APPLICATION OF THE DOMAIN OF ACTION METHOD TO $|x y| \leqq 1$

BY
M. R. Von Wolff

1. Introduction

In his doctoral thesis, M. Rahman developed what he called the domain of action method in order to answer the question about the closest packing of certain star domains. Before we discuss this method, we need the following definitions:

Let \mathcal{S} be a star domain in the ordinary affine plane, symmetric about O. A set of points \mathcal{P} is said to provide a packing for \mathcal{S} if the domains $\{\mathcal{S}+P\}$, where $P \in \mathcal{P}$, have the property that no domain ($\mathcal{S}+P_{0}$) contains the center of another in its interior. We shall also say that \mathcal{P} is an admissible point set for s.

As definition of the density of a point set \mathcal{P} we accept the definition given in [3, p. 5] which is as follows:

Consider the square $|x|<t,|y|<t$. Let $A(t)$ denote the number of points of a set \mathcal{P} in the square; then the density of $\mathcal{P}(\operatorname{denoted} \mathscr{D}(\mathcal{P}))$ is defined as $\lim \sup _{t \rightarrow \infty} A(t) / 4 t^{2}$.

From the definition it follows that for any 2-dimensional lattice $\mathcal{\&}$ the density $\mathfrak{D}(\&)$ is just the reciprocal of its mesh.

A norm-distance is a real-valued function, [1, p. 103], $N(X)=N(O X)$, defined on the plane, such that $N(X)$ is
(1) nonnegative; i.e., $N(X) \geqq 0$;
(2) continuous;
(3) homogeneous; i.e., $N(t X)=|t| N(X)$, where t is any real number.

A convex distance function or Minkowski distance, M, is a norm-distance with the additional properties:
(1) $M(P Q)=0$ implies $P=Q$.
(2) $M(P Q) \leqq M(P R)+M(R Q)$.

Let \mathcal{P} be a point set in the plane and M be a Minkowski distance. The domain of action [2, p. 16], $D(P)=D(P, M, \mathcal{P})$ of a point P, relative to M and \mathcal{P}, is the set of all points X in the plane for which

$$
M(P X) \leqq M(Q X) \quad \text { where } Q \in \mathscr{P}, \quad Q \neq P
$$

when this set is the closure of the set of all points in the plane which are closer to P than any other point of P.

We must note here, however, that the closure of the set of points X such that $M(O X)<M(P X)$ may not always be the same as the set of points X such that $M(O X) \leqq M(P X)$. For there may be a point Y with $M(O Y)=$ $M(P Y)$ such that for all X in a whole neighborhood of $Y, M(O X)=M(P X)$.

[^0]This will occur, for example, when $M(X)=M(O X)$ is a Minkowski distance defined by a centrally symmetric convex body having a straight line segment contained in its boundary. For, let the ends of the segment be A_{1} and A_{2}. We can assume that $A_{1} A_{2}$ is parallel to the x-axis for we can bring this about by a rotation if necessary. Using the center as origin, let $A_{1}=\left(a_{1}, b\right)$; $A_{2}=\left(a_{2}, b\right)$ where $b>0$. (See Figure 1.) For $X=(x, y)$ in the region $G_{1} \cup\left(-G_{1}\right)$ where G_{1} is defined by the two inequalities

$$
b x-a_{1} y<0, \quad b x-a_{2} y>0
$$

and $\left(-G_{1}\right)$ is the reflection of G_{1} in O, we have $M(O X)=(1 / b)|y|$.
Let $P=(p, 0)$ be a point on the x-axis; that is, $O P$ is parallel to $A_{1} A_{2}$. Then for $X=(x, y), M(P X)=(1 / b)|y|$ when X is in the region $G_{2} \cup\left(-G_{2}\right)$ where G_{2} is defined by

$$
\begin{aligned}
& b x-a_{1} y-b p<0 \\
& b x-a_{2} y-b p>0
\end{aligned}
$$

and $\left(-G_{2}\right)$ is the reflection of G_{2} in P.
$G_{1} \cap G_{2}$ is defined by

$$
b x-a_{2} y-b p<0, \quad b x-a_{1} y>0
$$

Therefore, for any point X in $\left[G_{1} \cap G_{2}\right] \cup\left[\left(-G_{1}\right) \cap\left(-G_{2}\right)\right]$ we have $M(O X)=M(P X)$.

We see then that when the line through two points P^{\prime} and Q^{\prime} is parallel to a straight segment of the boundary of the convex body which determines the distance M, the union of the sets

$$
\begin{equation*}
\left\{X \mid M\left(P^{\prime} X\right) \leqq M\left(Q^{\prime} X\right)\right\} \quad \text { and } \quad\left\{X \mid M\left(Q^{\prime} X\right) \leqq M\left(P^{\prime} X\right)\right\} \tag{1}
\end{equation*}
$$

Figure 1
covers the plane but the sets have interior points in common. Also, the closures of the sets

$$
\begin{equation*}
\left\{X \mid M\left(P^{\prime} X\right)<M\left(Q^{\prime} X\right)\right\} \quad \text { and } \quad\left\{X \mid M\left(Q^{\prime} X\right)<M\left(P^{\prime} X\right)\right\} \tag{2}
\end{equation*}
$$

have no interior points in common but the union of the closures is not the whole plane.

Since neither of these situations is desirable, when such cases arise an adjustment will be needed in the definition. In all other cases, with either of the definitions above, the domain of action of a point R with respect to a single point S and the domain of action of S with respect to R together cover the plane, while $D(R) \cap D(S)$ contains no interior points. The adjustment we make should preserve these properties in the exceptional case discussed above; for example, in (1) where $D(R) \cap D(S)$ contains interior points, by apportioning the common region equally in some consistent manner.

Let $|D(P)|$ denote the area of $D(P)$. If m is the greatest lower bound of $|D(P)|$ for $P \in \mathcal{P}$, then it follows that the density $\mathscr{D}(\mathcal{P})$ of the point set \mathcal{P} is less than or equal to $1 / m$.

2. Domain of action for $|x y| \leqq 1$

Consider the domain $\mathcal{S}:|x y| \leqq 1$. The norm-distance N determined by S is $N(O P)$ or

$$
N(P)=|\sqrt{ }| x y| |, \quad \text { where } P=(x, y)
$$

In general, for $P_{1}=\left(x_{1}, y_{1}\right)$ and $P=\left(x_{2}, y_{2}\right)$,

$$
N\left(P_{1} P_{2}\right)=|\sqrt{ }|\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)| |
$$

Let the Minkowski distance M be defined by a maximal convex polygon ${ }^{1}$ inscribed in ς say, $|x|+|y|=2$. Then

$$
M(P)=\frac{1}{2}(|x|+|y|)
$$

In general $M\left(P_{1} P_{2}\right)=\frac{1}{2}\left(\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right|\right)$. Note that $M(P) \geqq N(P)$ and that this will always be the case if N and M are defined in such a way. Therefore, if \mathcal{P} is an \mathcal{S}-admissible point set, then

$$
M(P Q) \geqq N(P Q) \geqq 1
$$

for any two distinct points P and Q in P.
Let O be an arbitrary point of \mathcal{P} and be taken as origin. Then $D(O)=$ $\bigcap_{P} D(O, M, P)$ for $P \in \mathcal{P}, P \neq O$, where $D(O, M, P)$ is determined as follows:

Let $P=\left(x_{1}, y_{1}\right)$.

