Z-A GROUPS WHICH SATISFY THE m th ENGEL CONDITION

BY
Kenneth W. Weston ${ }^{1}$
I. Introduction

Suppose that A and B are subgroups of a group G. If there exists a positive integer m such that the commutator

$$
(\cdots((a, \underbrace{b), \cdots), b}_{m})=1
$$

for all a in A and b in B, then we write $A|e: m| B$. A group G which satisfies $G|e: m| G$ is said to satisfy the $m^{\text {th }}$ Engel condition.

The problem of determining for what groups the $m^{\text {th }}$ Engel condition implies nilpotence has been studied by several authors. For example, K. Gruenberg in [2] has shown that finitely generated soluble groups which satisfy the $m^{\text {th }}$ Engel condition are nilpotent. R. Baer in [1] adds groups which satisfy the maximal condition to the list. In [3] Gruenberg includes the torsion-free soluble groups

This paper grew out of an investigation of the commutator structure of Z-A groups, that is groups in which G itself is a term of its upper central series. The class of a Z-A group is the smallest ordinal n such that $Z_{n}=G$ where Z_{n} denotes the $n^{\text {th }}$ term in the upper central series of G. The investigation resulted in a curious classification of Z-A groups. This classification is based on a class of Z-A groups which it seemed natural to call Z-A (q) groups for integer q. We will show that Z-A(1) is equal to the above class of groups and that Z-A $(1)>\mathrm{Z}-\mathrm{A}(2)>\mathrm{Z}-\mathrm{A}(3)$. The class of Z-A(3) groups proved to be interesting. For instance, an example of a metabelian Z-A(3) group is found which has exponent 4 and satisfies the $3^{\text {rd }}$ Engel condition, but is not nilpotent. However, every Z-A(3) group with prime exponent is automatically nilpotent. It may not be significant but no example of a Z-A(3) group has been found which is not of class $\omega+1$ and where Z_{ω} is not abelian. The following pages will investigate under what conditions the Engel condition implies nilpotence for Z-A (3) groups.

We will recall some definitions and notations. If x and y are elements of a group, then denote the product $x^{-1} \cdot y^{-1} \cdot x \cdot y$ of a group by the commutator (x, y). We define commutators of higher order by the recursive rule $\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)=\left(\left(x_{1}, \cdots, x_{n-1}\right), x_{n}\right)$. Define the weight $w(c)$ of the commutator c constructed from the elements x_{1}, \cdots, x_{n} recursively by defining the weight of the elements x_{1}, \cdots, x_{n} to be 1 , and if $c=\left(c_{i}, c_{j}\right)$

[^0]then $w(c)=w\left(c_{i}\right)+w\left(c_{j}\right)$ where both c_{i} and c_{j} are commutators in x_{1}, \cdots, x_{n}. For the sake of convenience, designate the commutator
$$
(x, \underbrace{y, \cdots, y}_{k}) \text { by }(x, k y) \text {. }
$$

If A and B are two subgroups of G then the subgroup generated by the commutators (a, b) where a is in A and b is in B will be designated by (A, B).

Suppose that G is a Z-A group of class n for some ordinal n. If for some positive integer q we have $\left(Z_{\alpha+q}, Z_{\beta}\right) \leqq Z_{\alpha}$ for all ordinals α, β with $\alpha+q, \beta<n$ then G will be called a Z-A (q) group.

Suppose G is a Z-A group of class n. Since for all ordinals α and β, $\left(Z_{\alpha+1}, Z_{\beta}\right) \leqq Z_{\alpha}$ we have that G is a Z-A(1) group. Obviously Z-A $(q) \geqq$ Z-A $(q+1)$.

There are examples of nilpotent groups of class 3 which have a nonabelian upper central term Z_{2}. For instance consider the group of 2 by 2 integral matrices with components reduced modulo 4 of the form $I+P+2 Q$ where I is the identity, P is an integral matrix with zeros in every row except the last and in the main diagonal and Q is an integral matrix. Hence Z-A(1) > Z-A(2).

The following example presents a Z-A(2) group G which is not a Z-A(3) group. The example G will be a semidirect product of an abelian group A by a nilpotent group N. Let A be a torsion-free abelian group generated by the elements a_{1}, a_{2}, a_{3} and b.

We define the following automorphisms on A.

$$
\begin{array}{ll}
\frac{A \rightarrow A^{\alpha}}{a_{1}^{\alpha}=a_{1},} & \frac{A \rightarrow A^{\beta}}{a_{1}^{\beta}=a_{1}} \\
a_{2}^{\alpha}=a_{2} \cdot a_{1}, & a_{2}^{\beta}=a_{2} \cdot a_{1} \\
a_{3}^{\alpha}=a_{3}, & a_{3}^{\beta}=a_{3} \cdot a_{2} \\
b^{\alpha}=b \cdot a_{3}, & b^{\beta}=b .
\end{array}
$$

Let N be the automorphism group generated by α and β. Since G is the semidirect product of A by N then A is a normal subgroup of G and N is a subgroup of G whose elements are the coset representatives of G / A. From the definitions of α and β we have $(b, \alpha)=a_{3},\left(a_{3}, \beta\right)=a_{2}$ and $\left(a_{2}, \beta\right)=a_{1}$. Consequently G is generated by the elements α, β and b.

It will be convenient to represent the commutator (x, y) by $x \rightarrow y$ in order to diagram the commutators in the elements α, β and b. Of course we mean $x \rightarrow y \rightarrow z$ to be $(x \rightarrow y) \rightarrow z$. For $x \neq 1$ and $y \neq 1$, if $(x, y)=1$ we write $x \rightarrow y=1$. The accompanying diagrams will show the values of all of the commutators in the elements α, β and b.

$\beta \longrightarrow \longrightarrow=1$

The following tables of automorphisms will be included in order to verify these diagrams.

$$
\begin{array}{lll}
a_{1}^{(\alpha, \beta)}=a_{1}, & a_{1}^{(\alpha, \beta, \beta)}=a_{1}, & a_{1}^{(\beta, \alpha, \alpha)}=a_{1}, \\
a_{2}^{(\alpha, \beta)}=a_{2}, & a_{2}^{(\alpha, \beta, \beta)}=a_{2}, & a_{2}^{(\beta, \alpha, \alpha)}=a_{2}, \\
a_{3}^{(\alpha, \beta)}=a_{3} \cdot a_{1}, & a_{3}^{(\alpha, \beta, \beta)}=a_{3}, & a_{3}^{(\beta, \alpha, \alpha)}=a_{3}, \\
b^{(\alpha, \beta)}=b \cdot a_{2} a_{1}, & b^{{ }^{\alpha, \beta, \beta)}}=b \cdot a_{1}, & b^{(\beta, \alpha, \alpha)}=b .
\end{array}
$$

The terms of the lower central series of G are generated from the commutators of its generators. Hence the diagrams show that G is nilpotent of class 4. If B is a group, we designate the $r^{\text {th }}$ term of the lower central series by B_{r}. By using P. Hall's collection process [4, pp. 165-168] we can express every element x of G by the product $\alpha^{p} \cdot \beta^{q} \cdot b^{r} \cdot(\alpha, \beta)^{s} \cdot(\alpha, b)^{t} \cdot z$ where z is in G_{2}.

