
AN. APPLICATION OF PROHOROV’S THEOREM TO PROBABILISTIC
NUMBER THEORY

PATRICK BILLINGSLEY

The purpose of this paper is to give a probabilistic proof of a theorem which
contains as special cases certain results about the natural densities of arith-
metically interesting sets of integers, results usually conjectured on proba-
bilistic grounds but proved by nonprobabilistic methods. The principal tool
is Prohorov’s theorem on the weak compactness of probability measures [8].
Results similar to those of this paper, but for logarithmic density rather than
natural density, have been proved, by very different methods, by Paul [7]
(see the end of the paper for a comparison).

1. Introduction

Let be the probability measure on the space of positive integers that
places mass 1IN at each of the points 1, 2, ..., N. To ask if a set A of
integers has a natural density is to ask if the limit lim (A) exists. Thus
we are lead to ask whether the measures t converge in some sense. In
order to obtain a satisfactory answer, we must first complete the space of
integers in some way. The following completion is useful for problems of
multiplicative number theory.

Let X be the space of sequences x (xl, x, of nonnegative integers.
For each n >_ 1 let c(n) (l(n), 2(n), ), where (n) is the exponent
of the ith prime p in the factorization of n II pTn. The mapping a

provides a one-to-one correspondence between the set of positive integers and
the subset X0 of X consisting of those x that have only finitely many nonzero
coordinates. The completion that we will use is a space Xx, between X0 and
X (X0 c Xx c X), defined as follows. For each component x of x, let
x be x or 0 according as x _< 1 or x > 1, and let x be x or 0 according as
x > 1 or x _< 1. For a fixed sequence k (M, ,., of positive constants,
let Xx consist of those points x of X for which each of the sums x and

x’ is finite. (Of course the second sum is finite if and only if at most
finitely many of the x exceed 1.) Under the metric

Xx is a complete, separable metrix space. (To see this, identify x with
x" " respectively. With(x,’ x’), where x and have coordinates x and x,

this identification, Xx is the topological product of two sets, the first [second]
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being a closed subset of the Banach space of real sequences x’ [x"] with
x’ :’ k x[ [11 x" [x’ [] finite.)
Let 9x be the z-field of Borel sets in Xx, i.e., the z-field generated by the

open sets. We now redefine to be that probability measure on 9x corre-
sponding to a mass of 1IN at each of the points a(1), a(2), ’, a(N), and
we ask whether converges weakly to some probability measure
Weak convergence (denoted ) here means that fg dt ----> fg d for
11 bounded, continuous functions g on Xx or, equivalently, that (A --, #(A
for all -continuity sets A, a -continuity set being an element A of 9x whose
boundary A-satisfies (A-) 0 (see [1] or [8]). If t and if A is a
-continuity set then clearly

(1.1) D{n" a(n) eA} (A),

where D denotes natural density. (For an account of density, see [4], for
example.) The main result will be that does converge weakly to an
appropriate limit if

(1.2)

where

Ei /p <

if

_
1

(1.3)
=1 if X>I.

As we will see, this result enables us to compute the natural densities of
various number-theoretically interesting sets.

2. Weak convergence in Xx
In this section we consider arbitrary probability measures and on Xx.

Prohorov [8] has generalized the classical Helly theorem by showing that
} contains a subsequence that converges weakly (to some ) if it is tight

in the sense that for every positive there is a compact set K such that
(K) > 1 e for all N. (Prohorov’s theorem is valid in any metric space;
the converse also holds if the space is separable and complete.) A routine
application of this theorem yields a useful convergence criterion for measures
on x

For each h, the equation (x) (x, ..., x) defines a mapping from
Xx to the space I of/-tuples of nonnegative integers; for any/ and ,, is
a purely atomic probability measure defined for all subsets of I. It is easy
to show that if , then , ,- for each k, where here the weak
convergence in I refers to the discrete topology (i.e., there is convergence for
every subset of I). Although the reverse implication does not hold in
general, it does if one adds the hypothesis that {} is tight, which is the con-
tent of the following result.

--1 --1 for eachLEMMA 2.1. If
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Proof. It is enough to show that any subsequence {vN,} contains a further
subsequence {v,,} converging weakly to v. But, since {vN,} is tight, it follows
by Prohorov’s theorem that it contains a subsequence {v,, converging weakly
to some v0. To see that v0 must coincide with , note first that, since

--1 --1 --I --1

p and 0 must agree on the field 9C, of sets of the form -1M(/ >_I, Mc Ik).
Hence it suffices to show that 9C, generates 9Cx, which follows from the separ-
ability of Xx, together with the fact that the closed sphere of radius about
y is the limit of the sets

{x. E=I + E- },
which all lie in .
To use Lemma 2.1, we need a condition that implies {p} is tight.

--1LEMMA 2.2. The sequence {p} is tight if (i) for each t the sequence {
is tight and ii for any positive and there exists an integer tc such that

for all N.

Proof. Given a positive e, we must produce a compact set K such that
(K) > 1 for all N. It will be convenient to write

(2.i) r() ]_ x, ’ + ]-.There is by (ii) an increasing sequence (/cl, /c, of integers such that

{" r() > /j} < /2+

for all N and j.

for all N.

(2.2)

and

And there is by (i) a number c such that

" c} /2
Let A be the set of x for which

r(z) <_ /j, j 1,2, ...,

take K to be the closure of A. Clearly N(K) > 1 for all N. Since only
finitely many distinct nonnegative integers can appear in any given coordinate
of the members of A, it is possible, by the diagonal method, to select from any
sequence in A a subsequence that is in each coordinate eventually constant;
(2.2) now implies there is convergence in the sense of the topology of Xx.
Hence K is compact.

