INTERVAL FUNCTIONS AND ABSOLUTE CONTINUITY

BY
William D. L. Appling

1. Introduction

Suppose $[a, b]$ is a number interval.
The author [1] has shown the following theorem:
Theorem A. If each of h and m is a real-valued nondecreasing function on [$a, b]$, and H is a real-valued bounded function of subintervals of $[a, b]$ such that the integral (Section 2)

$$
\int_{[a, b]} H(I) d m
$$

exists, then the integral

$$
\int_{[a, b]} H(I) \int_{I}(d h)^{p}(d m)^{1-p}
$$

exists for each number p such that $0<p<1$.
We note that in the above theorem the function w on $[a, b]$ such that

$$
w(a)=0 \quad \text { and } \quad w(x)=\int_{[a, x]}(d h)^{p}(d m)^{1-p} \quad \text { for } \quad a<x \leqq b
$$

is absolutely continuous with respect to m. This suggests an extension of Theorem A, and in this paper we prove (Theorem 3) that if each of h and m is a real-valued nondecreasing function on $[a, b]$, then the following four statements are equivalent:
(1) If H is a real-valued bounded function of subintervals of $[a, b]$ such that $\int_{[a, b]} H(I) d m$ exists, then $\int_{[a, b]} H(I) d h$ exists.
(2) $\left.\int_{[a, b]}(d h)^{p}(d m)^{1-p} \rightarrow h\right|_{a} ^{b}$ as $p \rightarrow 1$ for $0<p<1$.
(3) $\int_{[a, b]}^{[a, b}\left|d h-\int_{I}(d h)^{p}(d m)^{1-p}\right| \rightarrow 0$ as $p \rightarrow 1$ for $0<p<1$.
(4) h is absolutely continuous with respect to m.

2. Preliminary lemmas and definitions

Suppose $[a, b]$ is a number interval.
Throughout this paper all integrals discussed are Hellinger [2] type limits of the appropriate sums, i.e., if K is a real-valued function of subintervals of $[a, b]$, and $[r, s]$ is a subinterval of $[a, b]$, then $\int_{[r, s]} K(I)$ denotes the limit, for successive refinements of subdivisions, of sums $\sum_{E} K(I)$, where E is a subdivision of $[r, s]$ and the sum is taken over all intervals I of E. We see that $\int_{[a, b]} K(I)$ exists if and only if for each subinterval $[u, v]$ of $[a, b]$, $\int_{[u, v]} K(I)$ exists, so that if $a \leqq u<v<w \leqq b$, then

$$
\int_{[u, w]} K(I)=\int_{[u, v]} K(I)+\int_{[v, w]} K(I)
$$

Received March 22, 1963.

The definitions and theorems of this paper can be extended to "manyvalued" interval functions.

We state a lemma whose proof follows by conventional methods.
Lemma 1. If H is a real-valued bounded function of subintervals of $[a, b]$, and h is a real-valued function on $[a, b]$, then the following two statements are equivalent:
(1) $\int_{[a, b]} H(I) d h$ exists.
(2) For each positive number c, there is a real-valued function g on $[a, b]$ such that $\int_{[a, b]}|d h-d g|<c$ and $\int_{[a, b]} H(I) d g$ exists.

In order to maintain the interval-function context of this paper, we now use interval-function methods to prove a known [3, p. 50] lemma about a nondecreasing function absolutely continuous with respect to a nondecreasing function.

Lemma 2. If each of h and m is a real-valued nondecreasing function on $[a, b]$, and h is absolutely continuous with respect to m, and c is a positive number, then there are a number $W>0$ and a real-valued function g on $[a, b]$ such that if I is a subinterval of $[a, b]$, then

$$
0 \leqq \Delta g \leqq \min \{\Delta h, W \Delta m\}, \quad \text { and }\left.\quad h\right|_{a} ^{b}-\left.g\right|_{a} ^{b}<c
$$

Proof. There is a number $k>0$ such that if E is a subset of a subdivision of $[a, b]$ and $\sum_{E} \Delta m<k$, then $\sum_{E} \Delta h<c / 2$.