[^1]I. If $x_{1} \geqq y_{1}>0, D(O, M, P)$ is defined by the following inequalities:
\[

$$
\begin{aligned}
y \leqq 0, & x \leqq\left(x_{1}+y_{1}\right) / 2 \\
0 \leqq y \leqq y_{1}, & x+y \leqq\left(x_{1}+y_{1}\right) / 2 \\
y_{1} \leqq y, & x \leqq\left(x_{1}-y_{1}\right) / 2
\end{aligned}
$$
\]

(See Figure 2a.)
In the notation of the discussion above for $x_{1}=y_{1}$, this is equivalent to assigning the region $G_{1} \cap G_{2}$ to O and $\left(-G_{1}\right) \cap\left(-G_{2}\right)$ to P.
II. If $y_{1}>x_{1}>0, D(O, M, P)$ is determined by the following inequalities:

$$
\begin{aligned}
x \leqq 0, & x \leqq\left(x_{1}+y_{1}\right) / 2 \\
0 \leqq x \leqq x_{1}, & x+y \leqq\left(x_{1}+y_{1}\right) / 2 \\
x_{1} \leqq x, & y \leqq\left(y_{1}-x_{1}\right) / 2
\end{aligned}
$$

(See Figure 2b.)
These definitions are for a point in the first quadrant. For P in any other quadrant, the definitions are analogous. Figure 3 is a typical domain of action. Note that $D(O, M, P)$ so defined is a continuous function of $P=(x, y)$ when (i) $|x| \geqq|y|$ and also when (ii) $|y|>|x|$. But $D(0, M, P)$ is not continuous if we allow equality in (ii), for the domain of action undergoes a sudden change in shape as P moves onto the bisector from a region $|y|>|x|$ or off the bisector into such a region. (See Figure 4.) This discontinuity will not present any problem, however, since if a point is on a quadrant bisector we can always approach it from the region where $|x| \geqq|y|$.

Let the four quadrants of the plane be denoted by $Q_{1}, Q_{2}, Q_{3}, Q_{4}$. As above $|D(O)|$ will be used to denote the area of the domain of action $D(O)$. Since for all points $P \in \mathcal{P}, P \neq O, M(O P) \geqq 1$, the minimum of $\left|D(O) \cap Q_{i}\right|$ is $\frac{1}{2}$.

Draw lines $y=x$ and $y=-x$ bisecting Q_{1} and Q_{2}. Each half-quadrant

Figure 2a

Figure 2b

will be called an octant and will be denoted by I, III, ..., VIII in counterclockwise order from the positive x-axis.

3. Statement of the problem

Norman Smith [3] proved that a critical lattice gives the closest packing of $\mathcal{S}:|x y| \leqq 1$, or to put it another way, if \mathcal{P} is any \mathcal{S}-admissible point set, $D(\mathcal{P}) \leqq 1 / \sqrt{ } 5$. M. Rahman indicates that one might be able to get as sharp a result by using the domain of action method. The question is: if \mathcal{P} is an \mathcal{S}-admissible point set, is $|D(P)| \geqq \sqrt{ } 5$ for any $P \in \mathcal{P}$? The question is answered in the affirmative and in the process methods are employed which we hope will be useful in applying the domain of action method to other stars.

We prove then the following
Theorem. If O is any point of an admissible point set for the region $\mathcal{S}:|x y| \leqq 1$, then $|D(O)| \geqq \sqrt{ } 5$.

We will show that for any arrangement of points P_{i} of \odot in say, Q_{1} and Q_{2} such that the P_{i} influence the domain of action of O, the part of $D(O)$ in $Q_{1} \cup Q_{2}$ has area greater than or equal to $\frac{1}{2} \sqrt{ } 5$. (Note that we do not assume that the part of $D(O)$ in $Q_{1} \cup Q_{2}$ is completely determined by the points P_{i} but only that they influence the domain of action.) By the symmetry of \mathcal{S}, the same will hold for the contribution in $Q_{3} \cup Q_{4}$ and hence the domain of action of O will always be greater than or equal to $\sqrt{ } 5$.

If there is to be an exception, i.e., if we can find a point O such that
$|D(O)|<\sqrt{ } 5$, then certainly the part of $D(O)$ in either $Q_{1} \cup Q_{2}$ or $Q_{3} \cup Q_{4}$ is less than $\frac{1}{2} \sqrt{ } 5$. We can call this pair of quadrants Q_{1} and Q_{2}, for we could put the points determining the part of $D(O)$ in question in these quadrants by reflection in the x-axis if necessary. Observe that it follows from the definition that if the set of points $\left\{P_{i}\right\}, i=1,2, \cdots, n$ which determines $D(O)=\bigcap_{i} D\left(O, M, P_{i}\right)$ is reflected in either coordinate axis into points $\left\{P_{i}^{\prime}\right\}$, then $\overline{D(O)}=\bigcap_{i} D\left(O, M, P_{i}^{\prime}\right)$ is the reflection of $D(O)$ in the axis of reflection.

We will prove the theorem by means of the following lemmas.
Lemma 1. If there are two points in a given octant ${ }^{2}$ of Q_{1} influencing $D(O)$, the area of $D(O) \cap\left(Q_{1} \cup Q_{2}\right)$ is greater than or equal to $\frac{1}{2} \sqrt{ } 5$.

Lemma 2. If there is one point in each octant of Q_{1} and Q_{2}, then

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5
$$

Lemma 3. If there are points in any three octants of $Q_{1} \cup Q_{2}$, then

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5
$$

Lemma 4. If there is only one point in each of Q_{1} and Q_{1}, then

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5
$$

A few remarks will show that the arrangements of points in these four lemmas are the only ones which must be considered. If there were more than two points in an octant, it will be clear from the proof in Lemma 1 that additional points influencing $D(O)$ would make this area still larger. Also, there must be at least one point of \mathcal{P} in each quadrant, for if some quadrant contained no point of \mathcal{P}, the part of $D(O)$ in it would contain at least a square of area 1. Allowing only the minimum area of $\frac{1}{2}$ for either adjacent quadrant gives $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|>\frac{1}{2} \sqrt{ } 5$.

The theorem then follows easily from these four lemmas, since the points influencing $D(O)$ in each half-plane will fall in one of the above categories; hence, the whole domain of action will be greater than or equal to $\sqrt{ } 5$.

4. Proof of Lemma 1

Suppose that there are two points of ρ in a given octant which influence $D(O)$. We may assume that either
(a) two points $\left(P^{\prime}\right.$ and $\left.P_{1}\right)$ are in I, or
(b) two points ($P^{\prime \prime}$ and P_{2}) are in II since the points could be placed in these octants by a reflection, if necessary.

We will assume that there is at most one point of \mathcal{P} in each of the remaining

[^2]octants. It will be clear from the following discussion that if there were more, $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ would be made larger.

Note that if two octants are reflections in one of the coordinate axes (e.g., II and III), at least one of them must contain a point of \mathcal{P} for otherwise $D(O)$ would contain an infinite strip.
(a) Let $P^{\prime}=\left(x^{\prime}, y^{\prime}\right), P_{i}=\left(x_{1}, y_{1}\right)$ be points of I which contribute to $D(O)$ such that $M\left(O P^{\prime}\right) \leqq M\left(O P_{1}\right)$. Then $x^{\prime}-y^{\prime}>x_{1}-y_{1}$, for if not, the point P_{1} does not influence $D(O)$ since $D\left(O, M, P^{\prime}\right)$ would be strictly contained in $D\left(O, M, P_{1}\right)$.

