I are both short intervals, then we do the subdivision type-swap
similar to that pictured in Figure 2 in SN-1 to realize (m, n). If the last two intervals
of I are both long intervals, we consider not only the subdivision Sv-1 but also
SN-e. We can change the subdivision order type as in Figure 3 to get that (m, n) is
obtainable.

Case H. If (m, n) is above the line L, then the pair (n, rn n) will be below the line
L. It would lie at distance between r and r2 from L so the pair immediately to the left
(n 1, rn n) would be at distance less than r from L and thus be obtainable. Since



460 SEAN CLEARY

Level N-2"
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I

becomes
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I

Figure 3. Changing subdivision types to yield nearby pairs

(n 1, m n) is obtainable at level N 1, (m 1, n 1) is obtainable at level N by
subdivision. We consider the two intervals immediately following the initial segment
I of SN the subdivision which realizes (m 1, n 1). If the next two intervals
in I are a long and short interval, then there would be an initial segment realizing
(m, n), contradicting our assumption. If the next two intervals after I are both short
intervals, then, similar to the change in Figure 2, we change the subdivision order for
the second short interval from "short-long" to "long-short" which will then realize
(m, n). If the next two intervals after I are both long intervals, we consider the
subdivision type of the second one. If it came from a long interval, then it would have
needed to come from a subdivision of type "long-short" from SN-. We can swap
the order of that subdivision to get that (m, n) would be obtainable. If the second
long interval came from a short interval in SN-1, we consider the preceding stage
Sly-2. We can change the subdivision order type as in figure 3 to get that (m, n) is
obtainable. Note that it is easy to verify for cases N < 3 that the needed pairs are
obtainable. E]

Now we have a very good idea of some long-short pairs which are obtainable;
Xthey are the pairs which are close in distance to the line y . Also note that these

arguments apply to general p > subdivided from initial intervals of appropriately
long length as well. Lemma 5 is the essential ingredient to proving Theorem 1.

Proofof Theorern 1. Given a quantity p in Z[r] fq [0, 1], we would like to con-
struct a r-regular subdivision of [0, 1] containing p.

To construct a r-regular subdivision of [0, 1] containing p, we use Lemma to
find a long-short pair representing p within horizontal distance r of the line L. By
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Lemma 5, that expression for p is obtainable. Thus p occurs as the endpoint of an
interval in r-regular subdivision.

One consequence from the proof of Theorem is an upper bound of the required
number of levels of subdivision that will be required to get one with an interval with

x isendpoint p. We know the original distance ofthe point (m0, no) from the line y
mt)- nf)given by d I, so the number of subdivisions needed to reduce the horizontal

distance to be less than r (and thus the straight line distance to be less than /77LS,
is given by

This upper bound on levels of subdivision similar to inspecting of the degree of the
denominator in the subdivision for the dyadic rationals Z[ 1/2 ]. A further consequence
of the theorem is the following corollary:

COROLLARY 1. For any finite set F in Z[r] N [0, 1], there exists a r-regular
subdivision of [0, 1] containing intervals whose set ofendpoints contain F.

Proof. We we can successively subdivide a subdivision containing the first point
in F into one containing the subsequent ones iteratively by repeated applications of
Theorem 1. The adjustments needed to ensure that the point p was an endpoint in the
subdivision were all contained in intervals very close to p; at level N, N or N 2
and involved a change of subdivision order in either a neighboring interval or one
beyond that. By subdividing further, we can ensure that the separation between any
two points of our finite set is at least, say, 10 intervals and thus the local arguments
to prove the theorem above hold.

3. Substitution and the Fibonacci tiling

The substitutions used in the construction of r-regular subdivisions above are
exactly those used to construct one-dimensional aperiodic tilings of the line, such as
those considered in [9] and ]. The bi-infinite strings of L’s and S’s that are invariant
under the substitution L LS, S L can be thought of as one-dimensional
aperiodic tilings of the line where each L is a interval of length r and each S is an
interval of length 1. These aperiodic tilings of the line have a self-similarity which is
a scale-invariance under a change of scale by r.

