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1. Introduction
This article establishes the radii of univalence and starlikeness of a class

of functions IIr which is defined from the C-fraction expansion of the ratio
zf’(z)/f(z).
More precisely let

(1.1) f(z) c, z zf’ (z) nc, z 0,

be formal power series. From the one-to-one correspondence between formal
power series and C-fractions [5],

(1.2) zf’(z! 1 a z’ az‘ a,.z‘’
f(z) 1 1 1

where {a.} and {a} are respectively sequences of positive integers and of
complex numbers, and the expression on the left is the formal quotient of the
series (1.1). The continued fraction (1.2) terminates with partial quotient
ifa. 0forj 1, 2, ..., ]anda+ 0. In this case, we assume that
a 0forj 2,W 3,
For a fixed series f(z) as in (1.1), let II] denote the class of formal power

series g(z) _,:= c,z* , c O, such that

z) 1 a z an z(1.3)
zg’( a z * *
g(z)

where a*l _-< a. I, n 1, 2, ..., and the sequences {a}, /a} are given in
the correspondence (1.2). Let U(II) denote the radius of univalence of the
class II, i.e., U(II) is the supremum of the r => 0 for which each member of
II] is an analytic univalent function in z < r. It is agreed to put U(II) 0
in case there is a member of II which is not analytic at z 0. The radius of
starlikeness with respect to the origin S(II]) is defined in a similar manner.
Evidently, U(II) => S(II]) => 0. Moreover, if g e II, then U(II) => U(II)
and S(II) __> S(II).
A sequence of real numbers {k.}:= for which there exist g._,

0 =< g,_ =< 1, such that/c g(1 g._) for n 1, 2, is called a chain
sequence and the numbers g_ are the parameters of the sequence. In
general, a chain sequence does not uniquely determine its parameters. How-
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ever, Wall [8, p. 80] proves the existence of minimal and maximal parameter
sequences, {ran} n=0 and {Mn}=0 respectively, such that
n 0, 1, 2, ..., for every parameter sequence/gn} --0 of k. Throughout this
paper, the maximal parameter sequence is. a iudicious choice, although not
necessary one unless so stated, in the application of the results.

THEOREM A. For a fixed power series f(z) in (1.1), the correspondence (1.2)
holds. Let ro be the supremum of the r >= 0 for which {I an r"n} -1 is a chain
sequence. Then ro <- S(II)

_
U(II). Moreover, if the sequence {I a,, r}-

is a chain sequence with uniquely determined parameters, then S(II)
U(II) to.

THEOREM B. Let f(z) be a power series (1.1) and let

Z Z(1.4) zf’ z ) 1 al as a, z
f(z) 1 1 1

where a is a positive integer. Then U(II) S(II]) to, where ro is the
supremum of the r >= 0 such that {I a,, r"} is a chain sequence. I fo(z) is a
function such that

(1.5) zf(z) 1 a Iz" [as Iz a, Iz"
"",fo(z) 1 1 1

then ro is the smallest nonnegative zero or singularity of .f(z ).

These results provide a simple numerical and theoretical method to estimate
the radii of univalence and starlikeness of the class.
A study of the univalence of the function F,(z) z-J,(z), where J,(z) is

a Bessel function of order , was recently initiated by Kreyszig and Todd [3]
for > 1 and by Brown [1], [2] for some complex values of . Will [10] has
simplified the proof Of the main result in [3] and has replaced some of the
inequalities for the radius of univalence of F(z) with large by asymptotic
equalities. These results and some extensions of them are shown in 4 to be
corollaries of Theorems A and B.

2. Two lemmas from the problem of moments

Before proving Theorems A and B it is helpful to have some elementary
consequences of the Stielties and the Hausdorff moment problems. For this
purpose, let {k}=1 be a sequence of positive numbers and let F(z) denote the
formal power series which corresponds to the S-fraction

(2.1) 1 k__z /c___z k z
1- 1 - 1 -t- -t- 1 -t-

LEMMX 2.1. Let the sequence {k,r}:l be a chain sequence if and only if
0 <- r <= 1. Then the formal power series F(z) corresponding to (2.1) converges
in the dislc z < 1 and represents a function which is analytic in the complex
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plane cutfrom to 1 along the negative real axis and which has a singularity
atz -1.