Let K be the intersection of $x+y=\left(x_{1}+y_{1}\right) / 2$ and $x=\left(x^{\prime}-y^{\prime}\right) / 2$. Then the ordinate of $K, y_{k}=\left(\left(x_{1}+y_{1}\right)-\left(x^{\prime}-y^{\prime}\right)\right) / 2$.
$P_{2} \in$ II or $P_{3} \in$ III can influence $D(O)$ only if the polygonal line which bounds $D\left(O, M, P_{j}\right), j=2$ or 3 , intersects the line $x+y=\left(x_{1}+y_{1}\right) / 2$ above K. (See Figure 5.) In the case of P_{2}, this means that

$$
y=\left(y_{2}-x_{2}\right) / 2>y_{k}
$$

which also implies that

$$
x+y=\left(y_{2}+x_{2}\right) / 2>y_{k}
$$

For P_{3} we must have

$$
y=\left(\left|x_{3}\right|+\left|y_{3}\right|\right) / 2>y_{k}
$$

Hence, P_{2} or P_{3} can influence $D(O)$ only if

$$
M\left(O P_{j}\right)=\left(\left|x_{j}\right|+\left|y_{j}\right|\right) / 2>y_{k} \quad(j=2,3)
$$

Further note that we can assume that if there are three points in Q_{1} influencing $D(O)$, the octant which contains two of them must also contain the point in Q_{1} closest to O. This being the case, we may assume

$$
\begin{equation*}
1 \leqq M\left(O P^{\prime}\right)<\frac{1}{2} \sqrt{ } 5 \tag{*}
\end{equation*}
$$

for if $M\left(O P^{\prime}\right) \geqq \frac{1}{2} \sqrt{ } 5$, then

$$
\left|D(O) \cap Q_{1}\right| \geqq(-1+\sqrt{ } 5) / 2, \quad\left|D(O) \cap\left(Q_{2}\right)\right| \geqq \frac{1}{2},
$$

Figure 5

Figure 6
and

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5,
$$

and Lemma 1 would be proved.
Hence, P^{\prime} is restricted to the closed region in Q_{1} (actually in I) bounded by the lines $x y=1, x-y=0$, and $x+y=\sqrt{ } 5$. In the proof, P^{\prime} is further restricted to the sectors indicated in Figure 6 which shows the region enlarged.

If there are points in the respective octants, we use the following notation:
P^{\prime} denotes the point in I with smallest M-distance from O, restricted as in (*). $\quad P_{1}$ denotes the second point in I; hence $M\left(O P^{\prime}\right)<M\left(O P_{1}\right)$.
P_{2} denotes a point in II; P_{3} a point in III; P_{4} or $P_{4^{\prime}}$ a point in IV.
Lemma 1.1. If P^{\prime} and P_{1} are two points of P in I , using the above notation, and if both influence $D(O)$, then $M\left(O P_{1}\right) \geqq 2$ or $x_{1}+y_{1} \geqq 4$.

As noted above, the hypothesis implies that

$$
x^{\prime}-y^{\prime}>x_{1}-y_{1}
$$

and also

$$
\begin{equation*}
y_{1}-y^{\prime}>x_{1}-x^{\prime}>0 \tag{1}
\end{equation*}
$$

Lemma 1.1 is proved by indirect argument. Suppose $M\left(O P_{1}\right)<2$ or

$$
\begin{equation*}
x_{1}+y_{1}<4 \tag{2}
\end{equation*}
$$

But $x^{\prime}+y^{\prime} \geqq 2$ which implies

$$
\begin{equation*}
-x^{\prime}-y^{\prime} \leqq-2 \tag{3}
\end{equation*}
$$

Combining (2) and (3) we obtain

$$
\begin{equation*}
\left(x_{1}-x^{\prime}\right)+\left(y_{1}-y^{\prime}\right)<2 \tag{4}
\end{equation*}
$$

$N\left(P^{\prime}, P_{1}\right) \geqq 1$ and (1) imply

$$
\left(x_{1}-x^{\prime}\right)\left(y_{1}-y^{\prime}\right) \geqq 1
$$

or

$$
\begin{equation*}
y_{1}-y^{\prime} \geqq 1 /\left(x_{1}-x^{\prime}\right)>0 \tag{5}
\end{equation*}
$$

Then (4) and (5) imply

$$
2>\left(x_{1}-x^{\prime}\right)+\left(y_{1}-y^{\prime}\right) \geqq\left(x_{1}-x^{\prime}\right)+1 /\left(x_{1}-x^{\prime}\right) \geqq 2
$$

which is a contradiction.
Hence, $M\left(O P_{1}\right) \geqq 2$.
Further, the lemma implies that if $x^{\prime}+y^{\prime}=m$ and P^{\prime} is restricted as in (*) then $x_{1}+y_{1} \geqq m+2$ or $M\left(O P_{1}\right) \geqq M\left(O P^{\prime}\right)+1$.

Let P^{\prime} vary successively in the sectors of the region in Figure 6. The
above considerations enable us to determine lower bounds on the M-distances of P_{1}, P_{2}, and P_{3} from P^{\prime} when P^{\prime} is restricted to a given sector. We determine $M\left(O P_{4}\right)$ and $M\left(O P_{4}^{\prime}\right)$ as follows:

Let P^{\prime} be in the $i^{\text {th }}$ sector. Determine a point $P_{4 i}$ in the region labeled R_{2} (see Figure 7) such that

$$
N\left(P_{4 i} Q_{4}\right)=1=N\left(O P_{4 i}\right)
$$

Then every point P in the $i^{\text {th }}$ sector satisfies the condition $N\left(P P_{4 i}\right) \leqq 1$. Therefore, as P^{\prime} varies in the $i^{\text {th }}$ sector, P_{4} in R_{2} satisfies

$$
M\left(O P_{4}\right) \geqq M\left(O P_{4 i}\right)
$$

Further, the absolute value of the difference of the coordinates of a point in R_{2} is smallest at $P_{4 i}$.

Determine a point $P_{4 i}^{\prime}$ in the region labeled R_{1} such that

$$
N\left(P_{4 i}^{\prime} Q_{2}\right)=1
$$

and $P_{4 i}^{\prime}$ is on the line $x+y=0$. Then, as P^{\prime} varies in the $i^{\text {th }}$ sector, P_{4}^{\prime} in R_{1} satisfies

$$
M\left(O P_{4}^{\prime}\right) \geqq M\left(O P_{4 i}^{\prime}\right)
$$

These statements can be verified by determining the position of the $i^{\text {th }}$ sector with respect to the region

$$
H_{i}:\left|\left(x-x_{j i}\right)\left(y-y_{j i}\right)\right| \leqq 1
$$

For each $j, j=2,3,4$, the $i^{\text {th }}$ sector is in H_{j} as can be proved by considering the tangent to $\left|\left(x-x_{j i}\right)\left(y-y_{j i}\right)\right|=1$ at the point Q_{j}. (See Figure 8.)

Using these facts, we obtained lower estimates of $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ as follows.

