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Introduction

Let K be a field of algebraic functions of one variable over a field/c. Only
those subdomMns R of K which properly contain k are considered.
A preliminary result on quotient rings with respect to a multiplicative

system is applied to the particular case that K is of genus zero to determine
the conditions under which a given integrally closed subdomMn of K is a
quotient ring of a selected ring of a particularly simple type. This, in con-
nection with a criterion that R be a unique factorization domain, yields a
description of all subdomMns of K which are unique factorization domains.
The restriction on the genus of K removed, it is shown that under suitable
conditions if R is a unique factorization domain or possesses certain kinds of
prime elements, then K is of genus zero.
The author wishes to express his appreciation to Professor Abraham

Seidenberg for his guidance in the preparation of this work and to the referee
for several helpful suggestions.

1. Preliminaries

If K is a field of algebraic functions of one variable over a field/c, it shall
always be assumed that/ is algebraically closed in K.
The definitions of place, valuation, zero, pole, divisor, and related terms

are those of ChevMley [1]. Note, in particular, that a place is the ideal of
non-units of a valuation ring.
A Krull domain is an integral domain R with unity such that there exists

a family V of valuations of the quotient field F of R which are discrete and of
rank 1, and such that R is the intersection of all valuation rings of valuations
of V, and every nonzero element of F has zero value in all but a finite number
of valuations of V. V is called a definition family of R. A valuation v in V
is essential if there is an element x in F such that v(x) is negative, but x has
nonnegative value in every other valuation of V. The basic facts about
Krull domains are to be found in Samuel [2], where they are called "normal"
rings.
A Dedekind domain is a Krull domain in which every nontriviM prime ideal

is minimal. Occasionally, for expository purposes, a domain, instead of be-
ing called simply a Dedekind domain, will be referred to as both a Krull
and Dedekind domain.
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2. Krull domains and quotient rings
LEMMA 2.1. Let K be a field of algebraic functions of one variable over a

field k, and R any intersection of valuation rings of K/] not equal to . Then
R has the following properties:

(a K is the quotient field of R.
(b) R is a Krull domain.
c R is a Dedekind domain.

Proof. (a) Since R contains but is not equal to/c and k is algebraically
closed in K, there exists an x in R which is transcendental over/c. K is a
finite algebraic extension of k(x) and hence also of the quotient field of R.
R is an intersection of valuation rings of K and so is integrally closed in K.
Let y be an element of K. Then

y + a,_l/b,_l)y- + - ao/bo O,

where ai, bi are in R for all i, since y is algebraic over the quotient field of R.
If s b0 b_, then

(sy) + an_l(sy)n- " 2_ ao O,

where a is in R for all i.
Thus sy is integral over R and so is in R. Saysy r. Theny r/s;

r, sinR.
Thus K is the quotient field of R.
(b) Since K is a field of algebraic functions of one variable over , every

valuation of K/t has rank one and is discrete, and every element of the field
has nonzero value for only a finite number of valuations. Thus, since R
is an intersection of valuation rings of K, R is a Krull domain.

(c) Let F be the set of all valuations of K which are nonnegative on R.
R is the intersection of all valuation rings of valuations in F, and every valua-
tion of F is a valuation of K/k, so it follows from the proof of (b).that F is
definition family of R. But the Riemann theorem implies that for every
valuation v of K/ there is aa x in K which has negative value for v and
negative value in every other valuation. Thus, every valuation in F is
essential, and so R is a Dedekind domain since a Krull domain, S, is a Dedekind
domain if and only if every valuation of the quotient field of S nonnegative on
S is essential. This completes the proof.

If R is a subdomain containing a field/ of a field, K, of algebraic functions
of one variable over k, every valuation of K nonnegative on R is a valuation
of K/E. The integral closure of R in K is the intersection of all valuation
rings of valuations of K/ nonnegative on R. Every Krull, and hence every
Dedekind, domain is integrally closed. If R is integrally closed, so is every
quotient ring with respect to a multiplicative system of R. Thus if K is
field of algebraic functions of one variable over a field It, and R a subdomaia of
K with quotient field K containing/, then the following properties hold"
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(a) R is a Krull domain if and only if R is integrally closed.
(b) R is a Dedekind domain if and only if R is a Krull domain.
(c) If R is a Krull domain and M is a multiplicative system in R, then

the quotient ring of R with respect to M is a Krull domain.

