
APPLICATION OF THE DOMAIN OF ACTION METHOD TO Jxy 1

BY

M. R. Vo WOLFF

1. Introduction

In his doctoral thesis, M. R=hm=n developed wh= he o=lled the dom=in of
=cion mehod in order to =nswer the question =bou he c]oses p=oking of
cer=in st=r dora=ins. Before we discuss his method, we need the following
definitions"

Let $ be a star domain in the ordinary affine plane, symmetric about 0.
A set of points ( is said to provide a packing for if the domains {$ -t- P},
where P e (, have the property that no domain ($ P0) contains the center
of another in its interior. We shall also say tha ( is an admissible point
set for $.

As definition of the density of a point set we accept the definition given
in [3, p. 5] which is as follows:

Consider the square xl < t, yi < t. Let A(t) denote the number of
points of a set ( in the square; then the density of ( (denoted (()) is
defined as lim supt A(t)/4t.
From the definition it follows that for any 2-dimensional lattice 2 the

density )() is iust the reciprocal of its mesh.
A norm-distance is a real-valued function, [1, p. 103], N(X) N(OX),

defined on the plane, such that N(X) is
(1) nonnegative; i.e., N(X) -> 0;
(2) continuous;
(3) homogeneous; i.e., N(tX) It IN(X), where is any real number.
A convex distance function or Minkowski distance, M, is a norm-distance

with the additional properties:
(1) M PQ 0 implies P Q.
(2) M(PQ) <= M(PR) + M(RQ).
Let ( be a point set in the plane and M be a Minkowski distance. The

domain of action [2, p. 16], D(P) D(P, M, 5)) of a point P, relative to
M and (, is the set of all points X in the plane for which

M(PX) <-_ M(QX) where Q e (e, Q P,

when this set is the closure of the set of all points in the plane which are closer
to P than any other point of
We must note here, however, that the closure of the set of points X such

that M(OX) < M(PX) may not always be the same as the set of points
X such that M(OX) <= M(PX). For there may be a point Y with M(OY)
M(PY) such that for all X in a whole neighborhood of Y, M(OX) M(PX).
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This will occur, for example, when M(X) M(OX) is a Minkowski distance
defined by a centrally symmetric convex body having a straight line segment
contained in its boundary. For, let the ends of the segment be A1 and A.
We can assume that A1A. is parallel to the x-axis for we can bring this about
by a rotation if necessary. Using the center as origin, let A (a, b);
As (a, b) where b > 0. (See Figure 1.) For X (x, y) in the region
G u (-G) where G is defined by the two inequalities

bx- a y < O, bx as y > 0

and (-G1) is the reflection of G in O, we have M(OX) (l/b) y I.
Let P (p, 0) be a point on the x-axis; that is, OP is parallel to A A.

Then for X (x, y), M(PX) 1/b)l Y when X is in the region G u ( G)
where G is defined by

bx aly- bp < O,

bx- as y- bp > O,

and (-G) is the reflection of G in P.
G n G. is defined by

bx- asy- bp < O, bx- a y > O.

Therefore, for any point X in [G1 n G.] u [(-G) n (-- G)] we have
M(OX) M(PX).
We see then that when the line through two points P’ and Q’ is parallel

to a straight segment of the boundary of the convex body which determines
the distance M, the union of the sets

(1) {X M(P’X) <= M(Q’X)} and {X M(Q’X)

_
M(P’X)}

(-Otl{ (-- z)

FIGURE 1
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covers the plane but the sets have interior points in common. Also, the
closures of the sets

(2) {X M(P’X) < M(Q’X)} and {X M(Q’X , M(P’X)I
have no interior points in common but the union of the closures is not the
whole plane.

Since neither of these situations is desirable, when such cases arise an
adjustment will be needed in the definition. In all other cases, with either
of the definitions above, the domain of action of a point R with respect to a
single point S and the domain of action of S with respect to R together cover
the plane, while D(R) n D(S) contains no interior points. The adjustment
we make should preserve these properties in the exceptional case discussed
above; for example, in (1) where D(R) n D(S) contains interior points, by
apportioning the common region equally in some consistent manner.

Let D(P) denote the area of D(P). If m is the greatest lower bound of
D(P) for P e (, then it follows that the density .)(() of the point set ( is

less than or equal to 1/m.

2. Domain of action for [xYl <-_ 1

Consider the domain xy[ =< 1. The norm-distance N determined by
$ is N(OP) or

N(P) V’l xY l, where P (x, y).

In general, for P1 (xl, y) and P (x2, y2),

I.
Let the Minkowski distance M be defined by a maximal convex polygon
inscribed in $ say, Ix + Yl 2. Then

M(P) 1/2(I x + Y I).
In general M(P P) 1/2 (I x x - Y Yl [). Note that M(P) _-> N(P)
and that this will always be the case if N and M are defined in such a way.
Therefore, if ( is an g-admissible point set, then

M(PQ) >-N(PQ) >- 1

for any two distinct points P and Q in (.

Let 0 be an arbitrary point of ( and be taken as origin. Then D(O), D(O, M, P) for P e (P, P 0, where D(O, M, P) is determined as follows:
Let P (x, yl).

