
INTERVAL FUNCTIONS AND ABSOLUTE CONTINUITY

1. Introduction
Suppose [a, b] is a number interval.
The author [1] has shown the following theorem:

THEOREM A. If each of h and m is a real-valued nondecreasing function on
[a, b], and H is a real-valued bounded function of subintervals of [a, b] such that
the integral (Section 2)

H(I) dm

exists, then the integral

fa,] H(I) f (dh) (din)1-

exists for each number p such that 0 < p < 1.

We note that in the bove theorem the function w on [a, b] such that

w(a) 0 and w(x) Ji.](dh)(dm)- for a < x =< b,

is absolutely continuous with respect to m. This suggests an extension of
Theorem A, and in this paper we prove (Theorem 3) that if each of h and m
is a reM-vMued nondecreasing function on [a, b], then the following four
statements are equivalent"

(1) If H is a real-vMued bounded function of subintervals of [a, b] such
that f [ab] H I dm exists, then f [a, b] H I) dh exists.

(2) f[a,l(dh)(dm)-P---* hl" as p-- 1 for 0 < p < 1.
(3) f[a,b]ldh fz(dh)(dm)l-P 0 as p 1 for 0 < p < 1.
(4) h is absolutely continuous with respect to m.

2. Preliminary lemmas and definitions

Suppose [a, b] is a number interval.
Throughout this paper all integrals discussed are Hellinger [2] type limits

of the appropriate sums, i.e., if K is a reM-vMued function of subintervals of
[a, b], and [r, s] is a subinterval of [a, b], then fr,8 K(I) denotes the limit,
for successive refinements of subdivisions, of sums E K(I), where E is a
subdivision of [r, s] and the sum is taken over all intervals I of E. We see
that fa, K(I) exists if and only if for each subinterval [u, v] of [a, b],
f. K(I)exists, so that if a =< u < < w =< b, then

f,,, K(/)= f,,, K(I) + f, K(I).
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The definitions and theorems of this paper can be extended to "many-
valued" interval functions.
We state a lemma whose proof follows by conventional methods.

LEMM 1. If H is a real-valued bounded function of subintervals of [a, b],
and h is a real-valued function on [a, b], then the following two statements are
equivalent:

(1) f [a.b] H I dh exists.
(2) For each positive number c, there is a real-valued function g on [a, b]

such that f a.] Idh dgl < c and fa,] U(I) dg exists.

In order to maintain the interval-function context of this paper, we now
use interval-function methods to prove a known [3, p. 50] lemma about a
nondecreasing function absolutely continuous with respect to a nondecreasing
function.

LMM 2. If each of h and m is a real-valued nondecreasing function on
[a, b], and h is absolutely continuous with respect to m, and c is a positive number,
then there are a number W > 0 and a real-valued function g on [a, b] such that
if I is a subinterval of [a, b], then

0 <- Ag <- min{Ah, WAm}, and hl- gila < C.

Proof. There is a number/ > 0 such that if E is a subset of a subdivision
of [a, b] and Am < , then _, Ah < c/2.
For each subinterval I of [a, b] let H(I) denote min {Ah, WArn}, where
W [(hl)/]c] - 1.

If [u, v] is a subinterval of [a, b], and L[u, v] is the least upper bound of all
sums . H(I), where D is a subdivision of [u, v], then

L[u, v] <= min {hl Wml
We see that if S is a refinement of the subdivision T of the subinterval

[r, s] of [a, b], then 0 =< ’s L(I) <= _,r L(I), so that

f L(I) -<- min {h[, Wml }.
’8]

Let g denote the function on [a, b] such that

g(a) 0 and g(x) f L(I) fora < x_<_ b.
,]

There is a subdivision D of [a, b] such that if E is a refinement of D, then
0 _-< [L(I) Ag] < c/8. For each I in D, there is a subdivision S of I
such that 0 <_- L(I) s H(J) < c/(8N), where N is the number of
intervals in D, so that

0 =< s[L(J) H(J)] _-< ,[L(I) sH(J)] < c/8.
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Now

0

--< x [Ah-- H(J)]l+ sx [L(J) H(J)]

< [/h g(J)] + c18 - c18,

where Q is the set (if any) of all J such that for some I ia D, J is in. Sx and
Ah H(J), so that H(J) WArn. Therefore

W_ Am H(J) <= Ah <- hl
so that Am -< (hl)/W < k, and therefore Ah < c/2. Therefore

0 =< [ah- H(J)] -< Ah < c/2,

so that h] gl < c/2 - c/8 + c/8 3c/4 < c.