LEMMA 2.2. Let R and S be integral domains, R contained in S, and S*
the integral closure of S.

If M is a multiplicative system in R, and S* is the quotient ring, R, of R
with respect to M, then S is equal to S* and so is integrally closed.

Proof. Assume that a is a non-unit in S but is a unit in S*. Then there
exists a b in S* such that ab 1. Now b satisfies an equation of integral
dependence

b clbn-1 cn 0

where the ci are in S. Then

(ab) + ac(ab)"- + + ac, O,
and so

1 ac ac, O.

But there is a nontrivial ideal in S which contains a and thus also contains 1.
This is a contradiction, and so a is a non-unit in S.
Now every element of M is a unit in S* and hence a unit of S. Thus, R

is contained in S. Clearly S is contained in R, and so R is equal to S.
This completes the proof.

THEOREM 2.1. Let K be a field of algebraic functions of one variable over a

field ], and R a subdomain of K containing and with quotient field K.
Every overdomain of R in K is a quotient ring with respect to a multiplicative

system of R if and only if every minimal prime ideal of R contains a primary
principal ideal and R is integrally closed.

Proof. Assume that every minimal prime ideal in R contains a principal
primary ideal and that R is integrally closed. Let S be an overring of R in
K. Since R is integrally closed, so is every quotient ring of R, and thus, by
Lemma 2.2, S is a quotient ring of R if and only if the integral closure of S is a
quotient ring of R. Thus, we may assume that S is integrally closed.

Since R and S are integrally closed and contain /, they are both Krull
and Dedekind domains. In particular, every valuation essential for S is
essential for R.

Let the prime ideals P, P, be the centers in R of the valuations,
vi, of K/ essential for R but not essential for S. For all i, let (a) be a
principal P-primary ideal in R, and let M be the multiplicative system
generated in R by the set of all a.
For all i, v(ai) is positive, but v(a) 0 for every essential valuation of

R distinct from v. In particular, a has value zero in every valuation essen-
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tial for S. Thus, for all i, ai is a unit in S, and R, the quotient ring of R
with respect to M, is contained in S.
R is a Krull domain. So to show that S is contained in R it suffices to

show that every valuation essential for R is essential for S, or equivalently
that every valuation of K/k negative for some element of S is negative for
some element of R.

So let v be a valuation of K/k not essential for S. If v is not essential for
R, it is not essential for Ru. Assume v is essential for R.

There exists an element a/b in S such that a and b are in R and v(a/b) is
negative. Thus, v(b) is positive, and so if P is the center of v in R, b is in P.
There exists a c in M such that (c) is a principal P-primary ideal, and there

exists an n greater than zero such that v(b) is less than nv(c). Now b/c
is in R, and v(b/c’) is negative, so v is not essential for R.

Thus, Ru is equal to S.
Assume now that every overdomain of R is a quotient ring of R. In

particular, the integral closure of R is a quotient ring of R, and thus R is
integrally closed and a Krull domain.

Let P be a minimal prime ideal of R, and v the corresponding essential
valuation of R; let S be the intersection of all rings of valuations, vi, essential
for R and distinct from v.
S is a quotient ring of R. Let M be the maximal multiplicative system in

R such that R is equal to S. Every element of M is a unit in S, and so
vi(m) 0 for all m in M and all v essential for S, hence for all v.