It is possible that in this case other inscribed convex bodies would give the desired
results since Shas a high degree of symmetry. However, in general, it seems that some
care should be exercised in selecting the inscribed convex body which will be used to
define the M-distance if asharp estimate is to be obtained. It is easy to construct exam-
ples of point, sets for which two distinct M-distances give different minimum values
of D(O).
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I. If x >- y > O, D(O, M, P) is defined by the following inequalities:

y <- 0, x -<_ (xl -t- yl)/2;

O<_y<__yl, x -t- y -<_ (x -t- y)/2;

y <- y, x <- (x- yl)/2. (See Figure 2a.)

In the notation of the discussion above for x y, this is equivalent to
assigning the region G n G to 0 and (-G) n (-G) to P.

II. If yl > xl > 0, D(0, M, P) is determined by the following inequalities:

x <- O, x <- (x -F y)/2;

O<-x<=x, x -t- y -<_ (x -l- y)/2;

xl =< x, y -<_ (y x)/2. (See Figure 2b.)

These definitions are for a point in the first quadrant. For P in any other
quadrant, the definitions are analogous. Figure 3 is a typical domain of
action. Note that D(O, M, P) so defined is a continuous function of
P (x, y)when (i) Ixi _>_ lYl and also when (ii) lYl > Ixl But
D(O, M, P) is not continuous if we allow equality in (ii), for the domain
of action undergoes a sudden change in shape as P moves onto the bisector
from a region Yl > xl or off the bisector into such a region. (See Figure
4.) This discontinuity will not present any problem, however, since if a
point is on a quadrant bisector we can always approach it from the region

Let the four quadrants of the plane be denoted by Q1, Q, Q3, Q4. As
above D(0) will be used to denote the area of the domain of action D(0).
Since for all points P 5), P O, M(OP) >__ 1, the minimum of [D(0) n Q!

Draw lines y x and y -x bisecting Q and Q2. Each half-quadrant

FzGvn 2a FzGv 2b
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D(O) DETEIMINED

D(O,M,PI) D(O,M,Pz)
D(O,M,P4) D(O,M,Ps) D(O’,D(O M,PSM,P6

FIGURE 3 FIGURE 4

will be called an octant and will be denoted by I, III, ..., VIII in counter-
clockwise order from the positive x-axis.

3. Statement of the problem
Norman Smith [3] proved that a critical lattice gives the closest packing of

$ xyl -< 1, or to put it another way, if is any g-admissible point set,
(e) <- 1//5. M. Rahman indicates that one might be able to get as sharp
a result by using the domain of action method. The question is" if is
an g-admissible point set, is [D(P) >= /5 for any P e e? The question
is answered in the affirmative and in the process methods are employed which
we hope will be useful in applying the domain of action method to other
stars.
We prove then the following

THEOREM. If 0 is any point of an admissible point set for the region
$ xyl <- 1, then lD(O) >= V’5.

We will show that for any arrangement of points P of in say, Q1 and
Q. such that the P influence the domain of action of 0, the part of D(O) in
Q1 u Q has area greater than or equal to 1/2/5. (Note that we do not assume
that the part of D(O) in Q u Q. is completely determined by the points P
but only that they influence the domain of action.) By the symmetry of
$, the same will hold for the contribution in Qa u Q4 and hence the domain of
action of 0 will always be greater than or equal to /5.

If there is to be an exception, i.e., if we can find a point 0 such that



DOMAIN OF ACTION METHOD 505

D(O) < /5, then certainly the part of D(O) in either Q1 u Q2 or Q8 u Q4 is
less than 1/2v/5. We can call this pair of quadrants Q1 and Q, for’ we could
put the points determining the part of D(O) in question in these quadrants
by reflection in the x-axis if necessary. Observe that it follows from the
definition that if the set of points {P}, i 1, 2, ..., n which determines
D(O) D(O, M, P) is reflected in either coordinate axis into points
{P}, then D(O) D(O, M, P) is the reflection of D(O) in the axis of
reflection.
We will prove the theorem by means of the following lemmas.

LEMMA 1. If there are two points in a given octant of Q influencing D(0),
the area of D(O n Q u Q2) is greater than or equal to 1/2/5.

LEMMA 2. If there is one point in each octant of Q and Q then

D(0) n (Q1 u Q.) >= 1/2/5.

LEMMA 3. If there are points in any three octants of Q u Q., then

[D(0) n (Q1 u Q)I --> 1/2/5.

LEMMA 4. If there is only one point in each of Q and Q1, then

In(o) (Q u Q) >--
A few remarks will show that the arrangements of points in these four

lemmas are the only ones which must be considered. If there were more than
two points in an octant, it will be clear from the proof in Lemma 1 that addi-
tional points influencing D(O) would make this area still larger. Also, there
must be at least one point of ( in each quadrant, for if some quadrant con-
rained no point of (, the part of D(O) in it would contain at least a square of
area 1. Allowing only the minimum area of 1/2 for either adjacent quadrant
gives D(0) n (Q u Q2) > 1/2v/5-
The theorem then follows easily from these four lemmas, since the points

influencing D(O) in each half-plane will fall in one of the above categories;
hence, the whole domain of action will be greater than or equal to

4. Proof of Lemma
Suppose that there are two points of (e in a given octant which influence

D(O). We may assume that either
(a) two points (P’ and P) are in I,

or
(b) two points (P" and P2) are in II since the points could be placed in

these octants by a reflection, if necessary.
We will assume that there is at most one point of (P in each of the remaining

Where a specific quadrant is mentioned, it is understood that the points could be
put there by a reflection if necessary; hence, there is no loss of generality.
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octants. It will be clear from the following discussion that if there were
more, D(0) n (Q1 u Q) would be made larger.
Note that if two octants are reflections in one of the coordinate axes (e.g.,

II and III), at least one of them must contain a point of (P for otherwise
D(O) would contain an infinite strip.