3. A convergence theorem
We now prove a theorem about the convergence of the integral

f[a.bl(dg)(dm)1-p as p-, 1 for 0 < p < 1.

THEOREM 2. /f each of g and m is a real-valued nondecreasing function on
the number interval [a, hi, and g is such that for some positive number W,
Ag <- WArn for each subinterval I of [a, b], then

f dg- f(dg) (din)1- ---0 as p--,1
a,b]

forO<p<l.

Proof. We first demonstrate the theorem for the case that Ag

_
Am for

each subinterval I of [a, b].
Suppose 0 < p < 1.
If I is a subinterval of [a, b], then

0 --<_ (Ag)(Am)-p Ag <_-- pAg -{- (1 p)Am Ag (1 p)(Am Ag).

Therefore if E is a subdivision of the subinterval [u, v] of [a, b], then
0 _-< ’ [(Ag)(Am)- Ag] __< (1 p)[Am Ag] (1 p)[m[,
so that

0 <_- f [(dg) (din)- dg] <= (1 p)[ml

If D is a subdivision of [a, b], then

The author wishes to thank the referee for valuable suggestions incorporated in
the paper in general and this proof in particular.
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ED Ag fz (dg) (dm)l-’ ./. [(dg) (dm)- dg]

=< .(1--p)[Am--Ag],
so that

f f <__ (1 p)[ml g[] --> 0
a,b] JI

We now prove the theorem for the general case.
If0 < p < 1, then

f,b dg- (dg) ’ (&n)1-"

W

Therefore

as p--> 1.

d(g/W) f [d(g/W)] (din)-
q- [1 Wv-x] f [d(g/W)]p (dm)-

<- W fta,b] d(g/W) fz [d(g/W)]P (dm)l-P

ft [d(g/W)] (dm)l--i- Nil W*’-I
a,b]

WO -q- W I1 l l(gl)/W as p--l.

fta, dg (dg) ’ (din) 1-" ---->0 as p-- 1.

4. The characterization theorem
In this section we prove the second theorem mentioned in the introduction.

THEOREM 3. If each of h and m is a real-valued nondecreasing function on
the number interval [a, b], then the following four statements are equivalent:

(1) If H is a real-valued bounded function of subintervals of [a, b] such that

f t,,bl H(I) dm exists, then f [a ,b] H(I) dh exists.
(2) f ta,](dh)P(dm)- hl as p ----> 1 for 0 < p < 1.
(3) f [a,b] dh fz dh dm X-’ ’--> 0 as p ----> 1 for 0 < p < 1.
(4) h is absolutely continuous with respect to m.

Proof. We first show that (4) implies (3). Suppose c is a positive number.
By Lemma 2, there are a real-valued function g on [a, b] and a number W > 0
such that if I is a subinterval of [a, b], then 0 =< Ag =< min {/h, WArn} and
hl gila < C/8.
By Theorem 2, there is a positive number k < 1 such that if k < p < 1,

then

f dg- f (dg) (dm)-’ < c/8
a,b]
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and such that furthermore (c/8) < c/4 and (ml)- < 2, so that if D is a
subdivision of [a, b], then

ED Ah f (dh) ’ (din) 1-p

Ag f (dg) ’ (din)-’

’ f (dh) ’ (dm)- f (dg) ’ (din) 1-’+

<- c/8 W c/8 W _, f (dh dg) (din)-.
By HSlder’s inequality

c/8 + c/8 W (dh rig) (din)- c/4 W (Ag Ah)(Am)1-

(mlb

so that

C.
a,b]

Therefore (4) implies (3).
It is obvious that (3) implies (2).
We now show that (2) implies (4). Suppose that (2) is true, but that h is

not absolutely continuous with respect to m. We see that m] 0.
There are a number W > 0 and a sequence {D} of proper subsets of

subdivisions of [a, b] such that .. Am 0 as n , but for each positive
integer n, .. Ah W. We see that for each positive integer n, there is a
subset C, of a subdivision of [a, b] such that D and C are mutually exclusive
and D C. is a subdivision of [a, b].