If v(m) 0 for all m in M, then every element of M is a unit in R, and so
R is equal to R. Thus, there is an m in M such that v(m) is positive and
v(m) 0 for all i, that is, for every essential valuation of R distinct from
v. Therefore (m) is a P-primary ideal of R. This completes the proof.
Every unique factorization domain is integrally closed. A Krull domain

is a unique factorization domain if and only if every minimal prime ideal is
principal. A quotient ring with respect to a multiplicative system of a unique
factorization domain is a unique factorization domain. Thus, we have

COIOLLAIY 2.1. Let K be a field of algebraic functions of one variable over a

field to, R a unique factorization domain containing k and with quotient.field K.
Every overdomain of R in K is a quotient ring with respect to a multiplicative

system of R and is a unique factorization domain.

3. Quotient rings and fields of genus zero

THEOREM 3.1. Let K be a field of algebraic functions of one variable over a

field to, and R a domain containing k and with quotient field K.
If K is of genus zero and R is integrally closed, then every minimal prime

ideal P of R contains a principal P-primary ideal.

Proof. R is a Krull domain, and so there is a unique place, M1, and a
unique valuation vl of K/k with center P on R. Let M2 be a place correspond-



UNIQUE FACTORIZATION IN ALGEBRAIC FUNCTION FIELDS 429

ing to a valuation, v2, nonessential for R. Let dl be the degree of M1, d2
7i/Ed 71/dthe degree of M2, and A the divisor

Then, since K is of genus zero, Riemann’s theorem implies that there exists
an a in K whose divisor is equal to A.

Thus, there exists an a in K such that v(a) is greater than or equal to
--d2, w.(a) is greater than or equal to d, and a has nonnegative value in
every other valuation of K/lc. The multiplicative inverse, b, of a in R then
has a zero of order d2 at M, a pole of order d at M2, and has value zero at
every other place.

Therefore b has nonnegative value for every valuation essential for R,
and so is in R, and has nonzero value for only one essential valuation,
Thus (b) is contained in only one prime ideal, P, of R, and so is a P-primary
ideal in R. This completes the proof.

COROLLAaY 3.1. Let K be a field of algebraic functions of one variable over a

field lc, and R a domain containing t and with quotient field K.
If K is of genus zero and R is integrally closed, then every overring of R in K

is a quotient ring with respect to a multiplicative system of R.

If a field K of algebraic functions of one variable over a field/c has a place
of degree one, then K is of genus zero if and only if K is a simple transcendental
extension of /. The next theorem gives some information on the Krull
domains in fields of rational functions of one variable.

THEOREM 3.2. Assume that R is an integral domain containing a field
whose quotient field is a simple transcendental extension, to(t), of

The integral closure of R is a quotient ring with respect to a multiplicative
system of a polynomial ring in one variable over t if and only if there exists .a
valuation ring of k( t) /t of degree one not containing R.

Proof. Since the integral closure of R is the intersection of all valuation
rings of k(t)/k containing R, it suffices to prove the result for an integrally
closed ring. We will assume R is integrally closed.

If s is transcendental over/ and R is a quotient ring of/[s], then k(s) is
equal to/(t), and the ring of that valuation in which s is negative has degree
one and does not contain R.
Assume there exists a valuation v of/(t)/k with valuation ring 0 which is

of degree one and does not contain R. v is not essential for R.
As is well known, the valuations of k(t)/k are precisely the p-adic valuations

of k(t), so since 0 is of degree one, it is generated either by a for some
a in k or by 1/t. Assume 0 is generated by a. If 1/(t a) is not in R,
there must be an essential valuation of R which is negative at 1/(t a).
But v is the only valuation of/(t)/ negative a/ 1/(t a), so v is essential
for R. Thus, 1/(t a) is in R, the polynomial domain k[1/(t a)] is
contained in R, and R is a quotient ring of k[1/(t a)] since/(t) is of genus
zero. Similarly, if 0 is generated by l/t, R is a quotient ring of/[t]. This
completes the proof.
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Combining this last result with the remarks preceding the theorem, we
obtain the following corollary.

COROLLARY 3.2. Let K be a field of algebraic functions of one variable over a

field to, R a subdomain of K containing k and with quotient field K.
If there exists a valuation ring of K/tc of degree one which does not contain

R, then K is of genus zero if and only if the integral closure of R is a quotient
ring with respect to a multiplicative system of a polynomial ring in one variable.

