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DIFFERENCE SETS'

BY
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1. Balanced incomplete block designs

A balanced incomplete block design (b.i.b.) is an arrangement of » objects
into b sets of k& elements each called blocks such that every object occurs ex-
actly » times and every pair of objects occurs exactly \ times in a block.
Counting objects and pairs of objects in two different ways, one obtains the
well-known equations

1 bk = v, Ao —1) =r( —1).

In this paper we shall first give a new representation of balanced incomplete
block designs in terms of permutation matrices, from which several known
theorems follow easily. The main body of the paper is concerned with the
study of Abelian difference sets. The paper contains several new results to-
gether with a self-contained exposition of known results. Theorem 3 gives
a new condition for the existence of these difference sets, valid for every prime
divisor of n = k — A\. Theorem 5 generalizes results previously obtained for
cyclic difference sets to Abelian difference sets. Theorems 6 and 7 give a new
result for eyclic difference sets which disposes of 9 of the 12 cases which are
mentioned as unsettled in [3]. Another of these unsettled cases is disposed of
by Theorem 3.

For any givenb.i.b., we define a v X b matrix A = (a;;) where

a;; = 1 if the 7** object occurs in the jt* block,
a;; = 0 otherwise.

From the properties of the design we then have

2) AA' = (r — N)I + T,

where I is a v X v unit matrix and 7T is a v X v matrix all of whose entries are
unity. Since for every real matrix A

rank AA® = rank A,
it follows that
b=v,

an inequality first derived by R. A. Fisher [2].
We now assume b = v; hencer = kand A — 1) = k(k — 1). Putting
Received October 8, 1962.
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k — N\ = n, we then have
(2a) AA' = nl + \T.
We have AT = TA = kT; hence
A4 = WR)T) =nl, A7 = (/n)A" = WE)T),

and
A'A = AA' = nl + AT,

which shows that in a symmetrical b.i.b. any two blocks have A objects in

common, a result which was also first obtained by R. A. Fisher. The deter-
minant of the right-hand side of (2a) is kn"™ = | A |>. Hence we have

Tarorem 1. If v s even, then n = k — \ is a square.

This result was obtained independently by Schiitzenberger [7] and by
Chowla and Ryser [1].

THEOREM 2. A symmetric b.e.b. with parameters v, k, X exists if and only if

there are k permutations Py, - -+ | Py of order v such that
(i) The permutations Py, --- , Py, applied to 1, - - - , v yield a k X v Latin
rectangle.
(i) Fors # 4, s, t=1,---,v there are among the permutations P; P;*
exactly N which carry s into t.
Proof. Let Py, ---, Py satisfy the conditions of Theorem 2. Condition
(i) implies that there is for s ¥ ¢ at most one permutation among Py , - -+, Px
which carries s into . This means that
A= 20.P;

is a matrix of zeros and ones. Condition (ii) now gives
Fa Pyt P = kI 4+ N(T — I) = nl +T.

Hence A is the incidence matrix of a symmetrical b.i.b.

On the other hand, if A is the incidence matrix of a symmetrical b.i.b.,
then A is a doubly stochastic matrix of zeros and ones with row and column
sums equal to k. By a theorem of Kénig (for a short proof see [5]) it is there-
fore the sum of k permutation matrices Py, --- , Py, and from (2a) we get

fi P i Pt o=l + 2T,

which shows that P;, ---, Py satisfy (ii). The equation > P; = A shows
that also (i) is satisfied, and this ends the proof.

CoroLLARY 2.1.  The blocks of a symmetrical b.i.b. may be numbered in such
o way that the i** block contains the 1% object, and the objects in the blocks may
be arranged in such a way that every object occurs once in every position.

Proof. If Py, ---,Pysatisfy (i) and (ii), thensodo I, PPy, -+, PT'Py,
and this gives the first part of Corollary 2.1. If P;(I) = s, then a;; = 1, and
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we put the [** object in the j* position in the st block. Since P; must trans-
form exactly one digit into s, every object occurs exactly once in the j* posi-
tion. (Note that the proof of Corollary 2.1 goes through for every symmetri-
cal block design. The condition that every pair of objects occur \ times was
not used in the proof.)