(a) Let P’ (x’, y’), P (xl, yl) be points of I which contribute to
D(0) such that M(OP’) <= M(OPI). Then x’ y’ > x y, for if not,
the point P does not influence D(O) since D(O, M, P’) would be strictly
contained in D(O, M, P).

Let K be the intersection of x y (x y)/2 and x (x’ y’)/2.
Then the ordinate of K, yk x yl x’ y’ )/2.
P e II or Pa e III can influence D(O) only if the polygonal line which

bounds D(O, M, P), j 2 or 3, intersects the line x y (xl yl)/2
above K. (See Figure 5.) In the case of P, this means that

which also implies that

For P we must have

y (y- x)/2 > yk

x + y (y. -+- x.)/2 > y.

y (I I+ly, i)/2 >
Hence, P or P en influence D(O) only if

M(OP) (I x + Y)" l)/2 > y (j 2, 3).

Further note that we can assume that if there are three points in Q in-
fluencing D(O), the octant which contains two of them must also contain the
point in Q closest to O. This being the case, we may assume

(.) 1 <= M(OP’) < 1/2v/5,

for if M(OP’) >= 1/2 /5, then

D(O) n Q >= (-1 + w/5)/2, D(O) n (Q.) >= 1/2,

FIGURE 5 FIGURE 6
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nd
D(0) n (Q1 o Q) => 1/2v/5,

and Lemma 1 would be proved.
Hence, P’ is restricted to the closed region in Q1 (actually in I) bounded by

the lines xy 1, x y O, and x -[- y /5. In the proof, P’ is further
restricted to the sectors indicated in Figure 6 which shows the region en-
larged.

If there are points in the respective octants, we use the following notation"
P’ denotes the point in I with smallest M-distance from 0, restricted as in

(,). P denotes the second point in I; hence M(OP’) < M(OP1).
P: denotes a point in II; P3 a point in III; P4 or P4, a point in IV.

LEMMA 1.1. If P’ and P are two points of 6 in I, using the above notation,
and if both influence D(O), then M(OP1) >- 2 or x - yl >= 4.

As noted above, the hypothesis implies that

x’ y’ > x1-- y,
and also

(1) y- y > xl-- x’ > 0.

Lemma 1.1 is proved by indirect argument. Suppose M(OP) < 2 or

(2) x -[-y < 4.

But x’ y’ >- 2 which implies

(3) -x’- y’ =< -2.

Combining (2) and (3) we obtain

(4) (- ’) + (y- y’) < 2.

N(P’, P) _-> 1 and 1 imply

(x- x’)(y- y’) >= 1
or

(5) y- y’ => 1/(x- x’) > 0.

Then (4) and (5) imply

2 > (x- z’) + (y- y’) >= (x- z’) + /(x- z’) >__ 2

which is a contradiction.
Hence, M OPI >- 2.
Further, the lemma implies that if x - y m and P’ is restricted as in

(.) then x -t- yl -> m - 2 or M(OP) >= M(OP’) + 1.
Let P’ vary successively in the sectors of the region in Figure 6. The
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above considerations enable us to determine lower bounds on the M-distances
of P1, P., and P from P’ when P’ is restricted to a given sector. We de-
termine M(OPt) and M(OP) as follows"

Let P’ be in the ith sector. Determine a point P in the region labeled
R (see Figure 7) such that

N(P4 Q4) 1 N(OP,).
Then every point P in the ith sector satisfies the condition N(PP4) <= 1.
Therefore, as P’ varies in the i sector, P in R satisfies

M(OP) >- M(OP).

Further, the absolute value of the difference of the coordinates of a point in
R is smallest at P.

Determine a point P in the region labeled R1 such that

N(P Q) 1

p’and P is on the line x y 0. Then, as varies in the i sector, P
in R satisfies

i(OP) >- M(OP,).
These statements can be verified by determining the position of the it

sector with respect to the region

H (x x)(y Y) <- 1.

For each j, j 2, 3, 4, the it sector is in H as can be proved by considering
the tangent to (x x.) (y y.) 1 at the point Q. (See Figure 8.)

Using these facts, we obtained lower estimates of D(O) n (Q u Q.)I
as follows.
The general shape of the domain of action remains unchanged throughout

this discussion. (See Figure 9a.) For P’ in the ih sector (i 1, ..., 6)
the areas of the shaded parts were estimated using appropriate lower estimates
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FGURE 8

FIGURE 9a FIGURE 9b

of M(OP), j 1, 2, 3, 4, and D(O) (Q u Q) was found to be greater
than 1/2/5. (See Tables 1 and 2.)