The general shape of the domain of action remains unchanged throughout this discussion. (See Figure 9a.) For P^{\prime} in the $i^{\text {th }}$ sector ($i=1, \cdots, 6$) the areas of the shaded parts were estimated using appropriate lower estimates

Figure 7

Figure 8

Figure 9a

Figure 9b
of $M\left(O P_{j}\right), j=1,2,3,4$, and $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ was found to be greater than $\frac{1}{2} \sqrt{ } 5$. (See Tables 1 and 2.)
(b) Let $P^{\prime \prime}$ and P_{2} be points in II which influence $D(O)$. Observe that $D(O) \cap\left(Q_{1} \cup Q_{2}\right)$ is in general not completely determined by the points of \mathcal{P} in $\left(Q_{1} \cup Q_{2}\right)$. In the preceding argument we estimated $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ by means of the shaded polygon in Figure 9a. We could explain the lines $x= \pm 1$ by saying that we allowed for the effect of points in Q_{3} and Q_{4} on $D(O) \cap\left(Q_{1} \cup Q_{2}\right)$ or that we allowed for the cut-off from Q_{3} and Q_{4}.

If two points, $P^{\prime \prime}$ and P_{2}, in II influence $D(0)$, then, by the argument used above in part (a), a point in Q_{4} which influences $D(O)$ must have M-distance from O greater than or equal to the value of $M\left(O P_{3}\right)$ in part (a).

In the present case it is clear that the cut-off from Q_{4} could be closer to O if P_{2} did not influence $D(O)$. (See Figure 9b.) This means that $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ with two points in II is greater than $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ under the conditions of Lemma 2 or Lemma 3. Therefore, the proof of this case will follow from these lemmas.

5. Proof of Lemma 2

Assume that $P_{1} \in \mathrm{I}, P_{2} \in \mathrm{II}, P_{3} \in \mathrm{III}, P_{4} \in \mathrm{IV}$ are the only points of P in $Q_{1} \cup Q_{2}$ that influence $D(O)$. Then $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5$.

We need the following results.

TABLE 1

P^{\prime} in	$M\left(O P^{\prime}\right)$	$\frac{1}{2}_{2}^{2}\left(x^{\prime}-y^{\prime}\right)$	$M\left(O P_{1}\right)$	$M\left(O P_{2}\right)$, $M\left(O P_{3}\right)$	$M\left(O P_{4}^{\prime}\right)$	$M\left(O P_{4}\right)$	$\frac{1}{2}\left(\left\|x_{4}\right\|-y_{4}\right)$
1	1.0	.0	2.0	1.85	1.271	1.082	.427
2	1.011	.15	2.011	1.75	1.185	1.161	.605
3	1.030	.25	2.030	1.68	1.105	1.242	.755
4	1.059	.0	2.059	1.9	1.305	1.024	.335
5	1.059	.15	2.059	1.8	1.0^{*}	1.0^{*}	$* *$
6	1.059	.25	2.059	1.5	1.0^{*}	1.0^{*}	$* *$

* Only minimum values needed. $\quad{ }^{* *}$ Estimate not needed.

TABLE 2

P^{\prime} in	Case	$\left\|D(O) \cap Q_{1}\right\|$	$\left\|D(O) \cap Q_{2}\right\|$	$\left\|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right\|$
1	i	.5	.771	1.2
2	ii	.5	.86	1.3
	i	.511	.685	1.18
3	ii	.511	.66	1.17
	i	.530	.605	1.13
4	ii	.530	.74	1.2
	i	.559	.805	1.3
5	ii	.559	.764	1.3
	i	.664	.5	1.15
6	ii	.664	.5	1.15
	i	.659	.5	1.15
	ii	.659	.5	1.15

Case i lists the estimates when the point in IV is in R_{1}, Case ii when it is in R_{2}. Note that the estimates in the first line of this table imply that we need not consider the possibility of points on the bisectors of Q_{1} and Q_{2} simultaneously.

Lemma 2.1. Let P_{1} and P_{2} be two points on $|x y|=1$, such that $N\left(P_{1} P_{2}\right)=1$; then P_{1} and P_{2} generate a critical lattice of the star $|x y| \leqq 1$.

Proof. There is no loss of generality in assuming that P_{1} is in Q_{1} and P_{2} is in either Q_{1} and Q_{2} for the points could be placed in these positions by reflections if necessary.

Let σ be an affine transformation defined by

$$
(x, y) \rightarrow\left(x / x_{1}, y / y_{1}\right)
$$

This transformation preserves norm-distance since

$$
x y=x y / x_{1} y_{1}
$$

It also preserves area since it is unimodular. Therefore, it suffices to prove the lemma for P_{1}^{\prime} and P_{2}^{\prime}, the images of P_{1} and P_{2} respectively under σ.

$$
\begin{aligned}
& P_{1} \sigma=P_{1}^{\prime}=\left(x_{1} / x_{1}, y_{1} / y_{1}\right)=(1,1) \\
& P_{2} \sigma=P_{2}^{\prime}=\left(x_{2} / x_{1}, y_{2} / y_{1}\right)
\end{aligned}
$$

where P_{2}^{\prime} has norm-distance 1 from P_{1}^{\prime} and from the origin.
Note that P_{1}^{\prime} is in Q_{1} and P_{2}^{\prime} is in the same quadrant as P_{2}.
If P_{2}^{\prime} is in Q_{1}, then $x_{2}^{\prime}, y_{2}^{\prime}$ satisfy either
or

$$
x y=1 \quad \text { and } \quad(x-1)(y-1)=1
$$

$$
x y=1 \quad \text { and } \quad(x-1)(y-1)=-1
$$

Therefore,

$$
P_{2}^{\prime}=((3-\sqrt{ } 5) / 2,(3+\sqrt{ } 5) / 2) \quad \text { or } \quad((3+\sqrt{ } 5) / 2,(3-\sqrt{ } 5) / 2)
$$

If P_{2}^{\prime} is in Q_{2}, then $x_{2}^{\prime}, y_{2}^{\prime}$ satisfy either

$$
x y=-1 \quad \text { and } \quad(x-1)(y-1)=1
$$

or

$$
x y=-1 \quad \text { and } \quad(x-1)(y-1)=-1
$$

Then
$P_{2}^{\prime}=((1-\sqrt{ } 5) / 2,(1+\sqrt{ } 5) / 2) \quad$ or $\quad((-1+\sqrt{ } 5) / 2,(-1-\sqrt{ } 5) / 2)$.
In any case, $P_{1}^{\prime}=(1,1)$ and P_{2}^{\prime}, for any of the above possibilities, do generate a critical lattice as is well known.

It is easily verified that for any lattice $\mathfrak{\&}$ of mesh $d(£),|D(O)|=d(£)$, for any point $O \in \mathcal{L}$. Further, $D(O)$ is symmetric in O and therefore

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|=\frac{1}{2}|D(O)|=\frac{1}{2} d(£) .
$$

Further, let \mathcal{P} be an admissible point set. If the points of \mathcal{P} in $Q_{1} \mathbf{u} Q_{2}$ which influence $D(O)$ are part of a critical lattice, then the cut-off from Q_{3} can be no closer to O than when it is determined by a point of the same critical lattice. As noted above, the cut-off depends on P_{3}. Then the point P which causes the cut-off nearest to O satisfies

$$
N\left(P P_{3}\right)=N(O P)=1
$$

For P_{3} near to O there is a unique point P in octant V satisfying condition (\#). But if P_{3} is a point of a critical lattice, the lattice point $-P_{1}$ satisfies $N\left(-P_{1}\right)=N\left(-P_{1}, P_{3}\right)=1$. Hence $P=-P_{1}$.

We further note that any additional points of the critical lattice in $Q_{1} \cup Q_{2}$ could only decrease the domain of action. Hence in this case we have that $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ is at least $\frac{1}{2} \sqrt{ } 5$.

