
ON -SPACES THAT ARE CW-COMPLEXES

BY

RONALD C. O’NEILL

A topological spce that hs continuous multiplication with homotopy
unit is clled n H-spce. In [3] A. H. Copelnd, Jr. describes binary opera-
tion on the set of homotopy classes [A; X] of bsepoint-fixed mps of topo-
logical spce A into n H-spce X nd proves that n exact sequence of homo-
morphisms results from sequence B, -- A, --. A, B of inclusion mps
when (A, B) is CW-pir. I.M. Jmes proves in [6] that if A is CW-
complex nd X is n H-spce, then [A; X] is loop. It follows that when
the H-spce X is itself CW-complex, it shres mny of the properties of
loop. In this pper we examine such spces from the point of view of the
theory of loops.
By means of exact sequences of sets of homotopy classes we show that the

set HS (X) of homotopy classes of H-structure mps on given H-spce X is
in one-to-one correspondence with the set of homotopy classes of mps

f" X,X v X ----> X,e.

Corresponding to the loop theoretic notions power associativity and diasso-
ciativity, we define the concepts homotopy power associativity and homotopy
diassociativity for H-spaces, and we show that if a CW-complex X is an H-
space, then X is homotopy power associative when cat X =< 3, and X is
homotopy diassociative when cat X <- 2. We also obtain results on homo-
topy commutativity and homotopy associativity. In the sequel to this
paper results obtained here will be applied to the study of H-spaces in terms
of their Postnikov systems.

I am grateful to Professor A. H. Copeland, Jr. for suggesting the problems
considered here, for many helpful discussions, and for his kind encourage-
ment. This paper is an expansion of a portion of the author’s doctoral dis-
sertation written at Purdue University in 1961 under Professor Copeland’s
direction.

1. Preliminary considerations and conventions

Recall that a loop is a set M together with a binary operation, written
multiplicatively, having the following two properties"

(i) there is a two-sided identity element 1,
(ii) for every two elements a, b e M the equations

a.x b, y.a b,
admit unique solutions in M.

(The standard reference for the theory of loops is [2].)
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Let f:M---+ N be a homomorphism of loops. The subset fM c N is
clearly a subloop; fM is called the image of f, denoted Im f. The homomor-
phism f is called an epimorphism if fM N, and f is called a monomorphism
if f is a one-to-one function. The subset f-ll c M is clearly a subloop of M;
f-ll is called the ]cernel of f and is denoted by Kerf. A subloop K c M is
said to be a normal subloop if K is the kernel of a homomorphism.
The following "generalized Lagrange theorem" for loops is well known.

(See [2, Chap. IV, Sec. 1].)

THEOREM 1.1. Let f" M N be a loop epimorphism. Then, for each ele-
ment x e N, the set f-lx is in one-to-one correspondence with Kerf.

It follows from Theorem 1.1 that a homomorphism is a monomorphism if
and only if its kernel consists of the identity element alone. Thus we can
deal with exact sequences of loops in the same way as with exact sequences
of groups. Factor loops and direct products of loops are defined in the same
way as for groups. (It is well known that the "five-lemma" holds for ar-
bitrary groups. One can show, in fact, that the "five-lemma" also holds for
loops. Likewise, a number of other standard group-theoretic devices used
by algebraic topologists hold for loops.)

Let M be a loop. Then every element m e M possesses both a left inverse
L L Rm and a right inverse mR Ifm m for eachmeM, we denote thisele-

--1ment by m and, in this case, the loop M is said to be inversive. Thus a
commutative loop is inversive. An associative loop is, in fact, a group.
The topological spaces we treat will be assumed to be provided with a base-

point, usually denoted by ,; all spaces will be assumed to be Hausdorff spaces.
We denote the closed unit interval [0, 1], taken in the usual topology, by I
and choose 0 I as basepoint. If f" A X is a map of topological spaces,
it will be understood that f (,) ,. Only those subspaces of a topological
space that are closed and contain the basepoint will be considered. If (A, B)
is a topological pair, the expression f" A, B -- X will mean f" A, B -- X, ,;
similarly h X - A, B will mean h X, -- A, B. Likewise, if g A -- Xis a map (preserving basepoints), then f

___
g will be understood to mean

that f is homotopic to g (rel ,). The cartesian product space A ( B has
(,, ,) as its basepoint. If f’A X and g "B Y are maps, then

f X g A X B -- X X Y is the map defined by the formula

(fX g)(a,b) if(a),g(b)).