A symmetrical ba.b. with N = 1 4s called a finite geometry. We then have
v = n’ + n + 1, and Theorem 2 gives

COROLLARY 2.2. A finite geometry of order v = n* + n + 1 exists if and only
of there are n + 1 permutations Py, --+, Pyi1 such that I, Py, -+, Ppy1,
Py, P3Py, -+, Py Pyl applied to 1, - -+ | v give the rows of a Latin square.

The proof of Corollary 2.2 may be left to the reader.

CoroLLARY 2.3. If a group & of order v contains k distinct elements
g1, gk such that g; g7, ¢ # j represents every element except the unit element
M\ times, and if P1, -+, Py are permutations representing ¢. , « -+ , gr tn the
regular representation, then

A=Pi+ -+ P
s the tncidence matriz of a b.e.b.

One can construct the regular representation by multiplying ¢i, -« -, gx
successively from the left (or right) by the elements of . Hence the b.i.b.
can be obtained by forming the blocks

g1g, 5 Ok @
or the blocks ggi, -, ggr for all g ¢ .

The elements g1 , - - - , gx are called a difference set of order A for the group ©.

If ® is Abelian, then the set g1, - -+, gr is called an Abelian difference set.
2. Abelian difference sets

If 9 is a set of elements in &, then we shall denote by A the sum of the
elements of ¥ in the group ring of & over any ring with unit element. Simi-
larly for any set denoted by a German letter we shall denote by the corre-
sponding Latin letter the sum of the elements in the set. In particular

G = Zae@) g.
The following lemma seems crucial for the study of Abelian difference sets.

LemMA 1. If A is any element of the group ring of an Abelian group ® of
order v over a field @ whose characteristic is prime to v, and of x(A) = 0 for all
nonprincipal characters x of ®, then

3) A = uG, LS.

Proof. Since the characteristic does not divide v, the regular representation
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of & is completely reducible [8, vol. 2, p. 237]. Hence there is a nonsingular
matrix S such that for every g ¢ &

8798 = diag (1, x2(9), -+ , X (9))-
Here for some h e Q

S7G8 = (v,0,---,0), S7A8 = (h,0,---,0), STAS = uST'GS,
A =G, peqQ, Q.E.D.
CoroLLARY. If x(A) = O for every character x of ©, then A = 0.
This follows, since x1 (G) = v #= 0.

Lemma 2. Let v # 0 (mod p), and assume that A is an element of the group
ring R of O over the integers such that for every nonprincipal character x of &
we have

“) x(4) =0 (modp");
then
(5) A= uG + ij’

where F is an element of N.

Progf. Let p be a prime divisor of p in the field of v** roots of unity. The
residues mod p form a field of characteristic p which may be considered as an
algebraic extension of G.F.(p) which contains the »*™ roots of unity, that is
to say all characters mod p of ®. Thus we may pass from the characters
over the rationals to the characters mod p. Equation (4) now implies

x(4) =0 (mod p)
for all nonprincipal characters x of G. Hence we have by Lemma 1
A = uG@ (mod p).
Since the coefficients of A — uG are rational integers, it follows that
4 = uG + pF,

where F has rational integer coefficients.
Applying induction, assume that

A = uG + p°F, s < J.
From (4) we have

xA) =p'x(F) =0 (modp’), x(F)=0 (modp), F=mG+pF.

Hence
A = MIG + ps+1F1’

and Lemma 2 follows by mathematical induction.
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For every A = D a; g; we shall set
AQ@) = D aigt.

DerinrrioNn 1. The integer t s called a multiplier of the difference set
D = (gl’ 7970) Z:f
(6) D(t) = gD, ge@.

Since D is a difference set, we must clearly have (v,t) = 1.

TueoreM 3. Let g1, -+, g be an Abelian difference set for a group & of
orderv. Lettbe a multiplier of this difference set, p a prime divisor of k — X\ = n,
and letv = 0 (mod v)), vy > 1. If for some value of f we have tp’ = —1 (mod v,),
then m is exactly divisible by an even power of p. If v* is the l.c.m. of the orders
of the elements of ®, and if v* = vy , then k& = v.