If K is a field of algebraic functions of one variable over a field ]c and is of
genus zero, then K has either a place of degree one or a place of degree two.
We consider next the case in which K has no place of degree one.

THEOREM 3.3. Let R be an integral domain containing a field k of charac-
teristic different from two whose quotient field is a field K of algebraic functions
of one variable over tc which is of genus zero and contains no valuation rings of
K/]c of degree one.

The integral closure of R is a quotient ring with respect to a multiplicative
system of a ring k[x, y] where y2 + C x 0, C X a polynomial of degree two
with distinct factors and Y2 + C(X) irreducible in the polynomial domain
k[X, Y] if and only if there exists a valuation ring of K/t of degree two not con-
taining R.

Proof. As before we may assume without loss of generality that R is
integrally closed.

If R is a quotient ring of/[x, y] where y + C(x) 0 with C(X) a polynomial
of degree two with distinct factors, then that valuation ring of (x, y)/k
in which both x and y have negative value is of degree two and does not
contain R.
Now assume that there exists a valuation ring, 0, of K/k of degree two

which does not contain R, and let M be the place, and v the valuation, asso-
ciated with 0. By Riemann’s theorem the length of M-1 is at least equal to
three. Thus, there exist elements x, y not in lc such that the degree of the
divisor of zeros of x and the degree of the divisor of zeros of y is equal to two
and 1, x, y are linearly independent over /c. Then, the degree of K over
k(x) is equal to the degree of K over k(y) is equal to two.

Let S be the integral closure of k[x] in K. y has negative value only at
M, so y is in S.
Assume y is in k[x].

in k such that
Then, for some n there exist elements a0, ..., am

y -ao +alx+ ---ax

--1 v(y) nv(x) --n.

Thus, y a0 + a1 x; but this implies 1, x, y linearly dependent over
y is not in/c[x], and so K is equal to/c(x, y).

Thus,
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Now y in S implies y + A(x)y + B(x) 0 where A(x), B(x) are in
k[x] and Y -t- A(x)Y -t- B(x) is irreducible over/(x). Since 1, A(x),B(x)
have no common factor, Y A(X)Y + B(X) is irreducible in/[X, Y],
and so y + A(X)y B(X) is irreducible as polynomial in X over/(y).
But the degree of K over k(y) is equal to two, soA(X) and B(X) have degree
less than or equal to two, and one of them has degree equal to two.
Lety’ y + A(x)/2.

k[x, y] lc[x, y -t-- A x /2] k[x, y’], and

(y’ A(x)/2) -- A(x)(y’ A(x)/2) + B(x)

y’:-- A(x)y’ + A(x)/4 + A(x)y’ A(x)/2 -t- B(x)
y’ + (B(x) A(x)/4) O.

Set y’ equal to y, B(x) A (x)/4 equal to C(x).
Now since x and y have negative value only a M, x is integral over/[y],

and since /[y] is integrally closed, the monic defining equation for x over
k[y] is an equation of integral dependence. Thus, the degree of A(X) is
less than or equal to one, and the degree of B(X) is equal to two. Therefore,
the degree of C(X) is equal to two.
Suppose C(X) has multiple factors. Then

yC(X) eCI(X); + eC(x 0

where e is in/. But then, (y/C(x)) + e O, y/C(x) is algebraic over/
and, since/ is algebraically closed in K, is in/. Then y dC(x) where d
is in/, and so y is in/c[x]. But this is a contradiction.
Now let z in K be integral over/[x]. Then z a(x) -t- b(x)y; a(x), b(x)

in/(x). The norm and trace of z over/(x) belong to /[x], so

2a(x) - b(x)(y y) 2a(x)
is in k[x], and

a(x) b(x)y a(x) + b(x)C(x)

is in k[x]. Then a(x) is in k[x], and hence also b(x) is in/[x] since otherwise
C(X) is divisible by the square of the denominator of b(X); but C(X) has no
nontrivial multiple factors. Thus z is in/c[x, y].