(b) Let P" and P be points in II which influence D(O). Observe that
D(O) (Q u Q) is in general not completely determined by the points of
in (Q u Q). In the preceding argument we estimated D(0) (Q u Q)
by means of the shaded polygon in Figure 9a. We could explain the lines
x +/- 1 by saying that we allowed for the effect of points in Qa and Q on
D(0) n (Q u Q.) or that we allowed for the cut-off from Q and Q.

If two points, P" and P, in II influence D(O), then, by the argument used
above in part (a), a point in Q which influences D(0) must have M-distance
from 0 greater than or equal to the value of M(OPa) in part (a).

In the present case it is clear that the cut-off from Q could be closer
to 0 if P did not influence D(O). (See Figure 9b.) This means that
[D(O) n (Q u Q) with two points in II is greater than D(0) n (Q u Q)
under the conditions of Lenuna 2 or Lemma 3. Therefore, the proof of this
case will follow from these lemmas.

5. Proof of Lemma 2
Assume that P1 e I, P e II, P3 e III, P4 e IV are the only points of P in

Q1 u Q that influence D(0). Then D(0) n (Q1 u Q) -> 1/2/5.
We need the following results.
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TABLE 1

P in M(OP’)

1.0
1.011
1.030
1.059
1 059
1.059

1/2(x’- y’)

.0

.15

.25

.0

.15

.25

M(OP1)

2.0
2.011
2.030
2.059
2.059
2.059

M(OP),
M(OP3)

1.85
1.75
1.68
1.9
1.8
1.5

M(OP

1.271
1.185
1.105
1.305
1.0"
1.0"

M(OP)

1.082
1.161
1.242
1.024
1.0"
1.0"

.427
605
.755
.335

* Only minimum values needed. ** Estimate not needed.

TABLE 2

P’ in Case D(O) n Q1 D(O) n Q.

.5

.5
511
511
530
530
559
.559
.664
.664
.659
.659

.771

.86
685
.66
605
.74
.805
.764
.5
.5
.5
.5

D(O) n (Q tJ Q.)

1.2
1.3
1.18
1.17
1.13
1.2
1.3
1.3
1.15
1.15
1.15
1.15

Case lists the estimates when the point in IV is in R1, Case ii when it is in R.. Note
that the estimates in the first line of this table imply that we need not consider the
possibility of points on the bisectors of Q1 and Q. simultaneously.

LEMMA 2.1. Let P1 and P. be two points on xy 1, such that N(P1 P.) 1;
then P1 and P2 generate a critical lattice of the star xy <= 1.

Proof. There is no loss of generality in assuming that P1 is in Q and P2 is
in either Q and Q. for the points could be placed in these positions by reflec-
tions if necessary.

Let a be an affine transformation defined by

(x, y) ---> (x/x1, y/yl).

This transformation preserves norm-distance since

xy xy/x y

It also preserves area since it is unimodular. Therefore, it suffices to
prove the lemma for P and P, the images of P1 and P. respectively under a.
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P1 Prl xl/xl y/y (1, 1),

P. (r Pr. x./x y./y

where P’. has norm-distance 1 from P and from the origin.
Note that P is in Q and P is in the same quadrant as P..
If P is in Q, then x., y. satisfy either

xy- 1 and (x- 1)(y- 1) 1
or

xy 1 and (x- 1)(y- 1)= -1.

Therefore,

P’. ((3 v/5)/2, (3 + v/5)/2) or ((3 d- /5)/2, (3 v/5)/2).

If P is in Q., then x., y. satisfy either

xy- -1 and (x- 1)(y- 1)= 1
or

xy-- --1 and (x- 1)(y- 1) -1.
Then

P (1 V’5)/2, (1 -{- /5)/2) or 1 -}- /5)/2, 1 /5)/2).

In any case, PJ (1, 1) and P, for any of the above possibilities, do
generate a critical lattice as is well known.

It is easily verified that for any lattice of mesh d(), [D(0) d(2),
for any point 0 e 2. Further, D(O) is symmetric in 0 and therefore

D(O) r (Q t Q.) 1/21D(O) 1/2 d(2,).

Further, let (P be an admissible point set. If the points of (P in Q u Q.
which influence D(O) are part of a critical lattice, then the cut-off from Qa
can be no closer to 0 than when it is determined by a point of the same critical
lattice. As noted above, the cut-off depends on Ps. Then the point P
which causes the cut-off nearest to 0 satisfies

(#) N(PPs) N(OP) 1.

For Pa near to 0 there is a unique point P in octant V satisfying condition
(#). But if Ps is a point of a critical lattice, the lattice point -P1 satisfies
N(-P) N(-P1, P) 1. Hence P -P.
We further note that any additional points of the critical lattice in Q1 u Q

could only decrease the domain of action. Hence in this case we have that
D(0) n (Q Q2) is at least 1/2/5.
This remark is used repeatedly in the following proofs.

LEMMA 2.2. Let there be a point of an admissible point set in each of the
octants, I, II, III, and IV. If the points of 6 in Q t Q. which influence D(O)
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are "close" to 0 and if P1 has minimum M-distance from 0 among them, then
the following statements always hold:

(a) P1 can be moved so as to have norm-distance 1 from at least two other
points (allowing Po 0 to be one of them) while all other points are kept fixed
and D(0) is decreased.