In the calculations that follow we will make repeated use of the commutator identity, which appears in [4, Theorem 10.2.12, p. 150]:

$$
\begin{equation*}
(x \cdot y, z)=(x, z) \cdot(x, z, y) \cdot(y, z) \tag{1}
\end{equation*}
$$

Therefore, if x and z commute, we have $(x \cdot y, z)=(y, z)$.
If H designates the group generated by elements x and (x, a), then for any integer n by [4, Theorem 12.49, p. 185] we have

$$
\begin{equation*}
\left(x^{n}, a\right) \equiv(x, a)^{n} \quad \bmod H_{1} . \tag{2}
\end{equation*}
$$

The diagrams show that α, β and b are not in Z_{3}. Suppose that for some p, q and $r, \alpha^{p} \cdot \beta^{q} \cdot b^{r}$ is in Z_{3}. Then $\left(\alpha^{p} \cdot \beta^{q} \cdot b^{r}, \alpha\right) \equiv 1 \bmod Z_{2}$. But from (1) and (2) we have

$$
\begin{aligned}
\left(\alpha^{p} \cdot \beta^{q} \cdot b^{r}, \alpha\right) & =\left(\beta^{q} \cdot b^{r}, \alpha\right) \\
& \equiv\left(\beta^{q}, \alpha\right) \cdot\left(b^{r}, \alpha\right) \bmod Z_{2} \\
& \equiv(\beta, \alpha)^{q} \cdot(b, \alpha)^{r} \bmod Z_{2}
\end{aligned}
$$

Consequently we must have that $(\beta, \alpha)^{q} \cdot(b, \alpha)^{r}$ is in Z_{2}. Therefore by (1)

$$
\begin{aligned}
\left((\beta, \alpha)^{q} \cdot(b, \alpha)^{r}, b\right) & =\left((\beta, \alpha)^{q}, b\right) \cdot\left((\beta, \alpha)^{q}, b,(b, \alpha)^{r}\right) \cdot\left((b, \alpha)^{r}, b\right) \\
& \equiv\left((\beta, \alpha)^{q}, b\right) \bmod Z_{1} \\
& \equiv(\beta, \alpha, b)^{q} \bmod Z_{1}
\end{aligned}
$$

But from the tables we have

$$
(\beta, \alpha, b)^{q}=\left[b^{-1(\beta, \alpha)} \cdot b\right]^{q}=a_{2}^{q} \cdot a_{1}^{q}
$$

Since $\left(a_{2}^{q} \cdot a_{1}^{q}, \alpha\right)=\left(a_{2}^{q}, \alpha\right)=a_{1}^{q}$, we have that $a_{2}^{q} \cdot a_{1}^{q}$ is not in Z_{1} unless $q=0$. If $\alpha^{p} \cdot b^{r} \equiv 1 \bmod Z_{3}$, then by (2)

$$
\begin{aligned}
\left(\alpha^{p} \cdot b^{r}, b\right) & =\left(\alpha^{p}, b\right)=(\alpha, b)^{p}=a_{3}^{-p} \\
& \equiv 1 \bmod Z_{2}
\end{aligned}
$$

But $\left(a_{3}^{-p}, \beta, \beta\right)=a_{1}^{-p} \neq 1$. Thus $p=0$ if $\alpha^{p} \cdot b^{r} \equiv 1 \bmod Z_{3}$. Now $\left(b^{r}, \alpha\right)=a_{3}^{r}$ is not in Z_{2}. If an element x is in Z_{3} it must be represented by the product $(\alpha, \beta)^{s} \cdot(\alpha, \beta)^{t} \cdot z$ where z is in G_{2} since $\alpha^{p} \cdot \beta^{q} \cdot b^{r}$ is not in Z_{3} unless $p=q=r=0$. Suppose the product $(\alpha, \beta)^{s} \cdot(\alpha, \beta)^{t} \equiv 1 \bmod Z_{2}$. Then by (1) and (2) we have

$$
\begin{aligned}
\left((\alpha, \beta)^{s} \cdot(\alpha, b)^{t}, b\right) & =\left((\alpha, \beta)^{s}, b\right)=(\alpha, \beta, b)^{s} \\
& ={a_{2}^{-s} \cdot a_{1}^{-s}} \equiv \equiv 1 \bmod Z_{1} .
\end{aligned}
$$

Thus $s=0$. Since $(\alpha, b)^{t}=a_{3}^{-t}$ the commutator $(\alpha, b)^{t}$ is not in Z_{2} unless $t=0$. Consequently $(\alpha, \beta)^{s} \cdot(\alpha, b)^{t} \equiv 1 \bmod Z_{2}$ only if $s=t=0$.

Since every element x of G can be expressed in the form

$$
\alpha^{p} \cdot \beta^{q} \cdot b^{r} \cdot(\alpha, \beta)^{s} \cdot(\alpha, b)^{t} \cdot z
$$

where $z \in G_{2}$, then $x \equiv 1 \bmod Z_{2}$ only if $p=q=r=s=t=0$. Hence Z_{2} is in G_{2}. Also x is in Z_{3} only if $p=q=r=0$ and hence Z_{3} is in G_{1}. Since $G_{4}=1$ we have that $\left(G_{1}, G_{2}\right) \leqq G_{4}=1$. Therefore $\left(Z_{3}, Z_{2}\right)=1$. We also have that $\left(Z_{3}, Z_{3}\right) \leqq\left(G_{1}, G_{1}\right) \leqq G_{3} \leqq Z_{1}$. Therefore G is a

Z-A (2) group. But (α, β) and (α, b) are in Z_{3} and

$$
((\alpha, \beta),(\alpha, b))=\left((\alpha, \beta), a_{3}^{-1}\right)=a_{1}^{-1} \neq 1
$$

Therefore $\left(Z_{3}, Z_{3}\right) \neq 1$. Hence G is not a Z-A(3) group.
Since this paper will be primarily concerned with determining the nilpotent groups from among the Z-A(3) groups, we will next present an example of a metabelian Z-A(3) group which satisfies the $3^{\text {rd }}$ Engel condition and has exponent 4 but is not nilpotent.

Suppose A^{*} is the direct sum of a countable number of copies of the cyclic group C of order two. Designate the $\alpha^{\text {th }}$ summand by C_{α} where C_{α} is generated by a_{α}. Let A be the subgroup of A^{*} consisting of the direct sum of the summands C_{α} where for no prime p does p^{2} divide α. Now for each prime p define the automorphism λ_{p} on A by the following equations. Suppose α_{α} is in A. Then if the prime p divides α we define $a_{\alpha}^{\lambda_{p}}=a_{\alpha}+a_{\alpha / p}$, and if p does not divide $\alpha, a_{\alpha}^{\lambda_{p}}=a_{\alpha}$. If the prime p divides α where a_{α} is in A then $a_{\alpha}^{\lambda_{p}^{2}}=a^{\lambda_{p}}+a_{\alpha / p}^{\lambda_{p}}=a_{\alpha}$. Therefore $\lambda_{p}^{2}=1$ for every prime p. Suppose the primes p and p^{\prime} both divide α where a_{α} is in A. Then

$$
a_{\alpha}^{\lambda_{\alpha} \lambda_{p} p^{\prime}}=a^{\lambda_{p} \lambda_{p}}=a_{\alpha / p}+a_{\alpha / p^{\prime}}+a_{\alpha / p p^{\prime}}
$$

Obviously if only one or none of the primes divides α, the corresponding automorphisms still commute. Let B designate the abelian group generated by the automorphisms λ_{p}. We define H to be the semidirect product of A by B. Then A is a normal subgroup of $H, H / A$ is isomorphic to B and H is the union of A and B. The following are some properties of H.
(a) $A|e: 2| B$.