This remark is used repeatedly in the following proofs.
Lemma 2.2. Let there be a point of an admissible point set in each of the octants, I, II, III, and IV. If the points of \odot in $Q_{1} \cup Q_{2}$ which influence $D(0)$

Figure 10a

Figure 10b
are "close" to O and if P_{1} has minimum M-distance from O among them, then the following statements always hold:
(a) P_{1} can be moved so as to have norm-distance 1 from at least two other points (allowing $P_{0}=O$ to be one of them) while all other points are kept fixed and $|D(O)|$ is decreased. ${ }^{3}$
(b) The same holds for P_{4}.
(c) If P_{2} can be moved so as to decrease $|D(O)|$ until it has norm-distance 1 from P_{0} or P_{1}, or P_{4}, then it can be moved so that it has norm-distance 1 from another of the points also.
(d) If P_{3} can be moved so as to decrease $|D(0)|$ until it has norm-distance 1 from P_{0}, P_{2}, or P_{4}, then it can be moved so that it has norm-distance 1 from another of the points also.

Before proceeding with the proof of Lemma 2.2 we must explain what is meant by "close". As in Lemma I we divide the region in I bounded by $x y=1, x=y$, and $x+y=(2+\sqrt{ } 5) / 2$ into nineteen sectors and allow P_{1} to vary successively in these sectors. (See Figure 10b.) We obtain, as before, estimates of $M\left(O P_{i}\right), i=2,3,4$, and $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$. Note, however, that while this method is not good enough to yield Lemma 2, since for P_{1} in any of the sectors $14-18$ the estimated $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ is less than $\frac{1}{2} \sqrt{ } 5$, it does enable us to place sufficiently good bounds on the M-distances of the point $P_{i}, i=1,2,3,4$. (See Tables 3 and 4. Table 4 does not show the estimated areas for sectors 14-18.) Using this information we say that the points P_{i} are "close" to P_{0} if the following inequalities hold:

$$
\begin{gathered}
M\left(O P_{1}\right) \leqq(2+\sqrt{ } 5) / 4, \quad M\left(O P_{2}\right) \leqq 1.5 \\
\min \left(M\left(O P_{3}\right), M\left(O P_{4}\right)\right) \leqq \frac{1}{2} \sqrt{ } 5, \quad \max \left(M\left(O P_{3}\right), M\left(O P_{4}\right)\right) \leqq 1.5
\end{gathered}
$$

[^3]TABLE 3

P_{1} in	$M\left(O P_{1}\right)$	$\frac{1}{2}\left(x_{1}-y_{1}\right)$	$M\left(O P_{2}\right)$	$M\left(O P_{3}\right)^{*}$	$M\left(O P_{3}\right)^{* *}$	$M\left(O P_{4}\right)$
	1.0	.0	1.424	1.374	1.094	1.082
2	1.001	.05	1.412	1.337	1.083	1.126
3	1.025	.05	1.400	1.325	1.065	1.104
4	1.002	.075	1.389	1.287	1.073	1.140
5	1.025	.075	1.379	1.279	1.077	1.116
6	1.004	.1	1.366	1.241	1.063	1.156
7	1.025	.1	1.358	1.233	1.067	1.130
8	1.007	.125	1.345	1.195	1.050	1.173
9	1.025	.125	1.337	1.187	1.058	1.144
10	1.011	.15	1.324	1.149	1.047	1.191
11	1.025	.15	1.317	1.142	1.049	1.161
12	1.015	.175	1.305	1.105	1.040	1.212
13	1.025	.175	1.298	1.098	1.041	1.178
14	1.019	.2	1.285	1.060	$1.033(54)$	1.234
15	1.025	.2	1.280	1.055	$1.033(48)$	1.198
16	1.025	.225	1.262	1.012	1.027	1.219
17	1.030	.25	1.245	1.0	1.022	1.242
18	1.037	.275	1.229	1.0	1.017	1.268
19	1.044	.3	1.198	1.0	1.009	1.296

* Estimate when P_{2} influences $D(O)$.
** Estimate when there is no point in II which influences $D(O)$.

TABLE 4
Lower Estimates of $\left|D(O) \cap\left(Q_{1} \mathbf{\cup} Q_{2}\right)\right|$ for Lemma 2

P_{1} in	$\left\|D(O) \cap Q_{1}\right\|$	$\left\|D(O) \cap Q_{2}\right\|$	$\left\|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right\|$
1	.5	$.699^{*}$	1.19
2	.501	.626	1.12
3	.525	.604	1.12
4	.502	.640	1.14
5	.525	.611	1.13
6	.504	.656	1.15
7	.525	.630	1.15
8	.507	.673	1.17
9	.525	.644	1.16
10	.511	.649	1.15
11	.525	.605	1.16
12	.515	.598	1.12
13	.525	$.544^{* *}$	1.12
19	.577		1.12

[^4]Other estimates used in the proof may be obtained as a result of the foregoing inequalities.

The conclusions of Lemmas 2.2 and 2.3 (below) hold also in the cases where only two or three points of $Q_{1} \cup Q_{2}$ influence the domain of action with slight adjustments in parts of the proofs.

We assume for the present that as P_{i} is moved it does not meet the quadrant bisector before it reaches the second hyperbola. We treat the case in which this occurs after Lemma 2.3.

Denote by $H_{j}:\left|\left(x-x_{i}\right)\left(y-y_{j}\right)\right|=1$ where x_{j} and y_{j} are the coordinates of P_{j}.

$$
\begin{aligned}
\left|x_{i}\right|+\left|y_{i}\right|=s\left(x_{i}\right), & \left|\left|x_{i}\right|-\left|y_{i}\right|\right|=d\left(x_{i}\right) \\
s_{i}=s\left(x_{i}\right) / 2, & d_{i}=d\left(x_{i}\right) / 2
\end{aligned}
$$

Proof of Lemma 2.2. Either $P_{i}, i=1,2,3,4$, is on one of the hyperbolas $H_{j} ; j \neq i, j=0,1,2,3,4$, or it can be moved parallel to the quadrant bisector and toward P_{0} until it does lie on one. This displacement decreases s_{i} while leaving d_{i} unchanged. Hence, the domain of action is decreased (see Figure 11).
(a) Given P_{1} on only one of the hyperbolas, we show in the following in which direction it should be moved to decrease the domain of action. In all cases, it can be moved until it lies on the intersection of at least two hyperbolas.
(1) Let P_{1} be on H_{0}, i.e., $P_{0} P_{1}=1$ or $x_{1} y_{1}=1$. Set

$$
x+y=x_{1}+1 / x_{1}=s\left(x_{1}\right)
$$

and

$$
x-y=x_{1}-1 / x_{1}=d\left(x_{1}\right)
$$

Differentiating s and d with respect to x_{1}, we obtain

$$
s^{\prime}\left(x_{1}\right)=1-1 / x_{1}^{2}>0 \quad \text { for } x_{1}>1
$$

which is always true for $P_{1} \in \mathrm{I}$, and

$$
d^{\prime}\left(x_{1}\right)=1+1 / x_{1}^{2}>0
$$

Since both the sum and the differences of coordinates are increasing with

Figure 11

Figure 12
x_{1}, we could move P_{1} along H_{0} in the direction of decreasing x until it lies on a second hyperbola.
(2) Let P_{1} be on $H_{2}:\left|\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)\right|=1$.

$$
\begin{aligned}
s\left(x_{1}\right) & =x_{1}+y_{2}-1 /\left(x_{1}-x_{2}\right)=x+y \\
s^{\prime}\left(x_{1}\right) & =1+1 /\left(x_{1}-x_{2}\right)^{2}>0
\end{aligned}
$$

i.e., the sum of the coordinates decreases in the direction of decreasing x.