Thus, the integral closure S of k[x] in K is of the form /[x, y] where
y + C(x) 0 and C(X) is of degree two with distinct factors. Also,
since y is not in/(x), Y + C(X) is irreducible in/[X, Y].
Now x has nonnegative value in every valuation nonnegative on R, and

so x is in R. Then, since R is integrally closed, /[x, y] is contained in R,
and since K is of genus zero, R is a quotient ring of/c[x, y]. This completes
the proof.

It is easily verified that the quotient field of the domain/[x, y] described in
the preceding theorem is of genus zero. We then obtain the following result.
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COROLLARY 3.3. Let K be a field of algebraic functions of one variable over a
field t of characteristic different from two, R a subdomain of K containing and
with quotient field K.

If there are no valuation rings of K/tc of degree one and there exists a valuation
ring of K/k of degree two which does not contain R, then K is of genus zero if and
only if the integral closure of R is a quotient ring with respect to a multiplicative
system of a ring tc[x, y] where y2 + C(x) O, C(X) a polynomial of degree
two with distinct factors, and Y2 + C(X) 0 is irreducible in the polynomial
domain k[X, Y].

4. Unique factorization domains and fields of genus zero

THEOREM 4.1. Let K be a field of algebraic functions of one variable over a

field tc, K of genus zero, and R an integrally closed domain containing k and
with quotient field K.
R is a unique factorization domain if and only if the degree of every place of

K/lc with finite center on R is a finite linear combination with integer coeicients
of the degrees of places of K/k that do not have finite center on R.

Proof. Assume that R is a unique factorization domain and that M is a
place with finite center P in R. P is a minimal prime ideal of R, there exists
an a in R which generates P, and the only places of K/ other than M which
contain a are places that do not have finite center on R. Thus, the divisor
of a is of the form MM M: where only M has finite center. But the
degree of the divisor of an element of K is always equal to zero, and so
if d, d, ..., d are the degrees of M, M, ..., M respectively,

d +eldl + +end =0.

Now let P be a minimal prime ideal of R; M the unique place of K/lc with
center P in R; M1, Mn places of K/lc which do not have finite center on
R. Let d, d, dn be the degrees of M, M1, Mn respectively, and
assume that there exist integers al, ..., an such that

d a dl + + an d.

The divisor A M-1M Ma has degree zero, and hence Riemann’s
theorem implies that there is an element a in K with value one at M, value
-a at M for i 1, n and value zero elsewhere. Then a is a member
of R, and P is generated by a. This completes the proof.

COIOLLARY 4.1. Let K be a field of algebraic functions of one variable over
a field It, K of genus zero, R an integrally closed domain containing l and with
quotient field K.

If M is: a place of K/tc of degree one and with finite center P on R, then R is a
unique factorization domain if and only if P is a principal ideal in R.

.We give some elementary examples of the application of the theorem.
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Example 4.1. Let be the field of real numbers, K the field k(x, y) where
x is transcendental over/ and x -t- y 1 0.

/ is algebraically closed in K, K is of genus zero, every place of K// is of
degree two, and [x, y] is integrally closed.

Thus, k[x, y] is a unique factorization domain.

Example 4.2. Let be the field of real numbers, K the field k(x, y) where
x is transcendental over/ and x W y 1 0.

k is algebraically closed in K and K is of genus zero. There is only one
place of K/k which does not have finite center on k[x, y], and that place has
degree two. There exist places with finite center on [x, y] which are of de-
gree one.

Therefore, k[x, y] is not a unique factorization domain. Note, however,
that k[x, y] is integrally closed.

.THEOREM 4.2. Le K be a field of algebraic funcgons of one variable over a

field , K of genus zero, R a subdomain of K containing and with quotien
field K.

If here exists a valuagon ring of K/ of degree one which does not contain R,
hen he integral closure of R is a unique factorization domain.

If t is of characteristic differen from wo, if there are no valuation rings of
K/] of degree one, and if there exists a aluaion ring of K/] of degree wo no$

containing R, then he integral closure of R is a unique factorizaion domain.