Note that ¢ = 1 is permissible.
Proof. We have
D(—1)D = nl + A\G.

There is a nonprincipal character x of @ which maps every element into a
™ root of unity. Since this mapping is a homomorphism of ® into the »,"*
roots of unity, we get

@) x(D(—1))x(D) =n=0 (modp’),

where n is strictly divisible by p’. Let p be a prime divisor of p in the field of
v:*™® roots of unity. Suppose x (D) is strictly divisible by p‘, # = 0. The
automorphism ¢ — {® where ¢ is a primitive »,"* root of unity leaves p in-
variant. Hence

x(D) =xD®) =xD@p") = xD(=1)) =0 (mod y').

Conversely, x(D(—1)) = 0 (mod p*) implies x (D) = 0 (mod p*), so that
(7) implies j = 2¢ and .
x(D) =0 (modp").

If »; = v, then this is true for every nonprincipal character of . In this
case also (v, p) = 1, and by Lemma 2

D = uG@ (mod p).

Hence p = 1 (mod p) and D = G.
This completes the proof of Theorem 3.

Lemma 3. Let D, D be two difference sets with parameters v, k, N for the
same group ©. If

®) D(—1)D* = \G + mF,
where m s an integer, m > N\, and F has integral coefficients, then
D* = ¢D, ge®.
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Proof. Applying the automorphism ¢ — ¢~ we have
8 DD*(—1) = A\G + mF(—1),

and applying x1 we get
n=rK—n=maF).

On the left of (8) all elements have nonnegative coefficients, and since
m > A, it follows that F has nonnegative coefficients. Multiplying (8) and
(8") together we get, on account of mFG@ = mx(F)G = nG,

n’ = m’FF(—1).

But a product of factors with nonnegative coefficients and of more than
one term cannot reduce to one term, and therefore

mF = ng, ge®.
Multiplying (8) by D we get, after some simplification,
D* = ¢4D, Q.E.D.

TaEOREM 4. Let D, D* be two Abelian difference sets for the group & with
parameters, v, k, \. Let n be divisible by p’, j > 0, (p, v) = 1. If for every
character x of & we have

x (D", p’) = (D), p"),
then

) D(—1)D* = \G + p'F,
where F has integral coefficrents.
Proof. We have
D(—1)D = D*(—1)D* = nl + \G.
Hence for every nonprincipal character x of &
x(D(—1)x(D) = x(D*(—1))x(D*) =n =0 (mod p’).

Since (x(D*), p?) = (x(D), p’), we have for every nonprincipal character x
of ®
x(D(—1))x(D*) =0 (mod p’),

whence by Lemma 2 .
D(—1)D* = uG + p’F.

Taking the principal character x; on both sides we get
F=w=kF—n=N (modp’), w=X (modp?),

since (p,v) = 1. We may therefore write

(10) D(—1)D* = \G + 9'F, Q.E.D.
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CoroLraRY 4.1. Ifn =0 (mod ny), (ny,v) = 1,m > N\, = pi* -+ pst,
and if there exists a t such that pli = t (mod v*) for suitably chosen values of
fi, where v* is the l.c.m. of the orders of the elements of ®, then t s a multiplier
for every difference set v, k, \.

Proof. 1If ¢ is a primitive v** root of unity, then the automorphism
(-

of the field = of v*® roots of unity leaves all primefactors of p; invariant. Hence
D) = D(p;*) satisfies the conditions of Theorem 4, so that

D(—1)D(t) = \G + piF, i=1,-,s

¥

But pi'F; = pi’F;, p; # p; implies F; = 0 (mod p;’); hence p;'F; = m; F.
The corollary now follows from Lemma 3.

Corollary 4.1 as well as Lemma 3 were first proved by Marshall Hall, Jr.
for the case that @ is cyclic [3]. They were generalized to Abelian difference
sets by P. K. Menon [6]. However, Lemma 2 simplifies the proof consider-
ably, so that it seemed worthwhile to include it here. Except for the simplifi-
cation afforded by Lemma 2 the proofs follow essentially Hall’s ideas.