For each subinterval I of $[a, b]$ let $H(I)$ denote $\min \{\Delta h, W \Delta m\}$, where $W=\left[\left(\left.h\right|_{a} ^{b}\right) / k\right]+1$.

If $[u, v]$ is a subinterval of $[a, b]$, and $L[u, v]$ is the least upper bound of all sums $\sum_{D} H(I)$, where D is a subdivision of $[u, v]$, then

$$
L[u, v] \leqq \min \left\{\left.h\right|_{u} ^{v},\left.W m\right|_{u} ^{v}\right\} .
$$

We see that if S is a refinement of the subdivision T of the subinterval $[r, s]$ of $[a, b]$, then $0 \leqq \sum_{s} L(I) \leqq \sum_{T} L(I)$, so that

$$
\int_{[r, s]} L(I) \leqq \min \left\{\left.h\right|_{r} ^{s},\left.W m\right|_{r} ^{s}\right\}
$$

Let g denote the function on $[a, b]$ such that

$$
g(a)=0 \quad \text { and } \quad g(x)=\int_{[a, x]} L(I) \text { for } a<x \leqq b
$$

There is a subdivision D of $[a, b]$ such that if E is a refinement of D, then $0 \leqq \sum_{E}[L(I)-\Delta g]<c / 8$. For each I in D, there is a subdivision S_{I} of I such that $0 \leqq L(I)-\sum_{s_{I}} H(J)<c /(8 N)$, where N is the number of intervals in D, so that

$$
0 \leqq \sum_{D} \sum_{s_{I}}[L(J)-H(J)] \leqq \sum_{D}\left[L(I)-\sum_{s_{I}} H(J)\right]<c / 8
$$

Now

$$
\begin{aligned}
0 & \leqq\left. h\right|_{a} ^{b}-\left.g\right|_{a} ^{b}=\sum_{D} \sum_{s_{I}}[\Delta h-\Delta g] \\
& \leqq\left|\sum_{D} \sum_{s_{I}}[\Delta h-H(J)]\right|+\left|\sum_{D} \sum_{s_{I}}[L(J)-H(J)]\right| \\
& \quad+\left|\sum_{D} \sum_{s_{I}}[L(J)-\Delta g]\right| \\
& <\left|\sum_{Q}[\Delta h-H(J)]\right|+c / 8+c / 8,
\end{aligned}
$$

where Q is the set (if any) of all J such that for some I in D, J is in S_{I} and $\Delta h \neq H(J)$, so that $H(J)=W \Delta m$. Therefore

$$
W \sum_{Q} \Delta m=\sum_{Q} H(J) \leqq \sum_{Q} \Delta h \leqq\left. h\right|_{a} ^{b},
$$

so that $\sum_{Q} \Delta m \leqq\left(\left.h\right|_{a} ^{b}\right) / W<k$, and therefore $\sum_{Q} \Delta h<c / 2$. Therefore

$$
0 \leqq \sum_{Q}[\Delta h-H(J)] \leqq \sum_{Q} \Delta h<c / 2
$$

so that $\left.h\right|_{a} ^{b}-\left.g\right|_{a} ^{b}<c / 2+c / 8+c / 8=3 c / 4<c$.

3. A convergence theorem

We now prove a theorem about the convergence of the integral $\int_{[a, b]}(d g)^{p}(d m)^{1-p}$ as $p \rightarrow 1$ for $0<p<1$.

Theorem 2. If each of g and m is a real-valued nondecreasing function on the number interval $[a, b]$, and g is such that for some positive number W, $\Delta g \leqq W \Delta m$ for each subinterval I of $[a, b]$, then

$$
\int_{[a, b]}\left|d g-\int_{I}(d g)^{p}(d m)^{1-p}\right| \rightarrow 0 \quad \text { as } \quad p \rightarrow 1
$$

for $0<p<1$.
Proof. ${ }^{1}$ We first demonstrate the theorem for the case that $\Delta g \leqq \Delta m$ for each subinterval I of $[a, b]$.