Proof. Since every quotient ring with respect to a multiplicative system of
a unique factorization domain is a unique factorization domain, it suffices
to show that in both cases the integral closure of R is a quotient ring of a
unique factorization domain.

If there exists a valuation ring of K/] of degree one which does not contain
R, then the integral closure of R is a quotient ring of a polynomial ring in
one variable, and the desired result is established.
In the remaining case, the integral closure of R is a quotient ring of a

ring [x, y] such that (x, y) is of genus zero, there are no valuation rings of
k(x, y)/k of degree one, and the only valuation ring of k(x, y)/k which does
not contain k[x, y] is of degree two.

In every field, K, of algebraic functions of one variable over a field k which
is of genus zero there is either a valuation ring of K/ of degree one, or there is
a valuation ring of K/h of degree two, a.nd every other valuation ring of K/]
has even degree (see [1, page 33]). Thus, by an earlier theorem, [x, y] is a
unique factorization domain. This completes the proof.

THEORE 4.3. Le R be a unique facorizaion domain containing a field
whose quotient field is a simple $ranscendenal extension, (), of and such ha
every valuation ring of (t)/tc of degree one contains R.

If v is a valuation of ](t)/ with aluation ring 0 of degree one, then there
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exists a quotient ring, S, with respect to a multiplicative system of a polynomial
ring in one variable such that R is equal to the intersection o 0 and S.

Proof. R is integrally closed, hence a Dedekind domain, and so the center
of v on R is a minimal prime ideal, P. Since R is a unique factorization domain,
there exists a prime element p in R such that P is equal to (p). Let M be
the multiplicative system generated in R by p, and let S be the quotient ring
of R with respect to M.
S is a Dedekind domain, and, clearly, R is contained in S n 0. Thus, to

show that R is equal to S n 0 it suffices to show that every valuation of
k(t)/k not essential for S n 0 is not essential for R.

Let v’ be a valuation of tc(t)/tc not essential for S n 0 but essential for
R. Then v’ is distinct from v, and v’ must be positive at p.

Let 0’ be the valuation ring of v’. The center of 0 on R contains and
hence is generated by p, and so 0 and O’ have the same center on R. But the
valuation ring of an essential valuation of a Krull domain is determined by
its center; the valuation ring is the quotient ring of the domain with respect to
the multiplicative system of elements not contained in the center. Thus,
0 is equal to 0’, which is a contradiction. This completes the proof.
We thus have a description of all unique factorization domains containing

/c and with quotient field K in the case that K is a simple transcendental
extension of/c; if R is a unique factorization domain, then R is either a quo-
tient ring of a polynomial ring in one variable or is the intersection of such a
quotient ring with a valuation ring of degree one.
The next theorem completes these results to the general case that K is of

genus zero and/c of characteristic different from two.

THEOREM 4.4. Let R be a unique factorization domain properly containing a

field tc of characteristic different from two whose quotient field is a field K of
algebraic functions of one variable over k which is of genus zero and contains no
valuation rings of degree one.

If v is a valuation of K/tc with valuation ring 0 of degree two containing R,
then there exists a quotient ring, S, with respect to a multiplicative system of a
ring of the form k[x, y] where y2 + C(x) 0 and C(X) is of degree two with
distinct factors such that R is equal to the intersection of 0 and S.

The proof is almost exactly the same as the proof of the analogous result
for the case in which K is a pure transcendental extension of

THE01EM 4.5. Let K be a field of algebraic functions of one variable over an
algebraically closed field , K k(xl x,), R tc[xl x,] integrally
closed.
R is a unique factorization domain if and only if K is of genus zero.

Proof. Since/c is algebraically closed, every place of K/tc is of degree one.
Thus, if K is of genus zero, it follows from an earlier theorem that R is a
unique factorization domain.
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Assume now that R is a unique faetorization domain.
Since k is algebraically closed and hence infinite, we may assume without

loss of generality that ., ..., x= are integral over k[x], and thus that Xl

has negative value at all places of K/lc not at finite distance. Thus x has
positive value at one or more places at finite distance.