(b) The same holds for P4
(c If P2 can be moved so as to decrease D(O) until it has norm-distance

I from Po or PI, or P4, then it can be moved so that it has norm-distance i from
another of the points also.

d If P can be moved so as to decrease D(O) until it has norm-distance
I from Po, P2, or P4, then it can be moved so that it has norm-distance I from
another of the points also.

Before proceeding with the proof of Lemma 2.2 we must explain what is
meant by "close". As in Lemma I we divide the region in I bounded by
xy 1, x y, and x y (2 /5)/2 into nineteen sectors and allow P1
to vary successively in these sectors. (See Figure 10b.) We obtain, as
before, estimates of M(OP), i 2, 3, 4, and D(O) n (Q u Q)I. Not%
however, that while this method is not good enough to yield Lemma 2, since
for P in any of the sectors.14-18 the estimated [D(O) n (Q o Q)I is less
than 1/2v/5, it does enable us to place sufficiently good bounds on the M-dis-
tances of the point P, i 1, 2, 3, 4. (See Tables 3 and 4. Table 4 does
not show the estimated areas for sectors 14-18.) Using this information we
say that the points P are "close" to P0 if the following inequalities hold:

M(OP)

_
(2 q- /5)/4, M(OP) <- 1.5,

min (M(OPa), M(OP) <-_ 1/2.v/5, max (M(OP), M(OP)) <= 1.5.

For simplicity we continue to call the domain of action being considered D(O) in-
stead of D(Po).
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TABLE 3

P1 in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

M(OPI)

1.0
1.001
1.025
1.002
1.025
1.004
1.025
1.007
1.025
1.011
1.025
1.015
1.025
1.019
1.025
1.025
1.030
1.037
1.044

1/2(x-

.0

.05

.05

.075

.075

.1

.1

.125

.125

.15

.15

.175

.175

.2

.2

.225

.25

.275

.3

M(OP.)

1.424
1.412
1.400
1.389
1.379
1.366
1.358
1.345
1.337
1.324
1.317
1.305
1.298
1.285
1.280
1.262
1.245
1.229
1.198

M(OPs)*

1.374
1.337
1.325
1.287
1.279
1.241
1.233
1.195
1.187
1.149
1.142
1.105
1.098
1.060
1.055
1.012
1.0
1.0
1.0

M(OPs)**

1.094
1.083
1.065
1.073
1.077
1.063
1.067
1.050
1.058
1.047
1.049
1.040
1.041
1.033 (54)
1.033 (48)
1.027
1.022
1.017
1. OO9

M(OP)

1.082
1.126
1.104
1140
1.116
1.156
1.130
1.173
1.144
1.191
1.161
1.212
1.178
1.234
1.198
1.219
1.242
1.268
1.296

* Estimate when P. influences D(O).
** Estimate when there is no point in II which influences D(O).

TABLE 4

Lower Estimates of D(O) fl (Q1 u Q) for Lemma 2

P in

1
2
3
4
5
6
7
8
9
10
11
12
13
19

D(O) fl Q

.5

.501

.525

.502

.525

.504

.525

.507

.525

.511

.525

.515

.525

.577

D(O) f Q

.699*

.626

.604

.640

.611

.656

.630

.673

.644

.649

.642

.605

.598

.544**

D(O) n (Q U Q)

1.19
1.12
1.12
1.14
1.13
1.15
1.15
1.17
1.16
1.15
1.16
1.12
1.12
1.12

* Estimate of 1/2 (y4 x4) needed here. For some arrangements of points in Lemmas
3 and 4 estimates of 1/2(ya x) are also needed for P1 in 1.

** M(OP) is assumed to be less than or equal to M(OP), i 2, 3, 4.
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Other estimates used in the proof may be obtained as a result of the fore-
going inequalities.
The conclusions of Lemmas 2.2 and 2.3 (below) hold also in the cases where

only two or three points of Q Q influence the domain of action with slight
adiustments in parts of the proofs.
We assume for the present that as P is moved it does not meet the quadrant

bisector before it reaches the second hyperbola. We treat the case in which
this occurs after Lemma 2.3.
Denote byH (x x)(y y) 1 where x. and y. are the coordinates

of P..
x + Y s(x ), 11 x Y ]1 d(x)

s s(zi)/2, d d(x)/2.

Proof of Lemma 2.2. Either P, i 1, 2, 3, 4, is on one of the hyperbolas
H ;j i, j 0, 1, 2, 3, 4, or it can be moved parallel to the quadrant bisector
and toward P0 until it does lie on one. This displacement decreases s while
leaving d unchanged. Hence, the domain of action is decreased (see Figure
11).

(a) Given P on only one of the hyperbolas, we show in the following in
which direction it should be moved to decrease the domain of action. In
all cases, it can be moved until it lies on the intersection of at least two
hyperbolas.

(1) Let P be onH0, i.e., PoP 1 or xy 1. Set

x d- y xi -t-- 1/xi s(x)
and

x y xi- 1/xi d(xi).
Differentiating s and d with respect to x, we obtain

s’(x) 1- 1/x > 0 forx > 1

which is always true for P e I, and

d’(x) 1 + 1/x > O.