Though these strings of L’s and S’s share similar dynamic properties with the
patterns in the subdivisions considered here, one essential difference is that in order
to have the scale invariance by a factor of r, we need to always use the same subdivision
rule. That is, in the self-similar tilings we decide in advance either to use only the
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rule L --+ LS, S --+ L or to use only the rule L SL, S --+ L. In the consideration
of the r-regular subdivisions above, we were able to use either subdivision rule at
any stage. Since we use this choice, we lose the self-similarity properties that these
one-dimensional aperiodic tilings possess.

4. An application

We consider the group Fr of piecewise-linear homeomorphisms from [0, 1] to
[0, with the following restrictions:

Each homeomorphism in the group has only finitely many singularities.
Each singularity lies in Z[r].
Away from the singularities, the slopes are powers of r.

We will show that this group is finitely generated, finitely presented and of type
FP. This group is similar to Thompson’s group F, a group of piecewise-linear
homeomorphisms that has been studied in connection with questions in logic 11],
homotopy theory [7], and measure theory of discrete groups [2]. Brown [3], [4] and
Stein [10] develop tools to show that the groups with rational slopes and breakpoints
are finitely generated, finitely presented and of type FP. The earlier work, with
the exception of [6], studied examples of these groups of piecewise-linear home-
omorphisms where the singularities and slopes lie in rationally-generated subrings
of Q.

The argument to show that Fr is finitely generated, finitely presented and of type
FP is similar to that presented in [6], so only a brief sketch is described here.
A group G is of type FP if there is a projective ZG resolution of Z regarded as
a G-module with all terms in the resolution finitely generated. One technique for
showing a group F is FP is to construct a classifying space K (F, 1) with only
finitely many n-cells in each dimension, and Brown [3] developed a technique for
doing this indirectly, which we will use here.

The connection between r-regular subdivisions of the unit interval and elements
of F comes from the following theorem:

THEOREM 2. If S and S’ are r-regular subdivisions of the unit interval with
the same number ofpoints, then the affine interpolation of S and S’ belongs to Ft.
Conversely, if f Fr, then f is the affine interpolation of some S and S’, two

r-regular subdivisions of [0, ].

Proof. First, suppose that S and S’ are r-regular subdivisions of the same size.
Each interval in an r-regular subdivision has length r for some and has endpoints
in Z[r]. Thus, the singularity set will lie in Z[r]. Since the slopes of the interpolation
are ratios of lengths of intervals, and both the domain and range intervals have lengths
say r -hi and r -’i their ratios r -mi+ni lie in r
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Now suppose that we are given f e Ft. We first construct a r-regular subdivi-
sion of [0, containing all the singularities of f. This is accomplished by applying
Corollary to the finite collection of breakpoints of f to obtain $1, a r-regular sub-
division of [0, 1]. We consider the set of images of the points of S1, which include
the breakpoints of f, f(S1) Stl which is again a finite subset of Z[r]. These form
a subdivision of [0, 1] which is not necessarily r-regular, but this subdivision can be
refined to get a subdivision S which contains S and is r-regular. Furthermore, we
can simultaneously apply the subdivisions used (in the range of f) in making the S’I
into S’, a r-regular subdivision, to the intervals in S1 (in the domain of f) to obtain
S, a r-regular subdivision of the domain of f. Now we have two r-regular subdi-
visions with f(S) S’ and furthermore f is the affine interpolation of S and St, as
desired.

To show the finiteness properties of Fr, we can use Theorem 2 to regard elements of
F as linear interpolations of regular subdivisions. We can control the complexity of
r-regular subdivisions of a particular size by virtue of the fact that there are a limited
number ofpossibilities for such a subdivision ofa fixed size. Using methods described
in [6], we can build a directed poset on which Fr acts and construct a classifying
space for Fr with bounds on the complexity of n dimensional cells stemming from
the bound on complexity for subdivisions of a particular size. This classifying space,
using arguments from [3], is enough to establish that Fr is finitely generated, finitely
presented and of type FP.

5. Other work and results

Some of the theory of regular subdivisions in Z[/] and also in Z[/m2 + was
developed in [6], but not in as systematic way as the techniques presented here. The
techniques developed here generalize readily to subdivisions of general intervals in
Z[r] of the form [a + br, c + dr], and work is under way to understand subdivision
in more general algebraic rings [5].
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