If a valuation v of K/k is nonnegative on xx, =, then v is nonnegative
for every polynomial in x, x with coefficients in k and hence is non-
negative on every.element of R. Thus, if v is negative at some element of R,
it is negative at x, for some i. But every element of K has nonzero value
for only a finite number of valuations. Thus there exist only a finite number
of valuation rings of K/lc not containing R and so only a finite number of
places of K/k which do not have finite center on R.

Let M, Mbe those places of K/k which do not have finite center on R,
and let t, t= be such that t is in the ring 0 of M and M is equal to
t 0 for all i. For each i, there are only a finite number of places of K/lc con-
taining t. Let s be an element of K having value one at M and value zero
at all other places containing t.

Let R be equal to the residue-class ring of the polynomial ring k[Xx, , X,]
modulo the prime ideal (f(Xi, ..., X,), ..., fa(X, ..., X,)). Adjoin
to the prime field r of k the coefficients of f(Xx, ..., X) for all j, plus, for
all i, the coefficients of t and s occurring in some representation of t and s
as quotients of polynomials in x, ..., . The subfield, L, of k so obtained
is thus a finite extension of r.

Since L is a finite extension of r, there exists a nontrivial normal extension
N of L in k, the splitting field of some polynomial separable over L. N
possesses a nontrivial automorphism over L which can be extended to a
nontrivial automorphism F of k over L. F can be extended to an auto-
morphism F’ of R such that

which in turn induces an automorphism G of K such that for a and b in R,
b not equal to zero, G(a/b) F’(a)/F’(b).

If M is a place of K/k with valuation ring O, then G(M) is a place with
valuation ring G(0). Since G(ti) t, G(si) s where s, t are in G(M),
and since O is the only valuation ring containing t in which s is a non-unit,
G(M) =Mi and G(O) 0. Moreover, G(t’O) t’O, and so the
values of an arbitrary element of K at M1, M are unchanged by G.

Choose an element a in k such that the image b of a under F is distinct
from a. Since R is a unique factorization domain, both xl a and xl b,
the image of xx a under G, are uniquely expressible as a product of prime
elements of R. Also, since xl has negative value at every place of K/k not
at finite distance, so does x a, and hence x a has positive value at at
least one place at finite distance. Let, then, x a be equal to p...p
where the p are prime elements in R. x b is thus equal to
G(px)k.. .G(p)k, and the G(p) are prime elements of R.
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If for all i, G(p) is associate to p in R, then xl a is associate to xl b,
and they have the same value at every place at finite distance. But xl a
and x b have no common zeros. Thus, there exists a prime element
p of R such that G(p) is a prime element of R not associate to p.
Now G(p) and p have equal value at every place not at finite distance,

and hence G(p)/p has exactly one zero.
Thus, K is of genus zero. This completes the proof.

COIOLLAIY 4.2. Let K be a field of algebraic functions of one variable over
an algebraically closed field , and R an integrally closed subdomain ofK properly
containing t which is contained in all but a finite number of valuation rings of

R is a unique factorization domain if and only if K is of genus zero.

Proof. Riemann’s theorem implies that there is an element x in K which
has negative value in every valuation whose ring does not contain R and
nonnegative value elsewhere. Thus R is the ingegral closure of/[x] in K and
is a finite integral domain/c[x, x] over/c.
Thus R is a unique factorizatioa domain if and only if K is of genus zero.

This completes the proof.
If the field/c is uncountable, then the proof of the preceding theorem can be

greatly simplified. In that case, R contains uncountably many prime ele-
ments, and since there is only a finite number of places of K/k not at finite
distance with respect to R, there are at least two prime elements of R whose
values coincide at every place not at finite distance. The quotient of these
elements has exactly one zero and one pole. The theorem follows immedi-
ately.
That the assumption that R is contained in all but a finite number of

valuation rings of K/h, and hence is a finite integral domain over/c, is essential
to Theorem 4.5 is shown by the next example.