Since both the sum and the differences of coordinates are increasing with

FIGURE 12FIGURE 11
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we could move P1 along H0 in the direction of decreasing x until it lies on
second hyperbola.
(2) LetPlbeonH." (xl- x)(yl- y2) 1.

s(xl) xl -t- y. 1/(xl x) x -- y.

8’(Xl) 1 -+- 1/(x x2) > O,

i.e., the sum of the coordinates decreases in the direction of decreasing x.

d(x) x y + 1/(x x) x y.

d’(x) 1 1/(x x) < 0 if 0 < x x < 1.

This will be the case if (y y)/(xl x) < -1, i.e., if

which is so since M(OPt) < M(OPt.).
Since the argument used above fails here, we show that the decrease in

the domain of actioa because of the decrease in the sum of the coordinates
overbalances the increase due to the increase in the difference of the co-
ordinates. We use the following notation"
As x moves along H in a given direction

xx +/- x ( > 0).

Let 1/(x xj) a and 1/(x x) b for i, j 1, 2, 3, 4; i j.
In the present case the original domain of action is increased by polygon B

and decreased by polygon A (see Figure 12).
The area of B is

B[ (d d)(s sl)
while the area of A is

Note that

Therefore

Also

A (sl s[)(s d’) + 1/2(s[ sl).
sl- sl 1/2( a+ b),

d[ dl 1/2(- a + b).

* d* > 1- .35 .65,

and
s-- s-< 1.5-- 1 .5

* d’ > s sl

Therefore, the area of A is greater than the area of B and the overall
effect is a decrease in the domain of action.

(3) For P1 on Ha or H, the method of (a)(1) shows that both sum and
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difference of the coordinates of P1 decrease as P1 is moved in the direction of
decreasing x, hence D(O )I decreases also.

This completes the proof of Lemma 2.2(a).

(b) Let P4 be on one of the hyperbolas H0, H1, Ha. In each case it
can be moved until it lies on the intersection of at least two hyperbolas. We
use the method of (a)(1) for P4 on H0 or H and obtain the following:

(1) As P4 moves along H0 in the direction of increasing x, ID(O) de-
creases.

(2) As P is moved along H1 in the direction of increasing x,
decreases.
For P on Ha we use the methods of (a)(1) if M(OPa) <= M(OP4) and

obtain that ID(O) decreases as P is moved along Ha in the direction of
increasing x.

If M(OPa) > M(OPt), we use the method of (a) (2) and obtain that
D(O)! decreases as P is moved along Ha in the direction of increasing x.

(c) Let P2 be on only one of the hyperbolas H0, H1. In each case, it
can be moved until it lies on the intersection of at least two hyperbolas.

Since M(OP) < M(OP2), only the sum of the coordinates of P affects
D(O). We use the method in (a)(1) and obtain the following:

(1) If P. is moved downward along H0 in the direction of increasing x,
D(0) decreases.
(2) If P is moved along H1 in the direction of decreasing x,

decreases.

(d) Let Pa be on only one of the hyperbolas H0, H., H4.
(1) For Pa on H0 or H using the method of (a) (1) we obtain that

(i) D(O)[ decreases as Pa is moved downward along H0 in the
direction of decreasing x;

(ii) D(O)] decreases as Pa is moved along H in the direction of
increasing x.

(2) For P on H we use the method of (a) (2) and obtain that
decreases as Pa is moved along H. in the direction of increasing x.

LEMMA 2.3. Let there be a point of an admissible point set in each of the
octants I, II, III, and IV. If D(O) n (Q u Q.) is determined by points "close"
to Po and ifP has minimum M-distance from Po then the following statements
hold:

a ) P can be moved so as to have norm-distance 1 from at least two other points
(allowing Po to be one of them) while all other points are kept fixed and
is decreased.

(b) The same holds for P
c The same holds for
(d) If P2 can be moved so as to decrease D(O) until it has norm-distance
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1 from P0, P, or P, then it can be moved so that it has norm-distance 1 from
another point as well.

The proof is similar to that of Lemma 2.2.
It remains for us to consider the case in which P moves along some H.

but meets the quadrant bisector before reaching the intersection with another
H, i.e., before P has norm-distance 1 from two points under consideration.
P. and Pa are never considered to be located on a quadrant bisector. Thus

it is impossible for either to come to a quadrant bisector before reaching a
second hyperbola in moving along some H. This can be verified by con-
sidering the intersection of y x or y -x with the branch of H in ques-
tion.
P or P on the quadrant bisector constitute symmetric cases so without

loss we can consider P on the line y x. As observed in Lemma 1, this
preventsPfrom being on y x or rather, makes D(0) (Q u Q) > 1/2/5,
if it is on y -x. By the calculations used in proving Lemma 2 (when P
is in the first sector--Tuble 3), we can conclude that whenever P meets
y x before it meets a second hyperbola, D(O) (Q t Q)I is already
greater than or equal to 1/2x/5.

In the proof of Lemma 2 we will use the following notation"

H: (x xi)(y Y)I 1 where x and y are the coordinates of the
point P.
P Pj denotes that the norm-distance between P and Pj is 1.
P P Pk denotes a normed triangle; all three sides have norm-length 1.
P H Hk. P is the point of intersection of H. and H. We say the

for we use it as referring to the intersection of a specific branch of H with a
specific branch of H, this being clear from the context. We observe that
P HH implies that N(P P) N(P P) 1; similarly for P
H.HH.