If n is a positive integer, then c Ah h .. Ah h W, so
that if 0 < p < 1, then

(dh) (din)1- .. (Ah)(Am)- + c. (Ah)(Am)-a,b]

=< (E..)(E..)- + (E.)(.Am-=< (l)(E..)- + (1- w)(m-, E-.)-(h])(0) + ([ W) -(m--0) as n ;
so that

(dh) (d)’- (hi W)(m])- h] W as 1p
a,b]

Therefore, since f a,(dh)(dm)- h] as p 1 for 0 < p < 1, it
follows that h h W, a contradiction. Therefore (2) implies (4).
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We now show that (3) implies (1). Suppose H is a real-valued bounded
function of subintervals of [a, b] such that lEa.b1H(I) dm exists.

If c is a positive number, then there is a positive number p < 1 such that

dh- (dh) ’ (din) 1-’ <
a,b] dI

By Theorem A, f Ea,b H(I)fx (dh)(dm)1-v’ exists.
Therefore, by Lemma 1, fa,, H(I) dh exists. Therefore (3) implies (1).
Finally, we show that (1) implies (4). Suppose (1) is true but that h is

not absolutely continuous with respect to m.
We first show that if a -<-< y < b, and m is continuous from the right at y,

then so is h. Suppose this is not true. Then there is a sequence of numbers
{yk}=l of (y, b] such that y, y + m(y,,) re(y) 0 as n -- , but for
some number V > 0, and each positive integer n, h(y,,) h(y) >- V. There
is a real-valued function H of subintervals of [a, b] such that

H(I) 1 if I is [y, yn] for some n,

0 otherwise.

We see that f[a,b] H(I) dm 0. However, if D is a subdivision of [a, b],
then there are refinements E and E’ of D such that for some N, [y, y] is in E
and for no n is [y, yn] in E’, so that

__,H(I)Ah- , H(I)Ah h(y)- h(y) >- V,

so that fa.l H(I)dh does not exist, a contradiction.
In a similar manner it follows that if a < y -< b, and m is continuous from

the left at y, then so is h.
Now from the supposition that h is not absolutely continuous with respect

to m it follows that there are a number W > 0 and a sequence {Dk}=l of sub-
divisions of [a, b] such that for each positive integer n, the following conditions
are satisfied"

(a) Each interval of D+ is a proper subset of some interval of D..
(b) There is a subset E. ofD such that Ah

_
Wand Am < 2-.

(c) max {v u for [u, v] in Dn} < 1In.
There is a real-valued function H of subintervals of [a, b] such that

H(I) 1 if I is in E for some n,

0 otherwise.

Suppose c is a positive number. There is a positive integer N such that
21- < c. If E is a refinement of Dr, and I is in E and E for some n, then
n >_- N. If we let E’ denote the set (if any) of all I in E and E. for some n,
it follows that

0 <= __, H(I)Am ’, Am -< E=2-= 2- < c.

Therefore fta.] H(I) dm O.
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Now suppose D is a subdivision of [a, b].
Let M denote the set of all x such that for some [u, v] in D, x is u or v.
For each positive integer n, let E* denote the set (if any) of all [u, v] in E

such that for some x in M, u < x < v.
Let M* denote the set (if any) of all x in M such that for each positive

integer n, there is a positive integer w > n such that for some [u, v] in
E,u<x<v.
For each positive integer n, let E** denote the set (if any) of all [u, v] in

E. such that for some x in M*, u .< x < v.
Now, since for each positive integer n, ** Am

_ .Am <: 2 - 0
as n -- , it follows that m is continuous at each number of M*, so that h is
continuous at each number of M*, and therefore ** hh --. 0 as n - .
There is a positive integer N such that if x is in M and no in M*, and n is

positive integer -> N, then there is no [u, v] in E. such that u <: x < v; so that
if I is in E*, then I is in **E and therefore E* is E**.

There is a positive integer n > N such that . ,h _,,. Ah < W/2,
so that E* is a proper subset of E, and E,, E*, is therefore a subset of
some refinement S of D, so that ;"sH(I)Ah >- .,,,_.,,, 5,h > W/2.
Now the set of all x such that for some n and some [u, v] in E,, x is u or v,

is countable. Therefore, since each interval i of D is uncountable, there is a
refinement T of D such that for no n is I in T and E.. This implies that
rH(I)Ah O, so that ZsU(I)Ah rH(I)Ah > W/2.
Therefore fa,bl H(I)dh does not exist, a contradiction. Therefore (1)

implies (4).
Therefore 1 ), (2), (3), and (4) are equivalent.
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