Let the symbol \prod designate a finite product. So if $b=\prod_{i=1}^{k} \lambda_{p_{i}}$ then for $q=\prod_{i=1}^{k}\left[\lambda_{p_{i}}-1\right]^{2}$ and a in A we have $(a, b, b)=a^{q}=1$.
(b) $(A, A)=(B, B)=1$.

Both A and B have been shown to be abelian.
(c) $(B, A, A)=1$.

The subgroup A is normal in H. Hence (c) follows from (b).
(d) $A|e: 2| H$.

In [4, Theorem 11.1-6, p. 167] we find the commutator identity,

$$
\begin{equation*}
(x, y \cdot z)=(x, z) \cdot(x, y) \cdot(x, y, z) \tag{3}
\end{equation*}
$$

Thus (d) follows from (3), (a) and (c).
(e) H is metabelian (i.e. the second term of the derived series of H is 1).

Since (H, H) is in A, (e) follows from (b).
(f) $\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=\left(h_{1}, h_{2}, h_{4}, h_{3}\right)$ for all h_{1}, h_{2}, h_{3} and h_{4} in H.

For H is metabelian.
(g) $\left(b, a \cdot b^{\prime}, a \cdot b^{\prime}\right)=\left(b, a, b^{\prime}\right)$ for all b, b^{\prime} in B and a in A.
$\left(b, a \cdot b^{\prime}, a \cdot b^{\prime}\right)=\left(b, a \cdot b^{\prime}, b^{\prime}\right)$ as $\left(b, a \cdot b^{\prime}\right)$ and a commute, both being contained in A;

$$
\begin{aligned}
\left(b, a \cdot b^{\prime}, b^{\prime}\right) & =\left((b, a) \cdot\left(b, a, b^{\prime}\right), b^{\prime}\right)=\left(b, a, b^{\prime}\right) \cdot\left(b, a, b^{\prime}, b^{\prime}\right) \\
& =\left(b, a, b^{\prime}\right)
\end{aligned}
$$

(h) $B|e: 3| H$.

Suppose that b is in B and $a \cdot b^{\prime}$ is in H. By (g) we have

$$
\left(b, a \cdot b^{\prime}, a \cdot b^{\prime}\right)=\left(b, a, b^{\prime}\right)
$$

Therefore by (3), (a) and (b)

$$
\begin{aligned}
\left(b, a \cdot b^{\prime}, a \cdot b^{\prime}, a \cdot b^{\prime}\right) & =\left(b, a, b^{\prime}, b^{\prime}\right) \cdot\left(b, a, b^{\prime}, a\right) \cdot\left(b, a, b^{\prime}, a, b^{r}\right) \\
& =1
\end{aligned}
$$

$$
\begin{equation*}
\left(a, a_{1} \cdot b_{1}, \cdots, a_{n} \cdot b_{n}\right)=\left(a, b_{1}, \cdots, b_{n}\right) \text { for all } a, a_{1}, \cdots, a_{n} \tag{i}
\end{equation*}
$$

If $n=1,\left(a, a_{1} \cdot b_{1}\right)=\left(a, b_{1}\right)$ as a and a_{1} commute. Assume (i) is true for $n=k$. By the induction hypothesis

$$
\left(a, a_{1} \cdot b_{1}, a_{2} \cdot b_{2}, \cdots, b_{k} \cdot a_{k}, a_{k+1} \cdot b_{k+1}\right)=\left(a, b_{1}, \cdots, b_{k}, a_{k+1} \cdot b_{k+1}\right)
$$

Now $\left(a, b_{1}, \cdots, b_{k}\right)$ and a_{k+1} commute as elements of A; therefore

$$
\left(a, b_{1}, \cdots, b_{k}, a_{k+1} \cdot b_{k+1}\right)=\left(a, b_{1}, \cdots, b_{k}, b_{k+1}\right)
$$

For any number n let $\alpha=\prod_{i=1}^{n} p_{i}$ where $p_{i} \neq p_{j}$ for $i \neq j$. Suppose $b_{i}=\lambda_{p_{i}}$, $i=1, \cdots, n-1$. Then if $t=\prod_{i=1}^{n-1}\left[\lambda_{p_{i}}-1\right]$ and $s=\prod_{i=1}^{n} p_{i}$,

$$
\left(a, b_{1}, \cdots, b_{n-1}\right)=a_{s}^{t}=a_{p_{n}} \neq 1
$$

Therefore H is not nilpotent.
Suppose that λ_{p} is in B and a_{α} is in A, where α is the product of at most n primes. If the prime p does not divide α then $\left(a_{\alpha}, \lambda_{p}\right)=1$. If p divides α then $\left(a_{\alpha}, \lambda_{p}\right)=a_{\alpha / p}$. Therefore $\left(a_{\alpha}, \lambda_{p_{1}}, \cdots, \lambda_{p_{m}}\right)=1$ for all primes $p_{1}, \cdots, p_{m}, m>n$.

Suppose $a_{i} \in A$ and $b_{i} \in B$ for $i=1, \cdots, m$. Then by (i) we have

$$
\left(a_{\alpha}, a_{1} \cdot b_{1}, \cdots, a_{m} \cdot b_{m}\right)=\left(a_{\alpha}, b_{1}, \cdots, b_{m}\right)
$$

Since each b_{i} is the product of elements λ_{p}, by (1), (3) and the following identity from [5, 1.1, p. 107]

$$
\begin{equation*}
(x \cdot y, z)=(x, z) \cdot(x, z, y) \cdot(y, z) \tag{4}
\end{equation*}
$$

we can expand ($a_{\alpha}, b_{1}, \cdots, b_{m}$) into factors of the form ($a_{\alpha}, \lambda_{p_{1}}, \cdots, \lambda_{p_{r}}$), $r \geqq m>n$. Therefore $\left(a_{\alpha}, a_{1} \cdot b_{1}, \cdots, a_{m} \cdot b_{m}\right)=1$ and $a_{\alpha} \in Z_{m}$. Hence $A \leqq Z_{\omega}$.

Given $\lambda_{p_{0}}$ and primes p_{1}, \cdots, p_{n+1} where $p_{i} \neq p_{0}$ for $i \neq 0$ if $r=\prod_{i=0}^{n+1} p_{i}$ and $a_{r} \in A$, we have

$$
\left(\lambda_{p_{0}}, a_{r}, \lambda_{p_{1}}, \cdots, \lambda_{p_{n}}\right)=-a_{p_{n+1}} \neq 1 .
$$

Therefore $\lambda_{p_{0}} \notin Z_{\omega}$ for every prime p_{0} and hence B is not in Z_{ω}. Thus $A=Z_{\omega}$ since $H=A \cdot B$. Since $H / Z_{\omega}=B$ we have that $H=Z_{\omega+1}$.