Suppose $0<p<1$.
If I is a subinterval of $[a, b]$, then
$0 \leqq(\Delta g)^{p}(\Delta m)^{1-p}-\Delta g \leqq p \Delta g+(1-p) \Delta m-\Delta g=(1-p)(\Delta m-\Delta g)$.
Therefore if E is a subdivision of the subinterval $[u, v]$ of $[a, b]$, then $0 \leqq \sum_{E}\left[(\Delta g)^{p}(\Delta m)^{1-p}-\Delta g\right] \leqq(1-p) \sum_{E}[\Delta m-\Delta g]=(1-p)\left[\left.m\right|_{u} ^{v}-\left.g\right|_{u} ^{v}\right]$, so that

$$
0 \leqq \int_{[u, v]}\left[(d g)^{p}(d m)^{1-p}-d g\right] \leqq(1-p)\left[\left.m\right|_{u} ^{v}-\left.g\right|_{u} ^{v}\right]
$$

If D is a subdivision of $[a, b]$, then

[^0]\[

$$
\begin{aligned}
\sum_{D}\left|\Delta g-\int_{I}(d g)^{p}(d m)^{1-p}\right| & =\sum_{D} \int_{I}\left[(d g)^{p}(d m)^{1-p}-d g\right] \\
& \leqq \sum_{D}(1-p)[\Delta m-\Delta g]
\end{aligned}
$$
\]

so that

$$
\int_{[a, b]}\left|d g-\int_{I}(d g)^{p}(d m)^{1-p}\right| \leqq(1-p)\left[\left.m\right|_{a} ^{b}-\left.g\right|_{a} ^{b}\right] \rightarrow 0 \quad \text { as } \quad p \rightarrow 1
$$

We now prove the theorem for the general case.
If $0<p<1$, then

$$
\begin{aligned}
& \int_{[a, b]}\left|d g-\int_{I}(d g)^{p}(d m)^{1-p}\right| \\
&=W \int_{[a, b]} \mid d(g / W)-\int_{I}[d(g / W)]^{p}(d m)^{1-p} \\
&+\left[1-W^{p-1}\right] \int_{I}[d(g / W)]^{p}(d m)^{1-p} \mid \\
& \leqq W \int_{[a, b]}\left|d(g / W)-\int_{I}[d(g / W)]^{p}(d m)^{1-p}\right| \\
&+W\left|1-W^{p-1}\right| \int_{[a, b]}[d(g / W)]^{p}(d m)^{1-p} \\
& \rightarrow W 0+W|1-1|\left(\left.g\right|_{a} ^{b}\right) / W \text { as } p \rightarrow 1
\end{aligned}
$$

Therefore

$$
\int_{[a, b]}\left|d g-\int_{I}(d g)^{p}(d m)^{1-p}\right| \rightarrow 0 \quad \text { as } \quad p \rightarrow 1
$$

4. The characterization theorem

In this section we prove the second theorem mentioned in the introduction.
Theorem 3. If each of h and m is a real-valued nondecreasing function on the number interval $[a, b]$, then the following four statements are equivalent:
(1) If H is a real-valued bounded function of subintervals of $[a, b]$ such that $\int_{[a, b]} H(I) d m$ exists, then $\int_{[a, b]} H(I) d h$ exists.
(2) $\left.\int_{[a, b]}(d h)^{p}(d m)^{1-p} \rightarrow h\right|_{a} ^{b}$ as $p \rightarrow 1$ for $0<p<1$.
(3) $\int_{[a, b]}\left|d h-\int_{I}(d h)^{p}(d m)^{1-p}\right| \rightarrow 0$ as $p \rightarrow 1$ for $0<p<1$.
(4) h is absolutely continuous with respect to m.