Proof of Lemma 2. As above, P1 denotes the point in I, P in II, P3 in
III, P4 in IV influencing D(O).

(a) Let M(OPI) <= M(OP) (i 2, 3, 4).
The points P, P, Pa, P4, and P0 0 determine ten segments of norm-

length greater than or equal to 1. N(P P), however, can never equal 1
so we have nine possible norm-lengths 1. We will show first that if there are
at least seven norm-distances equal to 1, then the five points are part of a
critical lattice for $ and therefore, D(0) n (Q u Q.) => 1/2v/5. The number
of ways in which we can have seven norm-distances equal to 1 is the same as
the number of ways we can have two norm-distances greater than or equal to 1.
If we number the nine possible ioins as in Figure 13 and use the symbol ij
to mean that the joins marked i and j have norm-lengths greater than or
equal to 1 while the others are equal to 1, then there are the following pos-
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P2

P3

P4
Pl

FIGURE 13 FIGURE 14

sibilities:

12 16 23 27 35 39 48 58 69
13 17 24 28 36 45 49 59 78
14 18 25 29 37 46 56 67 79
15 19 26 34 38 47 57 68 89

Each of these determines a certain seven-lined configuration, in which the
lines represent norm-distances equal to 1. We will discuss a typical case, 12,
in detail. The others are treated similarly and yield the same results.

Let be the critical lattice generated by the normed triangle P0 Pa P4.
(See Figure 14.) We will show that Pie2, P2e2 by showing that
P1 Pa P4 and P. P1 W Pa. By simple computation we have that

(i) the lattice point Pa P Ho HaH since it has norm-distance
1 from Pa, P and also from P0 as can be verified by computing the product
of the coordinates of the point (Pa P).
We are given that
(ii) P1 Hall4.
(i) and (ii) imply that P1

and P H0 Ha imply that
Hence the five points P0, P1, P2 ,-Pa, P, all belong to the same critical

lattice.
Suppose now that there are six norm-distances equal to 1. In the above

notation we have the following list of ways to have three norm-distances
greater than or equal to 1.

12--(3 to 9) 23--(4 to 9) 35--(6 to 9) 48--9
13--(4 to 9) 24--(5 to 9) 36--(7 to 9) 56--(7 to 9)
14--(5 to 9) 25--(6 to 9) 37--(8 and 9) 57--(8 and 9)
15--(6 to 9) 26--(7 to 9) 38--9 58--9
16--(7 to 9) 27--(8 and 9) 45--(6 to 9) 67--(8 and 9)
17--(8 and 9) 28--9 46--(7 to 9) 68--9
18--9 34--(5 to 9) 47--(8 and 9) 78--9

Using the results of Lemma 2.2 we need not consider the possibilities con-
taining the following combinations"

128 189 23 36 48 349 479
129 289 45 58 379
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where 128, for example, implies that P1 is on Ha only. But by Lemma 2.2(a)
we know that ID(O) can be decreased until P1 lies on at least one other
hyperbola.

In the remaining cases we show that ]D(O) n (Q u Q)I determined by
the given configuration is at least as great as that determined by the points
of a critical lattice and hence is greater than or equal to 1/2v/5.
When comparing two domains of action we always assume that

(1)

(2)

the two sets of points which determine them differ in only one point,
e.g., (RP Pi Pk) and (QPP Pk),
R and Q both are on the same branch of some hyperbola.

When these conditions are satisfied, Lemma 2.2 and the admissibility of
the point set enable us to determine which domain of action is smaller. For
brevity we speak of the domains as corresponding to R and Q since the effect
of P, P., P is the same in both instances.

This comparison method is used repeatedly in the foRowing proofs. Consider
the case 124. (See Figure 15.) PoPPa generates a critical lattice .
LetP e be such that P P Pa thenP H0HHa. ButP Ha H4.
Then P and P are on Ha. By Lemma 2.2(a), ID(O) decreases as a
point on Ha is moved toward P0 (in the direction of decreasing x). Since
P is on H0, if P is to determine a smaller domain of action for 0 than P
then it is necessary that N(OP) be less than 1. But P1 is a point of an
S-admissible set. Therefore, P must determine a domain of action at least
as great as that determined by P. (We denote this by P -< P .)
LetPa-- P P.
Then P H0 Ha while P4 H0 H. Thus both P and P are on H0.

By Lemma 2.2(c), ID(O) decreases as a point is moved along H0 toward
P0 (i.e., in the direction of increasing x). If P is to determine a smaller
domain of action for 0 than P does then N(P Pa) < 1 since P is on Ha.
Hence by the admissibility of the point set (e, we have P =< P.

Therefore, the configuration in question determines a domain of action in
Q, u Q which is at least as great as that determined by points of the critical
lattice and therefore is greater than or equal to 1/2v/5.

Suppose now that there are only five norm-distances equal to 1. Consider
all possible ways in which we can have four norm-distances greater than or
equal to 1. By using the results of Lemma 2.2 to reduce the number of cases
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to be considered, the remaining cases can be handled as in the preceding
discussion. In each case we obtain that the given configuration determines

D(O) n (Q1 u Q2) >-

Lemmas 2.2 and 2.3 imply that if there are fewer than five norm-distances
equal to 1, then D(O) n (QI u Q2) can be decreased by moving certain of
the points until at least five norm-distances are 1.