Consider any two elements $a \cdot b$ and $a^{\prime} \cdot b^{\prime}$ of H where $a, a^{\prime} \epsilon A$ and $b, b^{\prime} \in B$. By (i), (e), and (a)

$$
\left(a \cdot b, a^{\prime} \cdot b^{\prime}, a^{\prime} \cdot b^{\prime}, a^{\prime} \cdot b^{\prime}\right)=\left(a \cdot b, a^{\prime} \cdot b^{\prime}, b^{\prime}, b^{\prime}\right)=1
$$

Thus $H|e: 3| H$.
Since $Z_{\omega}=A$ we have that $\left(Z_{\alpha}, Z_{\omega}\right)=1$ for $\alpha=1,2, \cdots$ by (b). Therefore H is a Z-A(3) group. If $a \cdot b$ is any element of H where a is in A and b is in B, then since $A^{2}=B^{2}=1$ we have

$$
[a \cdot b]^{2}=a \cdot b \cdot a \cdot b=a \cdot b^{2} \cdot a \cdot(a, b)=(a, b)
$$

Since A is normal in $H,(a, b) \in A$. Therefore $H^{4}=1$ since $A^{2}=1$.

II. The derived module and ring of a $\mathrm{Z}-\mathrm{A}(2)$ group

The verification that Z-A(2) groups cannot be of class equal to a limit ordinal is trivial and therefore omitted. We will assume throughout the following discussion that G is a Z-A(2) group of class $n+1$. We define the derived module M of G to be the direct sum of the abelian groups $Z_{\alpha+1} / Z_{\alpha}$ for $0 \leqq \alpha<n$. The elements of $Z_{\alpha+1} / Z_{\alpha}$ will be called homogeneous of degree $\alpha+1$.

If $x \in G$ then there exists only one quotient group $Z_{\alpha+1} / Z_{\alpha}$ in which x represents a nonunit coset. Designate the coset by \bar{x}. If \bar{x} and \bar{y} are both homogeneous of degree $\alpha+1$ then the sum of \bar{x} and \bar{y} in M is their quotient group product.

Suppose that $\bar{t} \in Z_{n+1} / Z_{n}$ and $\bar{x} \in Z_{\alpha+1} / Z$ for $\alpha<n$. If α is not a limit ordinal, define $\bar{x} \bar{t}$ to be the coset in $Z_{\alpha} / Z_{\alpha-1}$, which is represented by the commutator (x, t). Otherwise $\bar{x} \bar{t}=0$. The operation $\bar{x} \bar{l}$ is well defined. Suppose that y is in Z_{α} and z is in Z_{n}. Then $(x \cdot y, z)$ is in $Z_{\alpha-1}$ since $\left(Z_{\alpha+1}, Z_{n}\right)$ is in $Z_{\alpha-1}$. On expanding commutators we also find that

$$
(x \cdot y, t) \equiv(x, t) \bmod Z_{\alpha-1} \quad \text { and } \quad(x \cdot y, t, z) \equiv 1 \bmod Z_{\alpha-1}
$$

Consequently $(x \cdot y, t \cdot z) \equiv(x, t) \bmod Z_{\alpha-1}$.
Suppose that \bar{x} and \bar{y} are homogeneous of degree $\alpha+1$ where $1 \leqq \alpha+1 \leqq n$ and \bar{t} is homogeneous of degree $n+1$. Since

$$
(x \cdot y, t)=(x, t) \cdot(y, t) \quad \bmod Z_{\alpha-1}
$$

then \bar{t} represents a homomorphism of $Z_{\alpha+1} / Z_{\alpha}$ into $Z_{\alpha} / Z_{\alpha-1}$. We extend the domain of \bar{t} to M by linearity so that \bar{t} is an endomorphism of M. The derived ring Γ over M is the endomorphism ring generated by elements of Z_{n+1} / Z_{n}. Since

$$
\bar{x}\left(\bar{t}_{1}+\bar{t}_{2}\right)=\left(\overline{x, t_{1}}\right)+\left(\overline{x_{1} t_{2}}\right)=\left(\overline{x_{1} t_{1} \cdot t_{2}}\right)
$$

then endomorphism addition of elements from Z_{n+1} / Z_{n} coincides with the quotient group multiplication. Γ is of course an associative ring, since endomorphism multiplication is associative.

The important connection between a Z-A(2) group and its derived ring is stated in the following theorem.

Theorem 1. If G is $a Z-A(2)$ group of class $n+1$ and if the derived ring Γ is nilpotent of class k then $k=n+1$.

We state first the following lemma.
Lemma 1. If G is a $Z-A(2)$ group of class $n+1$ and if $\bar{x} \bar{t}_{1} \ldots \bar{t}_{k}=0$ for x in Z_{k+1} and all $\bar{t}_{1}, \cdots, \bar{t}_{k}$ in Z_{n+1} / Z_{n}, then x is in Z_{k}.

If x is not in Z_{k} then \bar{x} is homogeneous of degree $k+1$. Thus $\bar{x} \bar{t}_{1} \cdots \bar{t}_{k}=0$ implies that for all homogeneous elements $\bar{t}_{1}, \cdots, \bar{t}_{k}$ of degree $n+1$, the commutator $\left(x, t_{1}, \cdots, t_{k}\right)$ is the unit of $Z_{1} / Z_{0}=1$. But since G is a Z-A(2) group we have $\left(x, Z_{\alpha_{1}}, \cdots, Z_{\alpha_{k}}\right)=1$ if $Z_{\alpha_{j}} \leqq Z_{n}$ for some $j=1, \cdots, k$. Therefore

$$
(x, \underbrace{G, \cdots, G}_{k})=1
$$

and x is in Z_{k}.
If Γ is nilpotent of class k, then for x in Z_{k+1} we must have

$$
\bar{x} \bar{t}_{1} \cdots \cdot \bar{t}_{k}=0
$$

for all $t_{1}, \cdots, \bar{t}_{k}$ in Z_{n+1} / Z_{n}. Thus by the lemma Z_{k+1} is Z_{k} and hence $G=Z_{k}$. Since Γ is nilpotent of class k there must be an element x in Z_{k} and elements $\bar{t}_{1}, \cdots, \bar{t}_{k-1}$ such that $\bar{x} \bar{t}_{1} \cdots \bar{t}_{k-1} \neq 0$. Hence $\left(x, t_{1}, \cdots, t_{k-1}\right) \neq 1$ and G is nilpotent of class k.

Of course if G is nilpotent of class k then it is a trivial matter to show that Γ is nilpotent of class k.

The following arguments will show that the derived ring of a Z-A(3) group is commutative. We will demonstrate later that this is an important property of Z-A(3) groups.

Theorem 2. Suppose G is a Z-A(2) group of class $n+1$. If \bar{x} is in $Z_{\alpha+1} / Z_{\alpha}$ for $\alpha<n$ and both \bar{t}_{1} and \bar{t}_{2} are in Z_{n+1} / Z_{n}, then $\bar{x} \bar{t}_{1} \bar{t}_{2}=\bar{x}_{2} \bar{t}_{1}+\bar{q}$ where \bar{q} is the coset in $Z_{\alpha-1} / Z_{\alpha-2}$ which is represented by the commutator $\left(x,\left(t_{1}, t_{2}\right)\right)$.