The n-fold cartesian product space X X X X will be denoted by Xno
If A is a CW-complex [9], then the basepoint will always be taken as a

subcomplex of A, and only those subcomplexes of A containing the basepoint
will be considered. If A and B are CW-complexes, then A X B is the carte-
sian product space with the product cellular decomposition. We shall,
moreover, always assume that A X B is a CW-complex whenever A and B
are CW-complexes. (The reader may, if he wishes, assume that all CW-
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complexes are countable.) This convention is iustified by the fact that most
of the results we obtain for CW-complexes hold more generally for spaces in
the category W of spaces having the homotopy type of a CW-complex together
with the fact that if A W and B W, then A B W. (See [7, Proposi-
tion 3].) The precise statements of the more general results are left to the
reader.

Let X be a topological space with basepoint e. The subspace
(X X e) u (e X X) of X is denoted X v X; the folding map V X v X-- X
is defined by

(x,e) x v(e,x).

XLet i X v X--.X2be the inclusion map. If there isa map --X
such that i

__
V, then t is called an H-structure map, and we say that (X, t

is an H-space; the basepoint e X is called the identity element. Whenever
X is an H-space, we shall always choose its identity element as basepoint.
If i V, then is called a strong structure map, and (X, ) is said to be a
strong H-space. Let (X, t) and (Y, ) be H-spaces. A map X --. Y is
said to be an H-map if the maps

are homotopic. The transposition map T X -- X is defined by T (x, y)
(y, x). An H-space (X, ) is said to be homotopy conmutative if

__
T.

Let 1 :X-- X be the identity map. Then (X, ) is said to be homotopy
associative if (1 X) ---( X 1). Let 0:X-X be the constant map
onto e. Then (X, ) is said to be homotopy invqrsive if there is a map
:X-X such that (1 X )( X 1)0. The map is called a
homotopy inverse for tt.

Let X be a topological space, nd let (A, B) be a topological pair. We
denote the set of homotopy classes (rel B) of mps f :A, B - X by
[A, B; X], and we denote the homotopy class of each such mp fby [f]. When
B =., we abbreviate [A, B; X] by writing [A; X]. If (C, D) is also a topo-
logical pair, then every map A, B - C, D induces a function

* [C, D; X]-- [A, B; X]

defined for each element If] [C, D; X] by *[f] Ire]. We observe that if
C is the space obtained from (A, B) by identifying B to a single point.,
and if ’A, B-- C is the identification map, then the induced function

* [C; X] -- [A, B; X] is a one-to-one correspondence.
Dually, if Y is a topological space, then every map " X -- Y induces a

function . [A, B;X] ----> [A, B; Y] defined for each element If] e [A, B; X]
by .[f] [el]. A map ’X-- Y is called a wealc homotopy equivalence
if the induced function ." n (X) -- r (Y) is a one-to-one correspondence
in each dimension n 0, 1, .... If X -- Y is a weak homotopy equiv-
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alence, and if A is a CW-complex, then the induced function, [A; X] -- [A; Y]

is a one-to-one correspondence. (See [6, Lemma 3.4].) One can easily
prove that if B is a subcomplex of A, then , [A, B; X]-+ [A, B; Y] is
also a one-to-one correspondence whenever is a weak h0motopy equivalence.
Let A be a topological space. The diagonal map A A --, A is defined

by the formula /k (a) (a, a). Let (X, ) be an H-space. The structure
map t induces a binary operation on the set [A; X] as follows. For any two
maps f, g A -- X the product If]. [g] [A; X] is defined by

[/]. [a] [, (f a) A].

Whenever we wish to emphasize that the binary operation on [A;X] is in-
duced by the H-structure map , we shall do so by writing [A; X],. Let
0:A-- X denote the constant map onto the basepoint of X. Then
[0] e [A; X], is a two-sided identity element. If is homotopy commutative,
then [A; X], is commutative; if is homotopy associative, then [A; X], is
associative; and if t is homotopy inversive, then [A; X], is inversive. In this
connection, Copeland has proved the following result. (See [3, Theorems
3.2B, 3.2C, and 3.2D].)