$$
\begin{aligned}
d\left(x_{1}\right) & =x_{1}-y_{2}+1 /\left(x_{1}-x_{2}\right)=x-y \\
d^{\prime}\left(x_{1}\right) & =1-1 /\left(x_{1}-x_{2}\right)^{2}<0 \quad \text { if } 0<x_{1}-x_{2}<1
\end{aligned}
$$

This will be the case if $\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)<-1$, i.e., if

$$
y_{1}-y_{2}<-x_{1}+x_{2} \quad \text { or } \quad y_{1}+x_{1}<y_{2}+x_{2}
$$

which is so since $M\left(O P_{1}\right)<M\left(O P_{2}\right)$.
Since the argument used above fails here, we show that the decrease in the domain of action because of the decrease in the sum of the coordinates overbalances the increase due to the increase in the difference of the coordinates. We use the following notation:

As x_{i} moves along H_{j} in a given direction

$$
x_{i} \rightarrow x_{i} \pm \delta=x_{i}^{*}
$$

Let $1 /\left(x_{i}-x_{j}\right)=a$ and $1 /\left(x_{\imath} \pm \delta-x_{j}\right)=b$ for $i, j=1,2,3,4 ; i \neq j$.
In the present case the original domain of action is increased by polygon B and decreased by polygon A (see Figure 12).

The area of B is

$$
|B|=\left(d_{1}^{*}-d_{1}\right)\left(s_{2}-s_{1}\right)
$$

while the area of A is

$$
|A|=\left(s_{1}-s_{1}^{*}\right)\left(s_{1}^{*}-d_{1}^{*}\right)+\frac{1}{2}\left(s_{1}^{*}-s_{1}\right)^{2}
$$

Note that

$$
\begin{aligned}
s_{1}-s_{1}^{*} & =\frac{1}{2}(\delta-a+b) \\
d_{1}^{*}-d_{1} & =\frac{1}{2}(-\delta-a+b)
\end{aligned}
$$

Therefore

$$
s_{1}-s_{1}^{*}>d_{1}^{*}-d_{1}
$$

Also

$$
\begin{aligned}
s_{1}^{*}-d_{1}^{*} \geqq 1-.35 & =.65 \\
s_{2}-s_{1} \leqq 1.5-1 & =.5
\end{aligned}
$$

and

$$
s_{1}^{*}-d_{1}^{*}>s_{2}-s_{1}
$$

Therefore, the area of A is greater than the area of B and the overall effect is a decrease in the domain of action.
(3) For P_{1} on H_{3} or H_{4}, the method of (a)(1) shows that both sum and
difference of the coordinates of P_{1} decrease as P_{1} is moved in the direction of decreasing x, hence $|D(O)|$ decreases also.

This completes the proof of Lemma 2.2(a).
(b) Let P_{4} be on one of the hyperbolas H_{0}, H_{1}, H_{3}. In each case it can be moved until it lies on the intersection of at least two hyperbolas. We use the method of (a)(1) for P_{4} on H_{0} or H_{1} and obtain the following:
(1) As P_{4} moves along H_{0} in the direction of increasing $x,|D(O)|$ decreases.
(2) As P_{4} is moved along H_{1} in the direction of increasing $x,|D(O)|$ decreases.

For P_{4} on H_{3} we use the methods of (a)(1) if $M\left(O P_{3}\right) \leqq M\left(O P_{4}\right)$ and obtain that $|D(O)|$ decreases as P_{4} is moved along H_{3} in the direction of increasing x.

If $M\left(O P_{3}\right)>M\left(O P_{4}\right)$, we use the method of (a)(2) and obtain that $|D(O)|$ decreases as P_{4} is moved along H_{3} in the direction of increasing x.
(c) Let P_{2} be on only one of the hyperbolas H_{0}, H_{1}. In each case, it can be moved until it lies on the intersection of at least two hyperbolas.

Since $M\left(O P_{1}\right)<M\left(O P_{2}\right)$, only the sum of the coordinates of P_{2} affects $D(O)$. We use the method in (a)(1) and obtain the following:
(1) If P_{2} is moved downward along H_{0} in the direction of increasing x, $|D(O)|$ decreases.
(2) If P_{2} is moved along H_{1} in the direction of decreasing $x,|D(0)|$ decreases.
(d) Let P_{3} be on only one of the hyperbolas H_{0}, H_{2}, H_{4}.
(1) For P_{3} on H_{0} or H_{4} using the method of (a)(1) we obtain that
(i) $|D(O)|$ decreases as P_{3} is moved downward along H_{0} in the direction of decreasing x;
(ii) $|D(O)|$ decreases as P_{3} is moved along H_{4} in the direction of increasing x.
(2) For P_{3} on H_{2} we use the method of (a)(2) and obtain that $|D(0)|$ decreases as P_{3} is moved along H_{2} in the direction of increasing x.

Lemma 2.3. Let there be a point of an admissible point set in each of the octants I, II, III, and IV. If $D(O) \cap\left(Q_{1} \cup Q_{2}\right)$ is determined by points "close" to P_{0}, and if P_{2} has minimum M-distance from P_{0}, then the following statements hold:
(a) P_{1} can be moved so as to have norm-distance 1 from at least two other points (allowing P_{0} to be one of them) while all other points are kept fixed and $|D(0)|$ is decreased.
(b) The same holds for P_{4}.
(c) The same holds for P_{3}.
(d) If P_{2} can be moved so as to decrease $|D(O)|$ until it has norm-distance

1 from P_{0}, P_{1}, or P_{3}, then it can be moved so that it has norm-distance 1 from another point as well.

The proof is similar to that of Lemma 2.2.
It remains for us to consider the case in which P_{i} moves along some H_{j} but meets the quadrant bisector before reaching the intersection with another H_{k}, i.e., before P_{i} has norm-distance 1 from two points under consideration.
P_{2} and P_{3} are never considered to be located on a quadrant bisector. Thus it is impossible for either to come to a quadrant bisector before reaching a second hyperbola in moving along some H_{j}. This can be verified by considering the intersection of $y=x$ or $y=-x$ with the branch of H_{j} in question.
P_{1} or P_{4} on the quadrant bisector constitute symmetric cases so without loss we can consider P_{1} on the line $y=x$. As observed in Lemma 1, this prevents P_{4} from being on $y=-x$ or rather, makes $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|>\frac{1}{2} \sqrt{ } 5$, if it is on $y=-x$. By the calculations used in proving Lemma 2 (when P_{1} is in the first sector-Table 3), we can conclude that whenever P_{1} meets $y=x$ before it meets a second hyperbola, $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ is already greater than or equal to $\frac{1}{2} \sqrt{ } 5$.

In the proof of Lemma 2 we will use the following notation:
$H_{i}:\left|\left(x-x_{i}\right)\left(y-y_{i}\right)\right|=1$ where x_{i} and y_{i} are the coordinates of the point P_{i}.
$P_{i} P_{j}$ denotes that the norm-distance between P_{i} and P_{j} is 1.
$P_{i} P_{j} P_{k}$ denotes a normed triangle; all three sides have norm-length 1.
$P_{i}=H_{j} H_{k} . \quad P_{i}$ is the point of intersection of H_{j} and H_{k}. We say the for we use it as referring to the intersection of a specific branch of H_{j} with a specific branch of H_{k}, this being clear from the context. We observe that $P_{i}=H_{j} H_{k}$ implies that $N\left(P_{i} P_{j}\right)=N\left(P_{i} P_{k}\right)=1$; similarly for $P_{i}=$ $H_{j} H_{k} H_{m}$.