Lemma 2. If G is a Z - A group and if x is in $Z_{\alpha+1}$, then for all g_{1} and g_{2} in G we have

$$
\left(x, g_{1}, g_{2}\right) \equiv\left(x, g_{2}, g_{1}\right) \cdot\left(g_{1}, g_{2}, x\right)^{-1} \bmod Z_{\alpha-2}
$$

From [5, p. 108], [4, Theorem 1.1, p. 107], and [4, Theorem 11.1-6, p. 167], the commutator identities follow respectively.

$$
\begin{align*}
& \left(x, y, z^{y}\right) \cdot\left(y, z, x^{z}\right) \cdot\left(z, z, y^{x}\right)=1 \tag{5}\\
& \left(x, y^{-1}\right)=\left(x, y, y^{-1}\right)^{-1} \cdot(x, y)^{-1} \tag{6}
\end{align*}
$$

Therefore by (5), (3) and (6) we have

$$
\begin{align*}
& \left(x, g_{1}, g_{2}^{g_{1}}\right) \cdot\left(g_{1}, g_{2}, x^{g_{2}}\right) \cdot\left(g_{2}, x, g_{1}^{x}\right)=1, \tag{7}\\
& \left(x, g_{1}, g_{2}^{g_{1}}\right)=\left(x, g_{1}, g_{2} \cdot\left(g_{2}, g_{1}\right)\right) \equiv\left(x, g_{1}, g_{2}\right) \bmod Z_{\alpha-2}, \tag{8}\\
& \left(g_{2}, x, g_{1}^{x}\right)=\left(g_{2}, x, g_{1} \cdot\left(g_{1}, x\right)\right) \equiv\left(g_{2}, x, g_{1}\right) \quad \bmod Z_{\alpha-2}, \tag{9}\\
& \left(g_{2}, x, g_{1}\right)=\left(\left(x, g_{2}\right)^{-1}, g_{1}\right) \equiv\left(x, g_{2}, g_{1}\right)^{-1} \quad \bmod Z_{\alpha-2} . \tag{10}
\end{align*}
$$

Then by (9) and (10)

$$
\begin{equation*}
\left(g_{2}, x, g_{1}^{x}\right) \equiv\left(x, g_{2}, g_{1}\right)^{-1} \quad \bmod Z_{\alpha-2} \tag{11}
\end{equation*}
$$

It follows from (3) that

$$
\begin{align*}
\left(g_{1}, g_{2}, x^{g_{2}}\right) & =\left(g_{1}, g_{2}, x \cdot\left(x, g_{2}\right)\right) \tag{12}\\
& \equiv\left(g_{1}, g_{2},\left(x, g_{2}\right)\right) \cdot\left(g_{1}, g_{2}, x\right) \bmod Z_{\alpha-2} .
\end{align*}
$$

But

$$
\left(g_{1}, g_{2},\left(x, g_{2}\right)\right) \equiv 1 \quad \bmod Z_{\alpha-2}
$$

Therefore by (12)

$$
\begin{equation*}
\left(g_{1}, g_{2}, x^{g_{2}}\right) \equiv\left(g_{1}, g_{2}, x\right) \quad \bmod Z_{\alpha-2} \tag{13}
\end{equation*}
$$

The lemma follows from (7), (8), (9) and (13).
If \bar{x} is in $Z_{\alpha+1} / Z_{\alpha}$ and \bar{g}_{1} and \bar{g}_{2} are in Z_{n+1} / Z_{n}, Theorem 2 follows from the lemma.

Theorem 2 shows that Γ is commutative on $Z_{\alpha+1} / Z_{\alpha}$ if and only if $\left(x,\left(t_{1}, t_{2}\right)\right) \equiv 1 \bmod Z_{\alpha-2}$ for all elements x, t_{1}, and t_{2} such that \bar{x} is in $Z_{\alpha+1} / Z_{\alpha}$ and both \bar{t}_{1} and \bar{t}_{2} are in Z_{n+1} / Z_{n}. If G is a Z-A(3) group of class $n+1$, then $\left(Z_{\alpha+1}, Z_{n}\right)$ is in $Z_{\alpha-2}$ for every $\alpha<n$. Thus if \bar{x} is in $Z_{\alpha+1} / Z_{\alpha}$ and both \bar{t}_{1} and \bar{t}_{2} are in Z_{n+1} / Z_{n}, it follows that $\left(x,\left(t_{1}, t_{2}\right)\right) \equiv 1 \bmod Z_{\alpha-2}$, and we have the following theorem.

Theorem 3. The derived ring of a Z-A(3) group is commutative.
Theorem 3 certainly is not true for $\mathrm{Z}-\mathrm{A}(2)$ groups. In the example of a Z-A (2) group given above, \bar{a}_{3} is in Z_{3} / Z_{2} and both $\bar{\alpha}$ and $\bar{\beta}$ are in Z_{4} / Z_{3}, but $\bar{a}_{3} \bar{\alpha} \bar{\beta}=0$ and $\bar{a}_{3} \bar{\beta} \bar{\alpha}=\bar{a}_{1}$.

III. Z-A(2) groups with a commutative derived ring

A Z-A(2) group G of class $n+1$ with a commutative derived ring means of course that elements of Z_{n+1} / Z_{n} operate commutatively on the direct sum of the groups $Z_{\alpha+1} / Z_{\alpha}$ for $\alpha<n$. Denote the above class of groups by Z- $\mathrm{A}_{c}(2)$. Theorem 3 shows that Z-A $(3) \leqq$ Z- $\mathrm{A}_{c}(2)$. Whether or not this is really an equality is still unknown. It seems unlikely, but as of yet the evidence is still inconclusive.

Let $C_{m, i}$ designate the binomial coefficient of m with i. The symbol Π will denote a product and (m, j) will designate the greatest common divisor of the integers m and j. We shall also use H_{α} for the set of elements x of a Z-A(2) group where \bar{x} is homogeneous of degree α.

The following theorem is a generalization of [3, Lemma 4.1].
Theorem 4. Suppose that $G \in Z-A_{c}(2)$ and $G|e: m| G$; then $G / Z_{2^{m-1}}$ is periodic where the periods divide some power of

$$
k=\prod_{i=0}^{m-2}\left(C_{m-i, 1}, \cdots, C_{m-i, m-i-1}\right)
$$

The proof will consist of first proving that $k \Gamma^{2^{m-1}}=0$ where Γ is the derived ring of G and from this the theorem will be shown to follow.

Lemma 3. If G is a $Z-A_{c}(2)$ group of class $n+1$ and x is in $H_{\alpha+1}$, $\alpha+1<n+1$, then for all t_{1} and t_{2} in H_{n+1} we have

$$
\left(x, i_{1},{ }_{j} t_{2}\right) \equiv\left(x,{ }_{j} t_{2},{ }_{i} t_{1}\right) \quad \bmod Z_{\alpha-i-j}
$$

Since $G \in Z-\mathrm{A}_{c}(2)$ the derived ring is commutative.
The lemma then follows from the equation

Lemma 4. If x_{1}, \cdots, x_{k} are elements of a group G which are located in the upper central term $Z_{\alpha+1}$, then for all g_{1}, \cdots, g_{r} in G we have

$$
\left(\prod_{i=1}^{k} x_{i}, g_{1}, \cdots, g_{r}\right) \equiv \prod_{i=1}^{k}\left(x_{i}, g_{1}, \cdots, g_{r}\right) \quad \bmod Z_{\alpha-r}
$$

The proof will use an induction on k and r. If $k=r=1$ the lemma is trivial. For $k=q+1$ and $r=1$ by using (1) we have

$$
\left(\prod_{i=1}^{q+1} x_{i}, g\right) \equiv\left(\prod_{i=1}^{q} x_{i}, g\right) \cdot\left(x_{q+1}, g\right) \quad \bmod Z_{\alpha-1}
$$