THEOREM 1.2. Let (X, t) be an H-space.
(a) t is homotopy inversive if and only if [X; X], is inversive.
(b) t is homotopy conmutative if and only if [X2; X], is commutative.
(c) t is homotopy associative if and only if [X3; X], is associative.

Let A and B be topological spaces, and let (X, ) and (Y, ,) be H-spaces.
If A -- B is a map, then the induced function * [B; X], -- [A; X]
is a homomorphism. (See [3, Theorem 3.2A].) If r X -- Y is an H-map,
then , [A; X], -, [A; Y]v is a homomorphism. (See [3, Theorem 3.4A].)
A result attributed to W. Hurewicz asserts that if (X, t) is an H-space,

then there are a strong H-space (Y, ,) and a weak homotopy equivalence
Y -- X such that is an H-map. It follows that if A is a CW-complex,

then r, [A; Y]v -- [A; X] is an isomorphism. Hence, in studying proper-
ties of the sets [A; X],, one can assume that (X, ) is a strong H-space with-
out loss of generality.
The following theorem, which is fundamental for our investigations here,

was proved by I. M. James. (See [6, Theorem 1.1].)

THEOREM 1.3. Let A be a CW-complex, and let (X, ) be an H-space.
Then [A; X], is a loop.

It follows easily from Theorem 1.3 that if A is a CW-complex and B c A
is a subcomplex, then [A, B; X] is a loop. In fact, if C is the space obtained
from (A, B) by identifying B to a point ,, and if A, B - C is the identi-
fication map, then * [C; X],- [A, B; X], is a loop isomorphism.
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Let R, S, T be topological spaces or topological pairs, and let R - S
and S -- T be maps. For any topological space X the sequence

[T; X] [S; X] [R; X]

is said to be exact whenever the image of * coincides with the set of elements
of [S; X] mapped by * onto [0]. Copeland has shown that if A is a CW-
complex and B is a subcomplex of A, and if i" B A and j" A A, B
are the inclusion maps, then for each topological space X the sequence

[A,B;X] ’ :)[A;X] [B; X]

is exact. (See [3, Theorem 3.3C].) It follows from Theorem 1.3 that if
(X, #) is an H-space, then the sequence

.$

..[A,B;X]. 3 )[A;X] )[B;X].

is an exact sequence of loops and homomorphisms; that is, Im j* Ker i*.
The concept of retractile subcomplex of a CW-complex was introduced

by I. M. James in [6]; "retractile" generalizes the notion of "retract". We
give an equivalent definition which was suggested by J. D. Stasheff.

Let A be a CW-complex. A subcomplex B is said to be retractile in A
provided that, for every topological space X, whenever f" A X is a map
such that fB and f 0, then f 0 (rel B).
A basic property of retractile subcomplexes is described in the following

proposition.

PROPOSITION 1.4. Let X be an H-space, and let B be a retractile subcom-
plex of a CW-complex A. If f, g A X are homotopic maps that agree on B,
then f g (rel B).

This is Corollary 4.4 of [6].

COROLLARY 1.5. Let (X, ) be an H-space, let B be a retractile subcomplex
of a CW-complex A, and let j" A A, B be the inclusion nap. Then the
induced homomorphism j* [A, B; X] [A; X] is a monomorphism.

For suppose f, g’A, B X are maps such that fj gj. Then, since
fj and gj coincide on B with the constant map, it follows that fj gj (rel B).
Therefore, f g; so the homomorphism j* [A, B; X] [A; X] is a one-
to-one function.

COROLLARY 1.6. Let (X, ) be an H-space, let B be a retractile subcomplex
of a CW-complex A, and let C be the complex obtained by identifying B to a point.
If " A C is the identification map, then the induced homomorphism

* IV; x]. [A; X]
is an isomorphism.



ON H-SPACES THAT ARE CW-COMPLEXES I 25

Let (X, ) be a strong H-space with identity element e, and let T X -- Xdenote the transposition map. Then T is also a strong H-structure map;
hence coincides with T on X v X. We say that a strong H-space (X, #)
is strongly homotopy commutative provided that --- T (rel X v X). We
denote by T (X) the subspace of X defined as follows:

Ta(x) (e X X)U (X X e X X) u (X X e).