Let v = 0 (mod v;). The integer ¢ will be called a v, multiplier if for every
character x of & for which x (¢) is a »,** root of unity for all g ¢ & we have

x(D @) = x(@xD) for some g e®.
TueoreM 5. If for some nonprincipal character x of ®
(11) x(D) = x(D(-1))

where ¢ s @ root of unity, then

(G) n s a square or n = ni ¢’ where v = 0 (mod q) and q is a product of
distinct primes qu, + -, @y -

(i) In the latter case v is odd, and there is for every q; a g in D for which
x (g) has order divisible by ¢; .

Gii) If ¢ = 4m + 1, then ¢ is a v™ root of unity. If ¢ = 4m + 3, then
¢ is a 20™ root of unity, but not a v™ root of unity.

(iv) If an equation of the type of (11) holds for all characters of ®, and if
n = 0 (mod p), v # 0 (mod p) for some prime p, thenv = k, D = @.

Proof. Equation (11) implies
x(D)* = ¢n.

Now in the field of »* roots of unity, only primefactors of » have multiple
factors. Hence eithern = njorn = ni gwherev =0 (mod ¢),¢ = ¢1 - - qu,
and the x(g) for g ¢ D must generate the field of ¢* roots of unity. By
Theorem 1, v is odd in the latter case. The field = of v roots of unity con-
tains \/(—1)(@D2q. Hence x (D)/(nn/(—1)« D) = n is a 20t root of
unity. This yields ¢ = (—=1)“""»’. Moreover, (1) and » = 0 (mod ¢)
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imply k = A\ = 0 (mod ¢) and » = 0 (mod ¢°). This proves (i), (i), and
(iii). If the conditions of (iv) hold, then x(D) = 0 (mod p) for all non-
principal characters of . By Lemma 1

D = uG (mod p),

and since D has coefficients 0 and 1 only, it follows that u = 1 (mod p),
D = @. This completes the proof of Theorem 5.

CoroLLARY 5.1. If an equation of type (11) holds for all characters for
which x (g) s a v:."" root of unity for all g €D, and if n = nig’, ¢ > 1, then
v = ¢*, and q 78 a prime.

Proof. If vy = 0 (mod ¢1), v1 = 0 (mod ¢2), 1 ¥ ¢, then there is a
nonprincipal character for which all x(g) are ¢* roots of unity. Then
n=mniorn = niq;. Similarly n = n} orn = 73 ¢, so that we must have
n=nj.

COROLLARY 5.2. If t is a v multiplier and ¢ = —1 (mod vy), then all
conclusions of Theorem 5 hold. Moreover, if n = ni ¢’, q > 1, then v, = ¢, q is
a prime of the form 4m -+ 1, and the Jacobs symbol (¢) = +1. If v* = v, and
n = 0 (mod p), v # 0 (mod p) for some prime p, then v = k.

Proof. The hypothesis of Corollary 5.2 implies that of Theorem 5 and of
Corollary 5.1. Moreover, { in equation (11) is a »*™ root of unity, being
a character. In the field = of ¢** roots of unity the automorphism ¢ — ¢* (¢ a
primitive ¢t root of unity) takes 4/¢ into /¢ if ({) = +1 and v/q into
—4/qif (;) = —1. Now let x be a character such that x (g) is a ¢** root of
unity for all g. Then

x(D) = i'ﬂnl'\/q’

where 7 is a gt root of unity, and if ({) = —1, we would get

xD @) = Fo'mvg = —2"7xD) = x@xD), x@ = —1“7,

which is impossible, since ¢ is odd.
In particular, every multiplier is a »; multiplier for every »; which divides v,
so that we have

COROLLARY 5.3. Let v* be the l.com. of the orders of the elements of ®. If a
multiplier t has even order with respect to v*, then n is a square or n = ni ¢*. If
' = —1 (modv*) and n = 0 (mod p), v # 0 (mod p) for some prime p,
then v = k.

Proof. If t has even order with respect to »*, then it has even order with re-
spect to a prime divisor ¢; of v*. Let 2f be this order; then t’ = —1 (mod ¢,),
so that the conditions of Corollary 5.2 are satisfied. The second part of the
theorem follows from the fact that all characters are v*t roots of unity.