Thus the lemma follows by the induction hypothesis. If $r=m+1$ we have by the induction hypothesis

$$
\left.\left.\begin{array}{rl}
\left(\prod_{i=1}^{k} x_{i}, g_{1}, \cdots,\right. & g_{m}
\end{array}, g_{m+1}\right) ~\left(\prod_{i=1}^{k}\left(x_{i}, g_{1}, \cdots, g_{m}\right), g_{m+1}\right) \bmod Z_{\alpha-m-1}\right)
$$

Lemma 5. Suppose that G is a $Z-A_{c}(2)$ group of class $n+1, x$ is in $H_{\alpha+1}$ for $\alpha<n$, and t_{1} and t_{2} are both in H_{n+1}. Then

$$
\left(x,_{m}\left[t_{1} t_{2}\right]\right) \equiv \prod_{i=0}^{m}\left(x,{ }_{m-i} t_{1}, i t_{2}\right)^{c_{m, n}} \quad \bmod Z_{\alpha-m}
$$

Since each factor ($x,{ }_{m-i} t_{1}, i t_{2}$) is in $Z_{\alpha+1-m}$ they must commute modulo $Z_{\alpha-m}$. Thus the order of the factors in the above product is immaterial.

Since $\left(x, t_{1} \cdot t_{2}\right)=\left(x, t_{2}\right) \cdot\left(x, t_{1}\right) \cdot\left(x, t_{1}, t_{2}\right)$, the lemma is true for $m=1$. For $m=q+1$ if we designate $\left(x,{ }_{q+1}\left[t_{1} \cdot t_{2}\right]\right)$ by A we have

$$
\begin{aligned}
A & =\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{1} \cdot t_{2}\right) \\
& =\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{2}\right) \cdot\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{1}\right) \cdot\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{1}, t_{2}\right), \\
A & \equiv\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{2}\right) \cdot\left(x,{ }_{q}\left[t_{1} \cdot t_{2}\right], t_{1}\right) \bmod Z_{\alpha-q-1} .
\end{aligned}
$$

If we apply the induction hypothesis, we get
$A \equiv\left(\prod_{i=0}^{q}\left(x,{ }_{q-i} t_{1},{ }_{i} t_{2}\right)^{C_{q, i}}, t_{2}\right) \cdot\left(\prod_{i=0}^{q}\left(x,{ }_{q-i} t_{1},{ }_{i} t_{2}\right),{ }^{C_{q, i}}, t_{1}\right) \bmod Z_{\alpha-q-1}$.
By Lemma 4 we have

$$
A \equiv \prod_{i=0}^{q}\left(x,_{q-i} t_{1},{ }_{i+1} t_{2}\right)^{c_{q, i}} \cdot \prod_{i=0}^{q}\left(x,{ }_{q-i} t_{1},{ }_{i} t_{2}, t_{1}\right)^{c_{q, i}} \bmod Z_{\alpha-q-1}
$$

If we use Lemma 3 to permute $t_{1} \bmod Z_{\alpha-q-1}$ past the elements $i t_{2}$ in $\left(x,{ }_{q-i} t_{1}, i_{2}, t_{1}\right)^{C_{q, i}}$ we get

$$
\begin{aligned}
A & \equiv \prod_{i=0}^{q}\left(x,{ }_{q-i} t_{1},{ }_{i+1} t_{2}\right)^{C_{q, i}} \cdot \prod_{i=0}^{q}\left(x,{ }_{q+1-i} t_{1}, i_{2}\right)^{C_{q, i}} \bmod Z_{\alpha-q-1} \\
& \equiv \prod_{i=1}^{q+1}\left(x,{ }_{q+1-i} t_{1},{ }_{i} t_{2}\right)^{C_{q, i-1}} \cdot\left(x,{ }_{q+1} t_{1}\right) \cdot \prod_{i=1}^{q}\left(x,{ }_{q+1-i} t_{1},{ }_{2} t_{2}\right)^{C_{q, i}}
\end{aligned}
$$

$\bmod Z_{\alpha-q-1}$.
Since the factors commute modulo $Z_{\alpha-q-1}$ we have

$$
\begin{aligned}
A & \equiv\left(x,{ }_{q+1} t_{2}\right) \cdot\left(x,{ }_{q+1} t_{1}\right) \prod_{i=1}^{q}\left(x,{ }_{q+1-i} t_{1},{ }_{i} t_{2}\right)^{C_{q, i-1}} \prod_{i=1}^{q}\left(x,{ }_{q+1-i} t_{1},{ }_{i} t_{2}\right)^{c_{q, i}} \\
& \equiv\left(x,{ }_{q+1} t_{2}\right) \cdot\left(x,{ }_{q+1} t_{1}\right) \prod_{i=1}^{q}\left(x,{ }_{q+1-i} t_{1},{ }_{i} t_{2}\right)^{c_{q, i-1}+c_{q, i}} \bmod Z \\
& \equiv \prod_{\alpha=q-1}^{q+1}\left(x,{ }_{q+1-i} t_{1},{ }_{i} t_{2}\right) C_{q+1, i} \bmod Z_{\alpha-q-1} .
\end{aligned}
$$

$$
\bmod Z_{\alpha-q-1}
$$

This completes the induction.
Corollary. Suppose that N is a Γ-invariant submodule of the derived module M of a $Z-A_{c}(2)$ group of class $n+1$. Further suppose that $N \bar{t}^{m}=0$ for all \bar{t} in Z_{n+1} / Z_{n} and for some integer m which is independent of \bar{t}. Then $q N t_{1}^{m-1} \tau_{2}^{m-1}=0$ for all \bar{t}_{1} and \bar{t}_{2} in Z_{n+1} / Z_{n} where $q=\left(C_{m, 1}, \cdots, C_{m, m-1}\right)$.

Every element of N can be expressed in the form

$$
\bar{x}_{1}+\cdots+\bar{x}_{i}+\cdots+\bar{x}_{j}+\cdots+\bar{x}_{k}
$$

where for $i \neq j, \bar{x}_{i}$ and \bar{x}_{j} are in different summands of the derived module M.

If for instance \bar{x}_{i} and \bar{x}_{j} are in $Z_{\alpha+1} / Z$ then combine them. But

$$
\left(\bar{x}_{1}+\cdots+\bar{x}_{k}\right) \bar{t}^{m}=0
$$

implies that $\bar{x}_{j} \bar{t}^{m}=0$ for $j=1, \cdots, k$. Suppose that \bar{t}_{1} and \bar{t}_{2} are in Z_{n+1} / Z_{n}. The group product $t_{1} \cdot t_{2}$ may or may not be in Z_{n}. If $t_{1} \cdot t_{2}$ is in Z_{n} then, since $G \in \mathrm{Z}-\mathrm{A}_{c}(2)$, we have that $\left(x_{j},{ }_{m} t_{1} \cdot t_{2}\right) \equiv 1 \bmod Z_{\alpha_{j}-m}$, where \bar{x}_{j} is in $Z_{\alpha_{j}+1} / Z_{\alpha_{j}}$. Should $t_{1} \cdot t_{2}$ not be in Z_{n}, then $\bar{x}_{j}{\overline{\left(t_{1} \cdot t_{2}\right)}}^{m}=0$ implies that

$$
\left(x_{j},{ }_{m}\left[t_{1} \cdot t_{2}\right]\right) \equiv 1 \bmod Z_{\alpha_{j}-m}
$$