If (X, ) is a strong H-space, then the maps (1 X ), X 1) X --, X
coincide on T (X). We say that a strong H-space (X,/) is strongly homotopy
associative provided that (1 X ) -- ( X 1) (tel T (X)).

Let X be a CW-complex and suppose that (X, ) is an H-space. Then it
follows from the homotopy extension theorem [9] that there is a strong struc-
ture map for X such that _--_, X-- X; moreover, the identity map
I’X-- X is an H-map. Thus, in studying homotopy properties of H-
spaces that are CW-complexes, it suffices to restrict attention to strong H-
spaces. Likewise, in studying the homotopy properties of homotopy com-
mutative or homotopy associative H-spaces that are CW-complexes, one
can also restrict attention to the strong cases without loss of generality;
specifically, we have the following result.

PROPOSITION 1.7. Let X be a CW-complex, and suppose that (X, ) is a
strong H-space.

(a) If (X, ) is homotopy commutative, then (X, ) is strongly homotopy
commutative.

(b) If (X, ) is homotopy associative, then (X, ) is strongly homotopy
associative.

For X v X is a retractile subcomplex of X, and T (X) is a retractile sub-
complex of X3. (See [6, p. 165].) Therefore if ,_ T X-- X, then by
Proposition 1.4 we have

#T (relX v X).

Likewise, if (1 X ) -- ( X 1), then (1 X ) ( X 1) (rel T (X)).

2. The homotopy classes of H-structure maps

Let X be a topological space with basepoint e, let " X v X-, X be
the folding map, and let / X v X-, X be the inclusion. Let A and B
be topological spaces, and let i A v B -, A X B be the inclusion.

THEOREM 2.1. X is an H-space with identity element e if and only if the
function i* [A X B; X]--, [A v B; X] sends [A X B; X] onto [A v B; X]
for all spaces A and B.

For suppose that (X, t) is an H-space. Let f A v B -- X be any map.
Then th function g:A v B-, X v X defined by the formulas

g(a, ,) (f(a, ,), e), g(,, b) (e,f(,, b)),
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is clearly well defined and continuous; moreover j’= Vg. Define the map
F A X B -. X by the formula

F(a, b) t(f(a, .),f(., b)).

Since 1 V, we have
Fi ]g

_
Vg f.

Therefore i*[F] If], and so i* is an epimorphism.
Conversely, suppose that for all spaces A and B the function i* sends

[A X B; X] onto [A v B; X]. Then set A B X; we have i
XIt follows that there is a map -- X such that l

__
V. Then (X, )

is an H-space, and the theorem is proved.
Let A and B be CW-complexes, and let

i" A v B---,A B and j" A B--A B,A v B

be the inclusion maps.

COROLLARY 2.2. If (X, t) is an H-space, then

[0][A X B,A v B;X] a ;[A X B;X]. ;[A vB;X][0]

is an exact sequence of loops.

The subcomplex A v B is retractile in A X B, (See [6, p. 165].) Hence
exactness at [A X B, A v B; X] follows from Corollary 1.5. Exactness at
[A X B; X] has already been discussed in Section 1. Exactness at [A v B; X]
follows from Theorem 2.1. Thus the corollary is proved.

Let X be a topological space, and let e be the basepoint. Following Cope-
land [3] we use the symbol HS (X) to denote the set of homotopy classes of
H-structure maps on X that have e as identity element. The following
theorem generalizes a result of Copeland. (See Theorem 5.5A of [3].)

THEOIEM 2.3. Let X be a CW-complex. If X is an H-space, then HS (X)
is in one-to-one correspondence with IX, X v X; X].

Let ’X v X-X be the folding map, and let i’X v X--X
and j X: -- X, X v X be the inclusion maps. Then HS (X) (i*)-1[ U].
By Theorem 1.1, (i.)-1[] is in one-to-one correspondence with Ker
and by Corollary 2.2, Ker i* is in one-to-one correspondence with
[X, X v X; X].

3. H-spaces, category, and groups
Let A be a topological space. The Lusternilc-Schnirelmann category of A

is at most n, written cat A __< n, if A is the union of n open subsets, each con-
tractible in A. (The standard reference for Lusternik-Schnirelmann cate-
gory is [4].)