Proof of Lemma 2. As above, P_{1} denotes the point in I, P_{2} in II, P_{3} in III, P_{4} in IV influencing $D(O)$.
(a) Let $M\left(O P_{1}\right) \leqq M\left(O P_{i}\right)(i=2,3,4)$.

The points $P_{1}, P_{2}, P_{3}, P_{4}$, and $P_{0}=O$ determine ten segments of normlength greater than or equal to $1 . N\left(P_{2} P_{4}\right)$, however, can never equal 1 so we have nine possible norm-lengths 1 . We will show first that if there are at least seven norm-distances equal to 1 , then the five points are part of a critical lattice for δ and therefore, $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5$. The number of ways in which we can have seven norm-distances equal to 1 is the same as the number of ways we can have two norm-distances greater than or equal to 1 . If we number the nine possible joins as in Figure 13 and use the symbol $i j$ to mean that the joins marked i and j have norm-lengths greater than or equal to 1 while the others are equal to 1 , then there are the following pos-

Figure 13

Figure 14
sibilities:

12	16	23	27	35	39	48	58	69
13	17	24	28	36	45	49	59	78
14	18	25	29	37	46	56	67	79
15	19	26	34	38	47	57	68	89

Each of these determines a certain seven-lined configuration, in which the lines represent norm-distances equal to 1 . We will discuss a typical case, 12, in detail. The others are treated similarly and yield the same results.

Let $\&$ be the critical lattice generated by the normed triangle $P_{0} P_{3} P_{4}$. (See Figure 14.) We will show that $P_{1} \in \mathscr{L}, P_{2} \in \mathscr{L}$ by showing that $P_{1}=P_{3}-P_{4}$ and $P_{2}=P_{1}+P_{3}$. By simple computation we have that
(i) the lattice point $P_{3}-P_{4}=H_{0} H_{3} H_{4}$ since it has norm-distance 1 from P_{3}, P_{4} and also from P_{0} as can be verified by computing the product of the coordinates of the point ($P_{3}-P_{4}$).

We are given that
(ii) $P_{1}=H_{3} H_{4}$.
(i) and (ii) imply that $P_{1}=P_{3}-P_{4}$. Similarly $P_{1}+P_{3}=H_{0} H_{1} H_{3}$ and $P_{2}=H_{0} H_{3}$ imply that $P_{2}=P_{1}+P_{3}$.

Hence the five points $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$, all belong to the same critical lattice.

Suppose now that there are six norm-distances equal to 1. In the above notation we have the following list of ways to have three norm-distances greater than or equal to 1 .

$12-(3$ to 9$)$	$23-(4$ to 9$)$	$35-(6$ to 9$)$	$48-9$
$13-(4$ to 9$)$	$24-(5$ to 9$)$	$36-(7$ to 9$)$	$56-(7$ to 9$)$
$14-(5$ to 9$)$	$25-(6$ to 9$)$	$37-(8$ and 9$)$	$57-(8$ and 9$)$
$15-(6$ to 9$)$	$26-(7$ to 9$)$	$38-9$	$58-9$
$16-(7$ to 9$)$	$27-(8$ and 9$)$	$45-(6$ to 9$)$	$67-(8$ and 9$)$
$17-(8$ and 9$)$	$28-9$	$46-(7$ to 9$)$	$68-9$
$18-9$	$34-(5$ to 9$)$	$47-(8$ and 9$)$	$78-9$

Using the results of Lemma 2.2 we need not consider the possibilities containing the following combinations:

128	189	23	36	48	349	479
129	289	45	58	379		

where 128, for example, implies that P_{1} is on H_{3} only. But by Lemma 2.2(a) we know that $|D(O)|$ can be decreased until P_{1} lies on at least one other hyperbola.

In the remaining cases we show that $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ determined by the given configuration is at least as great as that determined by the points of a critical lattice and hence is greater than or equal to $\frac{1}{2} \sqrt{ } 5$.

When comparing two domains of action we always assume that
(1) the two sets of points which determine them differ in only one point, e.g., $\left(R P_{i} P_{j} P_{k}\right)$ and $\left(Q P_{i} P_{j} P_{k}\right)$,
(2) R and Q both are on the same branch of some hyperbola.

When these conditions are satisfied, Lemma 2.2 and the admissibility of the point set enable us to determine which domain of action is smaller. For brevity we speak of the domains as corresponding to R and Q since the effect of P_{i}, P_{j}, P_{k} is the same in both instances.

This comparison method is used repeatedly in the following proofs. Consider the case 124. (See Figure 15.) $P_{0} P_{2} P_{3}$ generates a critical lattice $\&$. Let $P_{1}^{\prime} \in \mathcal{L}$ be such that $P_{1}^{\prime}=P_{2}-P_{3}$; then $P_{1}^{\prime}=H_{0} H_{2} H_{3}$. But $P_{1}=H_{3} H_{4}$. Then P_{1} and P_{1}^{\prime} are on H_{3}. By Lemma 2.2(a), $|D(O)|$ decreases as a point on H_{3} is moved toward P_{0} (in the direction of decreasing x). Since P_{1}^{\prime} is on H_{0}, if P_{1} is to determine a smaller domain of action for O than P_{1}^{\prime} then it is necessary that $N(O P)$ be less than 1. But P_{1} is a point of an \mathcal{S}-admissible set. Therefore, P_{1} must determine a domain of action at least as great as that determined by P_{1}^{\prime}. (We denote this by $P_{1}^{\prime} \leqq P_{1}$.)

Let $P_{3}-P_{1}^{\prime}=P_{4}^{\prime} \in \mathscr{L}$.
Then $P_{4}^{\prime}=H_{0} H_{3}$ while $P_{4}=H_{0} H_{1}$. Thus both P_{4} and P_{4}^{\prime} are on H_{0}. By Lemma 2.2(c), $|D(O)|$ decreases as a point is moved along H_{0} toward P_{0} (i.e., in the direction of increasing x). If P_{4} is to determine a smaller domain of action for O than P_{4}^{\prime} does then $N\left(P_{4} P_{3}\right)<1$ since P_{4}^{\prime} is on H_{3}. Hence by the admissibility of the point set \mathcal{P}, we have $P_{4}^{\prime} \leqq P_{4}$.

Therefore, the configuration in question determines a domain of action in $Q_{1} \cup Q_{2}$ which is at least as great as that determined by points of the critical lattice \mathcal{L} and therefore is greater than or equal to $\frac{1}{2} \sqrt{ } 5$.

Suppose now that there are only five norm-distances equal to 1 . Consider all possible ways in which we can have four norm-distances greater than or equal to 1 . By using the results of Lemma 2.2 to reduce the number of cases

Figure 15

Figure 16
to be considered, the remaining cases can be handled as in the preceding discussion. In each case we obtain that the given configuration determines

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5
$$

Lemmas 2.2 and 2.3 imply that if there are fewer than five norm-distances equal to 1 , then $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ can be decreased by moving certain of the points until at least five norm-distances are 1.

This completes part (a) of the present case.
Part (b), with P_{2} the point of \mathcal{P} in $Q_{1} \cup Q_{2}$ having smallest M-distance from O, follows by similar arguments.

6. Proof of Lemma 3

Now consider the case of three points in the upper half-plane influencing the domain of action of O.