Thus in either case we have $\left(x_{j},{ }_{m}\left[t_{1} \cdot t_{2}\right]\right) \equiv 1 \bmod Z_{\alpha_{j}-m}$ for \bar{t}_{1} and \bar{t}_{2} in $Z_{n+1} / Z_{n}, x_{j}$ in $Z_{\alpha_{j}+1} / Z_{\alpha_{j}}$. But by Lemma 5

$$
\left(x_{j},{ }_{m}\left[t_{1} \cdot t_{2}\right]\right) \equiv \prod_{i=0}^{m}\left(x_{j},{ }_{m-2} t_{1}, i_{i} t_{2}\right)^{c_{m, i}} \quad \bmod Z_{\alpha_{j}-m}
$$

Then for $l=1,2, \cdots, m-1$ we have

$$
\begin{aligned}
&\left(x_{j},{ }_{m}\left[t_{1} \cdot t_{2}\right], l-1 t_{1},\right.\left.m-l-1 t_{2}\right) \\
& \equiv\left(\prod_{i=0}^{m}\left(x_{j},{ }_{m-i} t_{1}, i t_{2}\right)^{c_{m, i}}, l-1 t_{1}, m-l-1 t_{2}\right) \\
& \bmod Z_{\alpha_{j}-2 m+2}
\end{aligned}
$$

If we use Lemma 4 we have

$$
\equiv \prod_{i=0}^{m}\left(x_{j},{ }_{m-i} t_{1},{ }_{i} t_{2},{ }_{l-1} t_{1},{ }_{m-l-1} t_{2}\right)^{c_{m, i}} \bmod Z_{\alpha_{j}-2 m+2} .
$$

But by Lemma 3 we can permute the elements $l_{-1} t_{1}$ past ${ }_{i} t_{2}$ in

$$
\left(x_{j},{ }_{m-i} t_{1},{ }_{i} t_{2},{ }_{l-1} t_{1},{ }_{m-l-1} t_{2}\right)
$$

to get

$$
\equiv \prod_{i=0}^{m}\left(x_{j},{ }_{m+l-i-1} t_{1},{ }_{m-l+\imath-1} t_{2}\right)^{c_{m, i}} \bmod Z_{\alpha_{j}-2 m+2}
$$

Thus since $\left(x_{j},{ }_{m}\left[t_{1} \cdot t_{2}\right]\right) \equiv 1 \bmod Z_{\alpha_{j}-m}$ we have

$$
\begin{equation*}
1 \equiv \prod_{i=0}^{m}\left(x_{j},{ }_{m+l-i-1} t_{1},{ }_{m-l+i-1} t_{2}\right)^{c_{m, i}} \bmod Z_{\alpha_{j}-2 m+2} \tag{14}
\end{equation*}
$$

But we assumed that $N \bar{t}_{1}^{m}=0$. This means that $\left(x_{j},{ }_{m} t_{1}\right) \equiv 1 \bmod Z_{\alpha_{j}-m}$. Therefore if $i<l$ then $m-i+l-1 \geqq m$ and

$$
\begin{equation*}
1 \equiv\left(x_{j}, m+l-i-1 t_{1}, m-l+i-1 t_{2}\right) \quad \bmod Z_{\alpha_{j}-2 m+2} \tag{15}
\end{equation*}
$$

By Lemma 3, we have

$$
\left(x_{j},{ }_{m+l-i-1} t_{1},{ }_{m-l+i-1} t_{2}\right) \equiv\left(x_{j},{ }_{m-l+i-1} t_{2},{ }_{m+l-i-1} t_{1}\right) \quad \bmod Z_{\alpha_{j}-2 m+2}
$$

Using the assumption $n \bar{t}_{2}^{m}=0$ for all n in N we have that

$$
\left(x_{j},{ }_{m} t_{2}\right) \equiv 1 \quad \bmod Z_{\alpha_{j}-m}
$$

Then if $i>l$ and thus $m-l+i-1 \geqq m$, we have that

$$
\begin{equation*}
1 \equiv\left(x_{j},{ }_{m-l+\imath-1} t_{2},{ }_{m+l-i-1} t_{1}\right) \quad \bmod Z_{\alpha_{j}-2 m+2} \tag{16}
\end{equation*}
$$

Using (14), (15) and (16) we get

$$
1 \equiv\left(x_{j},{ }_{m-1} t_{1},{ }_{m-1} t_{2}\right)^{c_{m, l}} \quad \bmod Z_{\alpha_{j}-2 m+2} \quad \text { for } l=1, \cdots, m-1
$$

Therefore $C_{m, l} N t_{1}^{m-1} t_{2}^{m-1}=0$ and the corollary follows.
Lemma 6. Suppose that G is a $Z-A_{c}(2)$ group of class $n+1$ and N is a Γ-invariant submodule of the derived module M where Γ is the derived ring. Further suppose that $N \bar{t}^{m}=0$ for all \bar{t} in Z_{n+1} / Z_{n} and for some integer m which is independent of \bar{t}. Then

$$
k N \Gamma^{2^{m-1}}=0 \quad \text { where } \quad k=\prod_{i=1}^{m-2}\left(C_{m-i, 1}, \cdots, C_{m-i, m-i-1}\right)^{2^{i}}
$$

If $m=1$ the proof is obvious. Suppose that $m=r+1$. By the corollary of Lemma 5, $\left(C_{r+1,1}, \cdots, C_{r+1, r}\right) N \bar{t}_{1}^{r} \bar{t}_{2}^{r}=0$ for all \bar{t}_{1} and \bar{t}_{2} in Z_{n+1} / Z_{n}. Define N_{1} to be the submodule $\left(C_{r+1,1}, \cdots, C_{r+1, r}\right) N \bar{t}_{1}^{r}$ for \bar{t}_{1} in Z_{n+1} / Z_{n}. Obviously N_{1} is Γ-invariant since Γ is commutative, and N is Γ-invariant. But $N_{1} \bar{t}^{r}=0$ for all \bar{t} in Z_{n+1} / Z_{n}. By the induction hypothesis

$$
b N_{1} \Gamma^{2^{r-1}}=0 \quad \text { where } \quad b=\prod_{i=1}^{r-2}\left(C_{r-i, 1}, \cdots, C_{r-i, r-i-1}\right)^{2^{i}}
$$

Since Γ is commutative

$$
h N^{2^{r-1} \bar{t}_{1}^{r}}=0
$$

for every \bar{t}_{1} in Z_{n+1} / Z_{n} where $h=\left(C_{r+1,1}, \cdots, C_{r+1,1}\right) \cdot b$. Let $N_{2}=h N \Gamma^{2 r-1}$. Then N_{2} is Γ-invariant and $N_{2} \bar{t}^{r}=0$ for \bar{t} in Z_{n+1} / Z_{n}. The induction hypothesis implies that $d N_{2} \Gamma^{2^{r-1}}=0$ for $d=\prod_{i=1}^{r-2}\left(C_{r-i, 1}, \cdots, C_{r-i, r-i-1}\right)^{2^{i}}$ and the lemma follows.