Example .4.3. Let /c be an algebraically closed field of characteristic
zero, and let K be equal to /(x, y) where x is transcendental over/c and
y x(x- 1)(x- 2).
K is of genus one.
Let F be the family of ideals generated in k[x, y] by the elements x a,

where a is in/c and is distinct from zero, one, and two. The ring/c[x, y] is
integrally closed, and every ideal in F is the intersection of two prime ideals
of/c[x, y]. Hence, if P is a place at finite distance whose center on/c[x, y]
contains an ideal (x a) of F, then P is generated by x a.
For every element of F choose one of the prime ideals of/c[x, y] containing

it, and let G be the family of valuations of K/k determined by these prime
ideals. Denote by R the Krull domain with G as a definition family.
For every valuation v in G there is an element of the form x a in R which

has value equal to one for v and value zero for every other valuation in G.
Thus R is a unique factorization domain.
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The following example shows that the preceding theorem is not true for an
arbitrary field ] and also that a unique factorization domain k[xl, ..’, x.],
where k is arbitrary, need not remain so if ]c is extended to its algebraic
closure.

Example 4.4. Let h be a field of characteristic zero, transcendental over
h, and k the field h(t). Let K be equal to k(x, y) where x is transcendental
over/ and y W x 0.

k is algebraically closed in K, and K is of genus one.
Since y x, h[x, y, t] h[x, y] is a polynomial ring over h and hence

is a unique factorization domain. Thus, since k[x, y] is a quotient ring of
h[x, y, t], k[x, y] is a unique factorization domain.

If k is extended to its algebraic closure ], then ][x, y] is still integrally
closed, but as the genus is unchanged by separable extensions of the base
field, ][x, y] is not a unique factorization domain.

It is worth remarking here that P. Samuel [3] has given examples which,
while unrelated to the previous theorem, show that unique factorization need
not be preserved either under extension or restriction of the base field ]c.

The next theorem does not deal directly with the question of unique factor-
ization, but is concerned with the existence of certain kinds of prime elements.

DEFINITION 4.1. Let K be a field of algebraic functions of one variable
over a field ], R an integrally closed domain containing c and with quotient
field K.
A prime element p of R has degree n if and only if the place of K/ with

center on R equal to the prime ideal in R generated by p has degree n.

THEOREM 4.6. Let K be a field of algebraic functions of one variable over an
infinite field ]c, K k(Xl, x.), and R ]c[xl, x] integrally closed.
Let there be n places of K/k not having finite center on R, at least one of which
has degree one.
K is of genus zero if and only if there exist at least n prime elements of R of

degree one which differ only by an element of ]c.

Proof. If K is of genus zero, then R is a quotient ring with respect to a
multiplicative system M of a polynomial ring k[t]. Every element of M is a
unit in R and hence has value zero in every valuation nonnegative on R.
Thus, there are at most a finite number of valuations of K/ positive on some
element of M, and since every prime ideal of k[t] is the center of a valuation
of K/k, there are at most a finite number of prime ideals of k[t] which contain
an element of M. Thus there are infinitely many elements of the form a
with a in k which are prime elements in R.
Assume now that there exist n prime elements of R of degree one and of

the form p W a where a is in ] for i 1, n. The poles of the p W a
coincide, the zeros of the p W a occur at distinct places, and the degree of
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the divisor of zeros of p W a is equal to the degree of the divisor of zeros of
p - a for all i, j from 1 to n.

Let A be the divisor of zeros of p W a, d the common degree of the A,
and assume that d is greater than one. Let M be that place of K/k with
center the minimal prime ideal of R generated by p - a. By assumption,
the degree of M is equal to one. Thus, the degree of B AM- is greater
than or equal to one. Moreover, no place of B is at finite distance.
Now the p a have the same poles, and so there are at most n 1 distinct

places involved in all of the B. But there are n of the B, and no two can
have a common place. This is a contradiction.

Thus, for i 1, n the degree of the divisor of zeros of p a is equal
to one, K contains an element with only one zero and one pole, and so is of
genus zero. This completes the proof.
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