Proof. We first show that (4) implies (3). Suppose c is a positive number. By Lemma 2, there are a real-valued function g on $[a, b]$ and a number $W>0$ such that if I is a subinterval of $[a, b]$, then $0 \leqq \Delta g \leqq \min \{\Delta h, W \Delta m\}$ and $\left.h\right|_{a} ^{b}-\left.g\right|_{a} ^{b}<c / 8$.

By Theorem 2, there is a positive number $k<1$ such that if $k<p<1$, then

$$
\int_{[a, b]}\left|d g-\int_{I}(d g)^{p}(d m)^{1-p}\right|<c / 8
$$

and such that furthermore $(c / 8)^{p}<c / 4$ and $\left(\left.m\right|_{a} ^{b}\right)^{1-p}<2$, so that if D is a subdivision of $[a, b]$, then

$$
\begin{aligned}
& \sum_{D}\left|\Delta h-\int_{I}(d h)^{p}(d m)^{1-p}\right| \\
& \leqq \sum_{D}|\Delta h-\Delta g| \\
&+\sum_{D}\left|\Delta g-\int_{I}(d g)^{p}(d m)^{1-p}\right| \\
&+\sum_{D}\left|\int_{I}(d h)^{p}(d m)^{1-p}-\int_{I}(d g)^{p}(d m)^{1-p}\right| \\
& \leqq c / 8+c / 8+\sum_{D} \int_{I}(d h-d g)^{p}(d m)^{1-p}
\end{aligned}
$$

By Hölder's inequality

$$
\begin{aligned}
c / 8+ & c / 8+\sum_{D} \int_{I}(d h-d g)^{p}(d m)^{1-p} \leqq c / 4+\sum_{D}(\Delta g-\Delta h)^{p}(\Delta m)^{1-p} \\
& \leqq c / 4+\left(\left.h\right|_{a} ^{b}-\left.g\right|_{a} ^{b}\right)^{p}\left(\left.m\right|_{a} ^{b}\right)^{1-p}<c / 4+(c / 8)^{p}(2)<c / 4+(c / 4)(2)
\end{aligned}
$$

so that

$$
\int_{[a, b]}\left|d h-\int_{I}(d h)^{p}(d m)^{1-p}\right| \leqq(3 c) / 4<c
$$

Therefore (4) implies (3).
It is obvious that (3) implies (2).
We now show that (2) implies (4). Suppose that (2) is true, but that h is not absolutely continuous with respect to m. We see that $\left.m\right|_{a} ^{b} \neq 0$.

There are a number $W>0$ and a sequence $\left\{D_{k}\right\}_{k=1}^{\infty}$ of proper subsets of subdivisions of $[a, b]$ such that $\sum_{D_{n}} \Delta m \rightarrow 0$ as $n \rightarrow \infty$, but for each positive integer $n, \sum_{D_{n}} \Delta h \geqq W$. We see that for each positive integer n, there is a subset C_{n} of a subdivision of $[a, b]$ such that D_{n} and C_{n} are mutually exclusive and $D_{n}+C_{n}$ is a subdivision of $[a, b]$.

If n is a positive integer, then $\sum_{c_{n}} \Delta h=\left.h\right|_{a} ^{b}-\sum_{D_{n}} \Delta h \leqq\left. h\right|_{a} ^{b}-W$, so that if $0<p<1$, then