Proof. Since//c.} is a chain sequence, the S-fraction (2.1) converges and
represents an analytic function in the z-plane cut from oo to -1 along the
negative real axis [8, p. 116]. Hence the power series F(z) is convergent for
zl < 1 and there is a bounded nondecreasing function a(t) on 0 _-< -<_ 1

such that a 1 a(0) 1 and

da(t)E(z)
1 + zt

[8, p. 263]. Suppose now a(t) has no point of increase at 1. This
implies that there is an e, 0 < e < 1, such that

jol- da(t) f01d[( l )s]F(z)
1 -F zt- 1 -F s

1 /(1 ) . /(1 )
12C" 1 -- 1 -F

where " (1 )z. Results on the Hausdorff moment problem [8, p. 263]
and the last integral representation now imply that {/c/(1 e)}= is a chain
sequence. This is contrary to the hypothesis that {/c,r}:= is not a chain
sequence for r > 1. Hence a(t) has a point of increase at 1. Define

da(t)(s) O s < o.
I(+s)

Clearly/3(s) is nondecreasing and, since/3(0) 0,

/3(s) >__ a(1) a i >0, s >0.

This function has a point of increase at s 0. Since

f0s+l+zd(s) fo + zt_ F(z),

it follows from well-known results on Stieltjes transforms [9, p. 337] that
F(z) has a singularity at z 1.

LEMMA 2.2. Suppose that for each r > O, the sequence {/r}:_ is not a
chain sequence. Then the power series F z corresponding to (2.1) diverges in
each neighborhood of zero.

The proof is similar to that of Lemma 2.1 and is, therefore, omitted.
If (2.1) terminates with n partial quotient, then this continued fraction

represents a rational function whose poles are negative real, simple, and have
positive residue. Therefore it is found that Lemma 2.1 remains valid when
the sequence k}= is such that /% > 0forp 1,2, n- 1;/% 0
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for p n, n -k 1, .... Moreover, for each such sequence, {/cr} --0 is a chain
sequence for some r > 0. Hence the hypothesis of Lemma 2.2 is not fulfilled
in this case.

3. Proof of Theorems A and B
Proof of Theorem A. First, it is evident rom results on chain sequences

[8, p. 86] that {] a ro’}_- is itself a chain sequence. Now if r0 0, there is
nothing to prove. If r0 > 0, for each g(z)e II, the C-fraction expansion
(1.3) converges in the disk [z[ < ro (cf. [4, Theorem 3.1]). It follows that
the power series zg’(z)/g(z) converges in this disk [5] and, hence, that g(z)
is analytic in ]z[ < r0. Since the moduli of the partial numerators of the
continued fraction (1.3) form a chain sequence for z =< r0, an easy extension
of the arguments in [8, p. 46] shows that

Re zg’(z) > O, Izl < to.g(z)

Since g(0) 0, g’(0) 0, this implies that g(z) is univalent and starlike
with respect to the origin [6] for z < r0. Thus r0 =< S(II/) =< U(II/).

Let fo(z) denote the formal series for which

zf(z)
1 [a [z" [a ]z" a Iz"" ....

fo(z)

Then fo(z) e II/. If {M}0 denotes the maximal parameter sequence of the
chain sequence {I a rg’}:_-, it is known [8, p. 81] that Mo rof(ro)/fo(ro).
Since M0 0 when the parameters are uniquely determined [8, p. 82], f’(z)
has a zero or fo(z) has a singularity at z r0. In any case, the function
fo(z) is not analytic and univalent in any disk z] < R for R > r0. This
proves the last statement of the theorem.