Let A be a connected CW-complex. The subeomplex T (A) A is
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defined to be the subspace consisting of all points (al, a) such that
ai for some i, 1 -< i =< n. Let / "A--A" be the diagonal map,

/k(a) (a,a, ...,a),

and let i" T (A) -- A be the inclusion map. G.W. Whitehead shows in
[8] that cat A -< n if and only if there is a map " A -- Tn(A) such that
ib---/. We call the map b a category-n structure map.

THEOREM 3.1. Let (X, t*) be an H-space, and let A be a connected CW-com-
plex. If cat A __< 3, then [A; X], is a group.

It follows from remarks made in Section 1 that we may assume, without
loss of generality, that (X, ) is a strong H-space. By Theorem 1.3 the set
[A; X], is a loop; hence it suffices to show that [A; X], is associative.
Let ’A- T (A) be a category-3 structure map, let i" T3(A) -- Abe the inclusion map, and let A A -- A be the diagonal map. Then ik ---/.

Let j T (X) -- X be the inclusion map. Then, since is a strong H-struc-
ture map, we have t,(1 X )j ( X 1)j. Let f, g, h’AX be any
three maps, and let us denote by T (f, g, h) T (A) -- T (X) the map in-
duced by f X g X h A - X. Consider the element If]. ([g]. [h]) e [A X],.
We have

If]. ([g].[h]) [(1 >(t,) (f X g X h)/]

[(1 x )(f x g x
[, (1 ,)j (T" (f, g, h)

[( 1)j(T3(f, g, h))k]

([/]. [g]). [hi.

Therefore [A; X], is associative, and the theor..em is proved.

COROLLARY 3.2. If X is a connected CW-complex, cat X _-< 3, and (X,
is an H-space, then [X; X], is a group.

We note that if X satisfies the hypothesis of Corollary 3.2, then (X,
is an inversive H-space. For the group [X; X], is inversive, and so, by Theo-
rem 1.2 (a),/ is inversive. Thus, for example, if X is an (n 1)-connected
CW-complex of dimension less than 3n, then every H-structure map on X is
homotopy inversive; for cat X -<- 3 by Proposition 2.5 of [1].

THEOREM 3.3. Let (X, #) be an H-space, and let A be a connected CW-
complex. If cat A <= 2, then [A; X] is an abelian group.

The set [A; X], is a group by Theorem 3.1. That [A; X], is commutative
follows from. Corollary 4D of [3]. A direct proof of commutativity can also
be constructed along the lines of our proof of Theorem 3.1.
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4. Homotopy power associativity and homotopy diassociativity
Let P be one of the following properties of loops:
() inversivity,
(b) commuttivity,
(c) associtivity,

nd let P’ denote the corresponding homotopy property of H-spces. Theo-
rem 1.2 states that n H-spce (X, #) hs property P’ if nd only if [xn; X]
has property P for the pproprite value of n. In this section we extend the
list of homotopy properties P’ by defining homotopy power ssocitivity nd
homotopy dissocitivity. Results complementing Theorem 1.2 with re-
spect to these properties re obtained in Theorem 4.1 nd in Theorem 4.4.

Recall that loop M is sid to be power associative provided that the sub-
loop {a} generated by any element a e M is cyclic group. Equivalently, M
is power ssocitive provided that M is inversive nd the equations

a. (a.a) (a.a).a, a-. (a.a) (a.a).a- a

hold for every element a e M. We define next n nlogous concept for H-
spces.

Let (X, ) be homotopy inversive H-space, nd let ’X-- X be
homotopy inverse map. We abbreviate (x, y) to x.y nd write x- for
(x). Let 1 X --. X be the identity mp, nd let h,/, h, ]c X --. X

be the mps defined s follows:

h (x) x. (x.x), (x) (x.x) .x,

h (x) x-. (z.x), (x) (x.x).x-.
We sy that n inversive H-space (X, ) is homotopy power associative pro-
vided that h - lc nd h. l 1.

THEOREM 4.1. Le X be a CW-complex, and let (X, ) be an H-space.
Then (X, ) is homoopy power associative if and only if IX; X], is a power
associative loop.