This completes part (a) of the present case.
Part (b), with P the point of (P in Q u Q having smallest M-distance from

O, follows by similar arguments.

6. Proof of Lemma 3
Now consider the case of three points in the upper half-plane influencing

the domain of action of O.
These three points and 0 P0 determine six segments each of norm-length

greater than or equal to 1. If all six of these norm-distances are 1, then the
four points belong to one and the same critical lattice. The same conclusion
can be reached if we have five norm-distances equal to 1. Here, however,
there are six ways in which this can occur for each choice of the three points.
In the proof the methods of the preceding section are used.
Lemmas 2.2 and 2.3 imply that if there are fewer than four norm-distances

equal to 1 (among the points 0 P0 and the three points of Q u Q. influencing
D(O) ), then D(0) n (Q1 u Q) can be decreased by moving certain of the
points until at least four norm-distances are 1.

If there are only four norm-distances equal to 1, we use the comparison
method to prove that in each instance D(O) n (Q u Q2) >= -}5.

7. Proof of Lemma 4
Suppose now that there is only one point of (P in Q and one point in Q2

influencing D(O). We have the following possibilities:
A. The closest point is in I and the second point is (1) in III; (2) in IV.
B. The closest point is in II and the second point is 1 in III; (2) in IV.

Case A. (1) The two points are P1 and P3. By the arguments of
Lemma 2.2(a), we can decrease D(0) by moving P1 until it has norm-distance
1 from P0 and P3. (See Figure 16.)
N. Smith, [3, p. 7] proved that a triangle with vertices belonging to an

S-admissible point set and satisfying the condition that the slopes of the
three sides are not all positive has area greater than or equal to 1/2/5. (Smith
called such a triangle a type (a) triangle.)
P0 P Ps is a type (a) triangle and hence its area is greater than or equal

to 1/2x/5. Hence, the mesh of the lattice generated by P and Ps is greater
than or equal to x/5.
By hypothesis, N(P0 Ps) => 1. If N(P0 Ps) > 1 simple computational



DOMAIN OF ACTION METHOD 521

arguments show that P. P1 + P is inside $, i.e., x2 y2 < 1. Hence 2
is admissible if and only if N(Po P) 1. But in any case the cut-off from
Q and Q could be no closer to 0 than when determined by a lattice point;
hence, D(0) (Q1 u Q) ->_ 1/2x/5.

(2) The two points are P and P. In this case there would be an infinite
strip about the y-axis contained in D(O); hence, we need not consider it
further.

Case B. (1) The two points are P and Pa. By the arguments of
Lemma 2.3(c), we can move P to decrease D(0) until N(P P)
N(Po P.) 1. Let P be a point of the lattice generated by P0 P2 Pa.
It is clear that the domain of action determined by P0, P., Pa, P4, is less
than or equal to that determined by P0, P2, Pa only. However, in Lemma 3
we proved that P0, P., P, P determine

D(O) n (Q u Q)I >= 1/2x/5.
(2) Again by arguments of Lemma 2.3, we can move P to decrease

D(0) until N(P0 P) N(P P) 1 and the argument of A( 1 holds.
This completes the proof of Lemma 4.

8. Conclusion
With the completion of Lemma 4 the proof of the theorem stated in Section

3 is also complete, namely, if 0 is any point of an admissible point set (P for
$ xy <= 1, then D(O) _>_ V’5. Thus, using the domain of action method
on 8, we find that ((e) =< l/v/5 which is best possible.
Note also that D(O) x/5 only if the points P which determine D(O)

are part of a critical lattice. This is seen as follows.
If the points P are moved as explain_ed in Lemmas 2.2 and 2.3,
D(O) n (Q u Q) decreases strictly. In the proof of Lemma 2, all cases

involving only five norm-distances equal to 1 can be shown to determine
D(O) n (Q u Q) greater than or equal to that determined by a configura-

tion with six norm-distances equal to 1.
Therefore,. it suffices to prove that any configuration with exactly six norm-

distances equal to 1 determines

D(0) n (Q1 u Q)I > 1/2VS.
Consider the configuration denoted by the symbol 124 (above). If P < P1

then D(0) n (Q u Q) determined by the critical lattice is strictly less than
that determined by the configuration 124, and hence the latter domain is
strictly greater than 1/2x/5.

If P P then P and P coincide and N(Po P1) 1. Then there are
seven norm-distances equal to 1 and, by a previous argument, the points
P, i 0, 1, 2, 3, 4, all belong to the same critical lattice.
A similar argument will give the same result for the remaining configurations

involving five points and for the configurations for three and four points.
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If the points in Q1 u Q and the points in Q3 u Q which determine D(O)
were part of two different critical lattices, or if a point of the corresponding
critical lattice which influences D(0) has no counterpart in the given set of
points, then D(O)I > 5 as can be verified by simple computation.

Therefore, if D (0)1 /5, D(0) must be determined by points which all
belong to the same critical lattice and further must be identical with a typical
domain of action of point of such critical lattice.
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