COROLLARY 5.4. Let D be a difference set for the elementary Abelian group
of order 2™; then n is an even power of 2.
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The integer 1 is always a multiplier. But v* = 2and 1 = —1 (2). The
second part of Corollary 5.3 now implies that n is a power of 2, and Theorem 1
that n is a square.

One also sees that the condition n = 0 (mod p), » # 0 (mod p) is indeed
necessary for the last conclusion of Theorem 5. P. K. Menon [6] has con-
structed difference sets with » = 2*", n = 2°",

3. Cyclic difference sets

We now consider the case that @ is cyclic. In this case we shall call © a
cyclic difference set. The elements of the group ring can be represented as
polynomials mod (z° — 1).

We put
(12) T@) =14+z+ -+ 0@ = 212",
where a; , - - -, o is a difference set mod v.

We then have
(13) 0@)0@™") =n 4+ AT@) (@mod@’ — 1)).

THEOREM 6. If p 7s a prime, p|n, p|v, v = 0 (mod p’v1), (v, p) = 1,
and p’ = —1 (mod vy), and if 6 (x) = D sy 2™ where ar, -+ - , ax is a differ-
ence set with parameters v, k, N, then
(14) 6(x) =0 (mod{ @™ — 1)!*">™ p}).

(The double modulus means that all coefficients are to be reduced mod p
and all polynomials mod (z"* — 1) [@*+D721 ) Note that v; = 1 is not excluded.
Proof. Fromp|n,p|v, and equation (1) it follows that k = X\ = 0 (mod p).
Thus
8@ )o@) =0 (mod{ (@™ — 1)*", p}).

Let 2f be the order of pmodv; (2f = 0if v, = 1). Let f(z) be an irre-
ducible divisor of 2" — 1in G.F.(p). We havef(@) = J] (@ — ), where
o, € G.F. (p” ). Since p’ = —1 (mod v,), it follows that o; and o;" are con-
jugates. Hence if 8 (z) = 0 (mod{f(x)*, p}), we also have

2"0(@) =0 (mod{f()*, p}),
where m is the degree of 6 (z), and vice versa. Hence the theorem follows.

Tueorem 7. If v= n= 0 (modp), v = pn, (1, p) = 1, and
p’ = —1 (mod ), and if ar, - - - , ax is a difference set mod v, then k = v.

Note that »; = 1 is again not excluded.
By Theorem 6 we have

(15) () =0 (mod{z"” — 1, p})
Let0 < a <o/p. Ifa’ =2a" (" —1),0 < j < v, then j can take only
one of the p values, a, @ + v/p, --- ,a + (p — 1)v/p. Now if we replace in

6 (x) all these terms by z*, we must on account of (15) either get no term at
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all or p terms since 9(x) has coefficients 1 or 0. Hence either z* is not a

summand of 9 (z) or 2%, """, .-, 2*t® ™7 g]] are summandsof 6(z). This
means the residues a; , - - - , ax of the difference set D consist of k/p groups of
residues

by, by +v/p, -+, b+ (p — L)v/p,
by, by +0/p, -, b+ (p— Lv/p

bisp » e + 0/, 0, b + (@ — 1)v/p.

But then the difference v/p arises p- (k/p) = k times. Hence k = N = v.

The Abelian difference sets with v = 2™, n = 2*™™ of P. K. Menon [6]
show that Theorem 7 does not hold for all Abelian difference sets. Of the
list of 12 unsolved cases in [3], the set 171, 35, 7 is shown to be impossible for
Abelian difference sets by Theorem 3. Of the other-11 cases, all except 120, 35,
10 and 100, 45, 20 are impossible for cyclic difference sets by Theorem 7. An
Abelian solution exists for 64, 28, 12 and for 36, 15, 6 and may possibly exist
in some of the other cases.

The set 100, 45, 20 was shown to be impossible by R. J. Turyn, so that
120, 35, 10 remains the only unsolved case in Hall’s list. R. J. Turyn had
also previously demonstrated the impossibility of 8 of the 9 cases which are
disposed of by Theorem 7. The present paper thus adds two new cases to the
list of solved cases and also provides a convenient proof for 8 others. R. J.
Turyn’s results are contained in two reports to the Sylvania Electronic System
published in 1960 and in 1961.
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