These three points and $O=P_{0}$ determine six segments each of norm-length greater than or equal to 1 . If all six of these norm-distances are 1 , then the four points belong to one and the same critical lattice. The same conclusion can be reached if we have five norm-distances equal to 1 . Here, however, there are six ways in which this can occur for each choice of the three points. In the proof the methods of the preceding section are used.

Lemmas 2.2 and 2.3 imply that if there are fewer than four norm-distances equal to 1 (among the points $O=P_{0}$ and the three points of $Q_{1} \cup Q_{2}$ influencing $D(O)$), then $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ can be decreased by moving certain of the points until at least four norm-distances are 1.

If there are only four norm-distances equal to 1 , we use the comparison method to prove that in each instance $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5$.

7. Proof of Lemma 4

Suppose now that there is only one point of \mathcal{P} in Q_{1} and one point in Q_{2} influencing $D(O)$. We have the following possibilities:
A. The closest point is in I and the second point is (1) in III; (2) in IV.
B. The closest point is in II and the second point is (1) in III; (2) in IV.

Case A. (1) The two points are P_{1} and P_{3}. By the arguments of Lemma 2.2(a), we can decrease $D(O)$ by moving P_{1} until it has norm-distance 1 from P_{0} and P_{3}. (See Figure 16.)
N. Smith, [3, p. 7] proved that a triangle with vertices belonging to an δ-admissible point set and satisfying the condition that the slopes of the three sides are not all positive has area greater than or equal to $\frac{1}{2} \sqrt{ } 5$. (Smith called such a triangle a type (a) triangle.)
$P_{0} P_{1} P_{3}$ is a type (a) triangle and hence its area is greater than or equal to $\frac{1}{2} \sqrt{ } 5$. Hence, the mesh of the lattice $\&$ generated by P_{1} and P_{3} is greater than or equal to $\sqrt{ } 5$.

By hypothesis, $N\left(P_{0} P_{3}\right) \geqq 1$. If $N\left(P_{0} P_{3}\right)>1$ simple computational
arguments show that $P_{2}=P_{1}+P_{3}$ is inside \mathcal{S}, i.e., $x_{2} y_{2}<1$. Hence \mathfrak{L} is admissible if and only if $N\left(P_{0} P_{3}\right)=1$. But in any case the cut-off from Q_{3} and Q_{4} could be no closer to O than when determined by a lattice point; hence, $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5$.
(2) The two points are P_{1} and P_{4}. In this case there would be an infinite strip about the y-axis contained in $D(O)$; hence, we need not consider it further.

Case B. (1) The two points are P_{2} and P_{3}. By the arguments of Lemma 2.3(c), we can move P_{2} to decrease $D(O)$ until $N\left(P_{2} P_{3}\right)=$ $N\left(P_{0} P_{2}\right)=1$. Let P_{4}^{\prime} be a point of the lattice generated by $P_{0} P_{2} P_{3}$. It is clear that the domain of action determined by $P_{0}, P_{2}, P_{3}, P_{4}$, is less than or equal to that determined by P_{0}, P_{2}, P_{3} only. However, in Lemma 3 we proved that $P_{0}, P_{2}, P_{3}, P_{4}^{\prime}$ determine

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right| \geqq \frac{1}{2} \sqrt{ } 5
$$

(2) Again by arguments of Lemma 2.3, we can move P_{4} to decrease $D(O)$ until $N\left(P_{0} P_{4}\right)=N\left(P_{2} P_{4}\right)=1$ and the argument of $\mathrm{A}(1)$ holds.

This completes the proof of Lemma 4.

8. Conclusion

With the completion of Lemma 4 the proof of the theorem stated in Section 3 is also complete, namely, if O is any point of an admissible point set \mathcal{P} for $\mathcal{S}:|x y| \leqq 1$, then $|D(O)| \geqq \sqrt{ } 5$. Thus, using the domain of action method on S, we find that $D(\mathcal{P}) \leqq 1 / \sqrt{ } 5$ which is best possible.

Note also that $|D(O)|=\sqrt{ } 5$ only if the points P_{i} which determine $D(O)$ are part of a critical lattice. This is seen as follows.

If the points P_{i} are moved as explained in Lemmas 2.2 and 2.3, $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ decreases strictly. In the proof of Lemma 2, all cases involving only five norm-distances equal to 1 can be shown to determine $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ greater than or equal to that determined by a configuration with six norm-distances equal to 1.

Therefore, it suffices to prove that any configuration with exactly six normdistances equal to 1 determines

$$
\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|>\frac{1}{2} \sqrt{ } 5 .
$$

Consider the configuration denoted by the symbol 124 (above). If $P_{1}^{\prime}<P_{1}$ then $\left|D(O) \cap\left(Q_{1} \cup Q_{2}\right)\right|$ determined by the critical lattice is strictly less than that determined by the configuration 124, and hence the latter domain is strictly greater than $\frac{1}{2} \sqrt{ } 5$.

If $P_{1}^{\prime}=P_{1}$ then P_{1}^{\prime} and P_{1} coincide and $N\left(P_{0} P_{1}\right)=1$. Then there are seven norm-distances equal to 1 and, by a previous argument, the points $P_{i}, i=0,1,2,3,4$, all belong to the same critical lattice.

A similar argument will give the same result for the remaining configurations involving five points and for the configurations for three and four points.

If the points in $Q_{1} \cup Q_{2}$ and the points in $Q_{3} \cup Q_{4}$ which determine $D(O)$ were part of two different critical lattices, or if a point of the corresponding critical lattice which influences $D(O)$ has no counterpart in the given set of points, then $|D(O)|>5$ as can be verified by simple computation.

Therefore, if $|D(O)|=\sqrt{ } 5, D(O)$ must be determined by points which all belong to the same critical lattice and further must be identical with a typical domain of action of a point of such a critical lattice.

References

1. J. W. S. Cassels, An introduction to the geometry of numbers, Berlin, Springer-Verlag, 1959.
2. M. Rahman, A statistical problem in the geometry of numbers, Dissertation, McGill University, Montreal, 1957.
3. N. E. Smith, A statistical problem in the geometry of numbers, Dissertation, McGill University, Montreal, 1951.

University of Notre Dame
Notre Dame, Indiana
St. Mary's Dominican College
New Orleans, Louisiana

[^0]: Received April 13, 1962; received in revised form July 22, 1963.

[^1]: ${ }^{1}$ It is possible that in this case other inscribed convex bodies would give the desired results since S has a high degree of symmetry. However, in general, it seems that some care should be exercised in selecting the inscribed convex body which will be used to define the M-distance if a sharp estimate is to be obtained. It is easy to construct examples of point sets for which two distinct M-distances give different minimum values of $D(O)$.

[^2]: ${ }^{2}$ Where a specific quadrant is mentioned, it is understood that the points could be put there by a reflection if necessary; hence, there is no loss of generality.

[^3]: ${ }^{3}$ For simplicity we continue to call the domain of action being considered $D(O)$ instead of $D\left(P_{0}\right)$.

[^4]: * Estimate of $\frac{1}{2}\left(y_{4}-x_{4}\right)$ needed here. For some arrangements of points in Lemmas 3 and 4 estimates of $\frac{1}{2}\left(y_{3}-x_{3}\right)$ are also needed for P_{1} in 1.
 ${ }^{* *} M\left(O P_{1}\right)$ is assumed to be less than or equal to $M\left(O P_{i}\right), i=2,3,4$.