$$
\begin{aligned}
\int_{[a, b]}(d h)^{p}(d m)^{1-p} & \leqq \sum_{D_{n}}(\Delta h)^{p}(\Delta m)^{1-p}+\sum_{c_{n}}(\Delta h)^{p}(\Delta m)^{1-p} \\
& \leqq\left(\sum_{D_{n}} \Delta h\right)^{p}\left(\sum_{D_{n}} \Delta m\right)^{1-p}+\left(\sum_{c_{n}} \Delta h\right)^{p}\left(\sum_{c_{n}} \Delta m\right)^{1-p} \\
& \leqq\left(\left.h\right|_{a} ^{b}\right)^{p}\left(\sum_{D_{n}} \Delta m\right)^{1-p}+\left(\left.h\right|_{a} ^{b}-W\right)^{p}\left(\left.m\right|_{a} ^{b}-\sum_{D_{n}} \Delta m\right)^{1-p} \\
& \rightarrow\left(\left.h\right|_{a} ^{b}\right)^{p}(0)+\left(\left.h\right|_{a} ^{b}-W\right)^{p}\left(\left.m\right|_{a} ^{b}-0\right)^{1-p} \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

so that

$$
\int_{[a, b]}(d h)^{p}(d m)^{1-p} \leqq\left.\left(\left.h\right|_{a} ^{b}-W\right)^{p}\left(\left.m\right|_{a} ^{b}\right)^{1-p} \rightarrow h\right|_{a} ^{b}-W \quad \text { as } \quad p \rightarrow 1
$$

Therefore, since $\left.\int_{[a, b]}(d h)^{p}(d m)^{1-p} \rightarrow h\right|_{a} ^{b}$ as $p \rightarrow 1$ for $0<p<1$, it follows that $\left.h\right|_{a} ^{b} \leqq\left. h\right|_{a} ^{b}-W$, a contradiction. Therefore (2) implies (4).

We now show that (3) implies (1). Suppose H is a real-valued bounded function of subintervals of $[a, b]$ such that $\int_{[a, b]} H(I) d m$ exists.

If c is a positive number, then there is a positive number $p<1$ such that

$$
\int_{[a, b]}\left|d h-\int_{I}(d h)^{p}(d m)^{1-p}\right|<c .
$$

By Theorem A, $\int_{[a, b]} H(I) \int_{I}(d h)^{p}(d m)^{1-p}$ exists.
Therefore, by Lemma $1, \int_{[a, b]} H(I) d h$ exists. Therefore (3) implies (1).
Finally, we show that (1) implies (4). Suppose (1) is true but that h is not absolutely continuous with respect to m.

We first show that if $a \leqq y<b$, and m is continuous from the right at y, then so is h. Suppose this is not true. Then there is a sequence of numbers $\left\{y_{k}\right\}_{k=1}^{\infty}$ of $(y, b]$ such that $y_{n}-y+m\left(y_{n}\right)-m(y) \rightarrow 0$ as $n \rightarrow \infty$, but for some number $V>0$, and each positive integer $n, h\left(y_{n}\right)-h(y) \geqq V$. There is a real-valued function H of subintervals of $[a, b]$ such that

$$
\begin{array}{rlrl}
H(I) & =1 & \text { if } I \text { is }\left[y, y_{n}\right] \text { for some } n, \\
& =0 & & \text { otherwise. }
\end{array}
$$

We see that $\int_{[a, b]} H(I) d m=0$. However, if D is a subdivision of $[a, b]$, then there are refinements E and E^{\prime} of D such that for some $N,\left[y, y_{N}\right]$ is in E and for no n is $\left[y, y_{n}\right]$ in E^{\prime}, so that

$$
\left|\sum_{E} H(I) \Delta h-\sum_{E^{\prime}} H(I) \Delta h\right|=h\left(y_{N}\right)-h(y) \geqq V
$$

so that $\int_{[a, b]} H(I) d h$ does not exist, a contradiction.
In a similar manner it follows that if $a<y \leqq b$, and m is continuous from the left at y, then so is h.

Now from the supposition that h is not absolutely continuous with respect to m it follows that there are a number $W>0$ and a sequence $\left\{D_{k}\right\}_{k=1}^{\infty}$ of subdivisions of $[a, b]$ such that for each positive integer n, the following conditions are satisfied:
(a) Each interval of D_{n+1} is a proper subset of some interval of D_{n}.
(b) There is a subset E_{n} of D_{n} such that $\sum_{E_{n}} \Delta h \geqq W$ and $\sum_{E_{n}} \Delta m<2^{-n}$.
(c) $\max \left\{v-u\right.$ for $[u, v]$ in $\left.D_{n}\right\}<1 / n$.