Suppose that (X, u) is homotopy power ssocitive. If f X
map, then the element If]. ([f].[f])e [X; X] is represented by the map
h f X -- X, nd the element {If]. If]). If] is represented by the mp / f.
Since h --- lc, it follows that

[/]’ ([/]" If]) ([/]. [/])’ If].

In a similar manner one cn show that the relation h - lc 1 leds to the
equation

[f]-’" (If]" If]) ([/]" If])’ [f]- [/].

Therefore [X; X], is a power associative loop.
Conversely, suppose that [X; X] is a power associative loop. Then
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[X; X], is inversive, and so, by Theorem 1.2 (a), (X, ) is a homotopy inversive
H-space. The map hi X -- X represents the element [1]. ([1]. [1]) IX; X],
and the map lcl represents ([1].[1]).[1]. But IX; X], is power associative;
hence [1]. ([1].[1]) ([1].[1]).[1]. Therefore hi --- lcl. The proof that
h.

___
lc2 1 is similar. Thus the theorem is proved.

COROLLARY 4.2. If (X, t) is a homotopy power associative H-space, then
[A; X], is a power associative loop for every CW-complex A.

The proof is straightforward and will be omitted.

COROLLARY 4.3. Let X be a connected CW-complex, and suppose that
cat X -< 3. Then every H-structure map on X is homotopy power associative.

For if t is any H-structure map on X, then, by Corollary 3.2, IX; X], is a
group. Therefore, by Theorem 4.1, (X, ) is a homotopy power associative
H-space, and the proof of the corollary is completed.

Let M be a loop. Recall that M is said to be diassociative provided that
the subloop {a, b} generated by any two elements a, b M is a group. Equiva-
lently, M is diassociative provided that M is inversive and the following
equations are satisfied for any two elements a, b e M"

a. (a.b) (a.a).b, a. (b.a) (a.b).a, a. (b.b) (a.b).b,

a (a.b) b, a (a.b).b-1, a (b.a) (a-l.b).a.

We now define an analogous concept for H-spaces.
Let (X, ) be an H-space with a homotopy inverse map X -- X. For

any x X denote n (x) by x-1, and for any two points x, y e X denote (x, y)
by x.y. Define maps hi, k X -- X, i 1, 6, by the equations

hi (x, y) x. (x.y),

h(x, y) x. (y.x),

h (x, y) x. (y.y),

h4 (x, y) x-1. (x.y),

h (x, y) x- (y x

h (x, y) x,

lc (x, y) (x.x) .y,

lc(x, y) (x.y).x,

lc (x, y) (x.y) .y,

lc(x, y) y,

lc (x, y) (x-.y) .x,

(x, y) (x.y) .y-.
We say that an inversive H-space (X, ) is homotopy diassociative provided
that hi ], i 1, 6.
The following theorem, together with the corollaries, generalizes a result of

I. M. James. (See [6, Theorem 10.2].)

THEOREM 4.4. Let X be a CW-complex, and suppose that (X, t) is an
H-space. Then (X, t) is homotopy diassociative if and only if [X; X], is a
diassociative loop.
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The proof is similar to our proof of Theorem 4.1 and will be omitted.

COROLLARY 4.5. If (X, ) is a homotopy diassociative H-space, then [A; X]
is a diassociative loop for every CW-complex A.

COROLLARY 4.6. Let X be a connected CW-complex, and suppose cat X -<_ 2.
Then every H-structure map on X is honotopy diassociative.

Suppose that (X, ) is an H-space. Then it follows from Theorem 3.1 that
[X2; X], is a group. For, by Theorem 9 of [4], cat X =< 3. Therefore, by
Theorem 4.4, (X, ) is homotopy diassociative; hence the corollary is proved.
We remark that the notion of "strongly homotopy diassociative" can be

defined for strong H-spaces in the obvious manner, and a result similar to
Proposition 1.7 holds with respect to this property.
We conclude with an application of Corollary 4.6 to the seven-dimensional

sphere S. This space is, in fact, a diassociative topological loop if the multi-
plication is taken to be the one induced by the multiplication of Cayley num-
bers. There are, however, 120 distinct homotopy classes of H-structure
maps on Sv, none of which is homotopy associative [5], yet each of which is
homotopy diassociative.
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