Proof of Theorem B. By Theorem A, ro =< S(II/) =< U(II/). If r0 > 0,
then by Lemma 2.1 the ratio fo(z)/zfo(Z) obtained from (1.5) is analytic in
z < r0 and has a singularity at z r0. Thus f(z) is analytic and nonzero

in z < r0 and has a zero or a singularity at z r0. In any case fo(z) is not
analytic and univalent in z < R for any R > r0. Therefore, r0 U(II/)
S(II/). On the other hand, if r0 0, the function fo(z) is not analytic at
z 0 by Lemma 2.2. Hence U(II/) S(II/) 0 in this case and the proof
is complete.

4. Univalence of Bessel functions

From the recurrence formulas

zJ.+(z) 2J.(z) zJ._(z),

zJ.+(z) .(z) z’.(z),
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it follows that for u --1, --2,

(4.1) zF’(z). 1 1/2z/(’ "4- 1) 1/4z/(, + 1)( -t- 2)
"",F(z) 1 1

where F(z) z-J(z). The continued fraction converges throughout the
z-plane except at the zeros of J(z) and, therefore, the correspondence symbol
in (4.1) can be replaced by an equality [7], [8, pp. 347 ff.].

THEOREM C. Let x Re > -1. The radius of starlikeness p of
F(z) z-J(z) is not less than the smallest positive zero of F(z). Moreover,

(4.2) p 2] u + 1 1
1 + 2[ u + 2 I[1 1/2[ u + 31

and

(4.3)

Proof. Since + >= x + > 0 for 1, 2, F(z) is in he class
IIr. In view of the fact that F(z) is an entire function, the first part of the
theorem is now a consequence of Theorem B.

Let z =< r, where r is the quantity on the right-hand side of the inequality
(4.2) Put

r 1
0 <gx

21_4_ 1]
1

21_t_2[[1_ 1/2lr-t-31]-t- 1 <1’

r
g+l

41 r -t- nil + n -t- 1 ](1 gn)’
n 1, 2, ....

SincelWn+l] > +nlfrn= 1,2,...,theassumption0<g,_l<l,
0 < g, =< gn_2 < 1, n > 2, implies

r
0 < g+x < g_ < 1

ow g > g I / 1 Igl/I / 2[ and 0 < g 1 1/2[ + 31 < 1. It
follows by induction that 0 < g, < 1 for n 1, 2, and, therefore, that
the sequence r/21,, -4- ], r/41,, / 1l I + 2 [, is a chain sequence.
Consequently r =< r0, where r0 is defined in Theorem B. Since p >= r0,

(4.2) is now proved.
Finally, for ] + 31 > 4 and Re > -1,

2Iv -b 1[[, -t- 21(.) ; __<
I-t- 21- 1

Indeed, set z 2( -4- 1)1 -t- 2 [/(I -t- 2 1). Then, for n 2, 3, ...,
z01741 / nil / / 11 _-< -, By Worpitzky’s Theorem [8, p. 42]

there is a g such that g] =< 2 and

F’,,(Zo)
1

z’/2(, -[- 1)
Zo F(zo) 1 uz)/4(t, "4- 1)@ -t- 2)"
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An elementary calculation shows Re {zoF’(Zo)/F(zo)} <= 0 which implies
p -< z0 I. The asymptotic equality now follows from (4.2) and (4.4).
For real > -1, the bound in (4.2) is a good estimate of p. Indeed, by

a modification of the methods used in the preceding paragraph, it can be
proved that

Re {zoF:(zo)/F(zo)} <= 0

when > -landz +2(+ 1){1- 1/[2(-t-2) W 1]}.
Theorem B and (4.1) can also be used to obtain information on the uni-

valence and starlikeness of F(z) when Re

_
-1. Moreover, it is possible

to obtain from the continued fraction of Gauss [8, p. 347] analogues of the
preceding results for the confluent hypergeometric function 1Fl(a, b; z).
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