There is a real-valued function H of subintervals of $[a, b]$ such that

$$
\begin{aligned}
H(I) & =1 & & \text { if } I \text { is in } E_{n} \text { for some } n \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Suppose c is a positive number. There is a positive integer N such that $2^{1-N}<c$. If E is a refinement of D_{N}, and I is in E and E_{n} for some n, then $n \geqq N$. If we let E^{\prime} denote the set (if any) of all I in E and E_{n} for some n, it follows that

$$
0 \leqq \sum_{E} H(I) \Delta m=\sum_{E^{\prime}} \Delta m \leqq \sum_{k=N}^{\infty} 2^{-k}=2^{1-N}<c
$$

Therefore $\int_{[a, b]} H(I) d m=0$.

Now suppose D is a subdivision of $[a, b]$.
Let M denote the set of all x such that for some $[u, v]$ in D, x is u or v.
For each positive integer n, let E_{n}^{*} denote the set (if any) of all [u, v] in E_{n} such that for some x in $M, u<x<v$.

Let M^{*} denote the set (if any) of all x in M such that for each positive integer n, there is a positive integer $w>n$ such that for some $[u, v]$ in $E_{w}^{*}, u<x<v$.

For each positive integer n, let $E_{n}^{* *}$ denote the set (if any) of all [u, v] in E_{n} such that for some x in $M^{*}, u<x<v$.

Now, since for each positive integer $n, \sum_{E_{\pi^{*}}} \Delta m \leqq \sum_{E_{n}} \Delta m<2^{-n} \rightarrow 0$ as $n \rightarrow \infty$, it follows that m is continuous at each number of M^{*}, so that h is continuous at each number of M^{*}, and therefore $\sum_{\text {En}^{*}} \Delta h \rightarrow 0$ as $n \rightarrow \infty$.

There is a positive integer N such that if x is in M and not in M^{*}, and n is a positive integer $\geqq N$, then there is no $[u, v]$ in E_{n} such that $u<x<v$; so that if I is in E_{n}^{*}, then I is in $E_{n}^{* *}$, and therefore E_{n}^{*} is $E_{n}^{* *}$.

There is a positive integer $n>N$ such that $\sum_{E_{n_{n}^{*}}} \Delta h=\sum_{E_{n^{*}}} \Delta h<W / 2$, so that E_{n}^{*} is a proper subset of E_{n}, and $E_{n}-E_{n}^{*}$ is therefore a subset of some refinement S of D, so that $\sum_{s} H(I) \Delta h \geqq \sum_{E_{n}-E_{n}^{*}} \Delta h>W / 2$.

Now the set of all x such that for some n and some $[u, v]$ in E_{n}, x is u or v, is countable. Therefore, since each interval I of D is uncountable, there is a refinement T of D such that for no n is I in T and E_{n}. This implies that $\sum_{T} H(I) \Delta h=0$, so that $\left|\sum_{s} H(I) \Delta h-\sum_{T} H(I) \Delta h\right|>W / 2$.

Therefore $\int_{[a, b]} H(I) d h$ does not exist, a contradiction. Therefore (1) implies (4).

Therefore (1), (2), (3), and (4) are equivalent.

References

1. W. D. L. Appling, Interval functions and non-decreasing functions, Canadian J. Math., vol. 15 (1963), pp. 752-754.
2. E. Hellinger, Die Orthogonalinvarianten quadratischer Formen von unendlichvielen Variabelen, Inaugural-Dissertation, Göttingen, 1907.
3. F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Budapest, Akadémiai Kiadó, 1952.

Duke University
Durham, North Carolina

[^0]: ${ }^{1}$ The author wishes to thank the referee for valuable suggestions incorporated in the paper in general and this proof in particular.