Lemma 7. Suppose that G is a $Z-A_{c}(2)$ group of class $n+1$. If for some integer q,

$$
(Z_{\alpha+1}^{k}, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \bmod Z_{\alpha-q}
$$

then $Z_{\alpha+1}^{k} \leqq Z_{\alpha}$.
Suppose that x is in $Z_{\alpha+1}$. Since G is a $Z-\mathrm{A}_{c}(2)$ group we have

$$
\left(x^{k}, Z_{\alpha_{1}}, Z_{\alpha_{2}}, \cdots, Z_{\alpha_{j}}, \cdots, Z_{\alpha_{q}}\right) \equiv 1 \bmod Z_{\alpha-q}
$$

if $Z_{\alpha_{j}} \leqq Z_{n}$ for some j. But since

$$
(x^{k}, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \bmod Z_{\alpha-q}
$$

it follows that $(x^{k}, \underbrace{G, \cdots, G}_{q}) \equiv 1 \bmod Z_{\alpha-q}$. Therefore

$$
(x^{k}, \underbrace{G, \cdots, G}_{q-1}) \equiv 1 \bmod Z_{\alpha+1-q} .
$$

Lemma 7 follows from $q-1$ repetitions of this last step.
Corollary. Suppose that G is a $Z-A_{c}(2)$ group of class $n+1$. If there
exist positive integers k and q such that for all $\alpha<n$,

$$
(H_{\alpha+1}^{k}, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \bmod Z_{\alpha-q}
$$

then G / Z_{q} is periodic and the periods are powers of k.
Suppose x is in $H_{\alpha_{0}+1}$ for $q<\alpha_{0}+1<n+1$. Since

$$
(x^{k}, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{q}) \equiv 1 \quad \bmod Z_{\alpha_{0}-q}
$$

the element x^{k} is in $H_{\alpha_{1}}$ for $\alpha_{1}<\alpha_{0}$ by Lemma 7. Repeating this argument on the element x^{k} we have that $x^{k^{2}}$ is in $H_{\alpha_{2}}$ where $\alpha_{2}<\alpha_{1}$. Continuing this process we arrive at a sequence $x^{k}, x^{k^{2}}, x^{k^{3}}, \cdots, x^{k^{i}}, x^{k^{i+1}}, \cdots$ where $x^{k^{i}}$ is in $H_{\alpha_{i}}$ and $\alpha_{i}>\alpha_{i+1}$. But this sequence is finite since the upper central series is well ordered.

We return now to proof of Theorem 4. Since $G|e: m| G$ we have $M \bar{t}^{m}=0$ for all \bar{t} in Z_{n+1} / Z_{n}, where M is the derived module of G. By Lemma 6 we have $k M \Gamma^{2^{m-1}}=0$ where $k=\prod_{i=1}^{m-2}\left(C_{m-i, 1}, \cdots, C_{m-2, m-i-1}\right)^{2^{i}}$. But this means for all $\alpha<n$,

$$
(H_{\alpha+1}^{k}, \underbrace{H_{n+1}, \cdots, H_{n+1}}_{2^{m-1}}) \equiv 1 \quad \bmod Z_{\alpha-2 m-1}
$$

Therefore the theorem follows from the corollary of Lemma 7.
The following corollary states an obvious consequence of Theorem 4.
Corollary. If G is a $Z-A_{c}(2)$ group where $G|e: m| G$ and in addition if $G / Z_{2^{m-1}}$ is k-torsion-free where k is defined as above, then G is nilpotent.

By Theorem 4, every Z- $\mathrm{A}_{c}(2)$ group which satisfies the Engel condition of class m is periodic modulo $Z_{2^{m-1}}$. It is a simple matter to show that if G is a Z- $\mathrm{A}_{c}(2)$ group which satisfies the Engel condition of class m then so must G / Z_{α} for every ordinal α. So it seems natural to study periodic Z-A ${ }_{c}(2)$ groups which satisfy the Engel condition.

Theorem 5. Suppose that $G \in Z-A_{c}(2)$ and $G|e: m| G$. If in addition G is also periodic where every element x of G has a period $q(x)$ such that all of the prime divisors of $q(x)$ are larger than those of m, then G is nilpotent.

Since G is periodic then $G / Z_{2^{m-1}}$ must also be. Every element x of $G / Z_{2^{m-1}}$ must have a period dividing $q(x)$ where the prime divisors of $q(x)$ are larger than those of m Hence $q(x)$ and k are relatively prime where

$$
k=\prod_{i=1}^{m-2}\left(C_{m-i, 1}, \cdots, C_{m-i, m-i-1}\right)^{2^{i}}
$$

Consequently $G / Z_{2^{m-1}}$ is k-torsion-free. The theorem follows from the corollary of Theorem 4.

The condition on the periods $q(x)$ in Theorem 5 are necessary when $q(x)$
is not a prime exponent for the group G. We presented an example of a Z-A(3) group H such that $H|e: 3| H$ and $H^{4}=1$ but H is not nilpotent. However we next show that every Z-A(3) group of prime exponent is nilpotent.

Theorem 6. If G is a $Z-A_{c}(2)$ group of class $n+1$ and $G^{p}=1$ for prime p then G is nilpotent. ${ }^{2}$

Suppose that $x \in H_{\alpha+1}$ for $\alpha+1 \leqq n$, and $t \in H_{n+1}$. In [4, equation 18.4.13, p. 327] M. Hall showed that ($x,{ }_{p-1} t$) can be expressed as a product of commutators of the form $\left(x, y_{1}, \cdots, y_{p}\right)$ where y_{i} is x or t. But

$$
\left(x, y_{1}, \cdots, y_{p}\right) \equiv 1 \quad \bmod Z_{\alpha+1-p}
$$

and hence $\left(x,{ }_{p-1} t\right) \equiv 1 \bmod Z_{\alpha+1-p} . \quad$ But in terms of the derived module M, this means that $\bar{x} \bar{t}^{p-1}=0$. Thus $M \bar{t}^{p-1}=0$ for all \bar{t} in Z_{n+1} / Z_{n}. Therefore by Lemma 6, $k M \Gamma^{2 p-2}=0$ where $k=\prod_{i=1}^{p-3}\left(C_{m-i, 1}, \cdots, C_{m-i, m-i-1}\right)^{2^{i}}$ Thus

$$
(H_{\alpha+1}^{k}, \underbrace{H_{n}, \cdots, H_{n}}_{2^{p-2}}) \equiv 1 \bmod Z_{\alpha-2 p-2}
$$

Then by the corollary of Lemma 7 we have that $G / Z_{2^{p-2}}$ is periodic and the periods divide powers of k. But the elements of $G / Z_{2^{p-2}}$ have period p. Since k and p are relatively prime $G \leqq Z_{2^{p-2}}$.

Bibliography

1. R. Baer, Engelsche Elemente Noetherscher Gruppen, Math. Ann., vol. 133 (1957), pp. 256-270.
2. K. Gruenberg, Two theorems on Engel groups, Proc. Cambridge Philos. Soc., vol. 49 (1953), pp. 377-380.
3. ——, The upper central series in soluble groups, Illinois J. Math., vol. 5 (1961), pp. 436-466.
4. M. Hall, Jr., The theory of groups, New York, Macmillan, 1959.
5. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3), vol. 71 (1954), pp. 101-190.
```
University of Wisconsin
    Milwaukee, Wisconsin
    University of Notre Dame
    Notre Dame, Indiana
```

[^1]
[^0]: Received April 24, 1963.
 ${ }^{1}$ This paper is from the author's doctoral dissertation which was prepared under the guidance of Marshal J. Osborn.

[^1]: ${ }^{2}$ The author is grateful to the referee for suggesting Hall's equation [4, equation 18.4.13] in order to simplify the proof of Theorem 6.