3. Weak convergence of the

Consider again the particular measures defined in Section 1.



700 PATRICK BILLINGBLEY

THEOREM 3.1. If (1.2) holds then tN t, where the measure t on 9Cx is
uniquely determined by the relation

(3.1) {x. z v,i , } 1

valid for any finite sequence (v, vk) of nonnegative integers.

Proof. The main thing is to show that {N} is tight by verifying that
it satisfies conditions (i) and (ii) of Lemma 2.2. We must estimate
t{x "rk(x) > ti}, with rk(x) defined by (2.1.). Let [’]["] denote
summation over those indices i for which i _>/ [i >_/ and hi

_
1] [i >_ lc and

k > 1]; then

(3.2)

Using Chebyshev’s inequality, we obtain

since

we have

Moreover

and

> o} < {x’x >0} _<

Applying the last three inequalities to (3.2
of X, we arrive at

and using the definition (1..3)

As/ - oo, the right-hand member of this inequality goes to 0, because of the
assumption (1.2);hence condition (ii) of Lemma 2.1 is satisfied. Condition
(i) is easily verified.
ByProhorov’s theorem, there is a subsequence {t’l converging weakly to

--1 --1some t. Since , tk it is not hard to show that satisfies (3.1).
(That t is then uniquely determined by (3.1) follows from the fact, noted in
Section 2, that 9x is generated by the field ff: .) Having established the
existence of , one can show without difficulty that Since
{t} is tight, N .
Remark. Theorem 3.1 remains true if p, p, is some subsequence of
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the primes, rather than the entire sequence. Suppose the subsequence satisfies. 1/p < ; if k is identically 1, then Theorem 3.1 applies. In this case,
X0 is a closed subset of Xx, the distance between any two elements of X0
is at least 1, and (X0) 1. If A is any set in 9x, and if B is the set of points
within distance 1/2 of A n X0, then

{n’a(n) eA} In’a(n) eB}, (B-) O, and t(A) (B).

Thus D{n a(n) A} (A) for any A in 9Cx in this special case. This fact
can be restated as a known result- D is a (completely additive) probability
measure on the z-field generated by the class of sets In" pln} with p e C
and u >_ 1, provided ,c lip < .
The relation

D{n a(n) A} (A ((A-) O)

implies a number of corollary results. Let h be a continuous function from
Xx to the line, say; if the linear Borel set M is a h-l-continuity set then h-IM
is a -continuity set and hence

(3.3) D{n h(a(n) e M} h-l(M).
(This result also follows if we only assume that h(x) is continuous on a set of
u-measure 1.) Now an additive arithmetic function f(n) has the form

f(n) f(p.(")),
where the numbers f(p) are arbitrary, except that f(p) f(1) 0. If

(3.4) h(x)

then f(n) h(a(n)). If we impose on the function f(n) conditions that
ensure h(x) is well defined and continuous on Xx then it will follow by (3.3)
that

(3.5) D{n f(n) eM} (x f(p) M}
holds for any linear Borel set M such that

(3.6) tlx" f(p)eM-} O.

Put
f’(p) f(p) if f(p) - 1

1 if f(Pi) > 1.

If f’(Pi) I/Pi < then there is a sequence k (},, ks, of positive
constants such that f(P)i < hi and ik/pi < . Since (3.4) is then
continuous in the topology of Xx, we may state the following result.

THEOREM 3.2.

(3.7)
If f(n is an additive arithmetic function such that

f’(P) l/P <
then (3.5) holds for any linear Borel set M satisfying (3.6).
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This theorem was proved by Erd6s in Part II of [2].
point of the distribution function

If w is a continuity

F(w) tlx" _f(pT)

_
w}

then it follows upon taking M (- , w] in (3.5) that

(3.8) D{n f(n)

_
w} F(w).

ErdSs stated his result in this form, but he proved it for all w. If the series

(3.9) ]()0 1/p

diverges then it follows from a probability theorem of Lvy’s that F(w) is
everywhere continuous (see [3]); thus (3.8) holds for all w in this case. On
the other hand, if (3.9) converges then it follows by the remark after the proof
of Theorem 3.1 that (3.5) holds for all linear Borel sets M and hence that
(3.8) holds for all w.
The above proofs depend strongly on Prohorov’s theorem. It is perhaps

interesting to note that the use of Prohorov’s theorem (presumably to be
regarded as nonelementary) enables one to bypass all the sieve arguments
(usually regarded as elementary) used in [2]. Another nonelementary ap-
proach to these problems is via Fourier analysis (see [4] ).
Theorem 3.1 can be used to analyse further the fluctuations of arithmetic

functions. For example, take f(n) to be additive, as before, and put

h(x) supk --1 (f(p) m),
where

_1 1 f(p)
=0 p

is assumed finite. Then (under the hypothesis of Theorem 3.2) h(x) is
continuous on Xx, from which it follows that

D{n supk _-’.= (f(p’(’)) m) e M} t{x h(x) e M}

for h-l-continuity sets M. The idea is to see how far the partial sums of the
components f(p,(n)) of f(n) deviate from their "average" values. To
specialize further, iff(p) log (1 lips) for v >_ 1, thenf(n) log (n)/n,
where q(n) is Euler’s function. In this case sup = (f(p.(n)) mi)
reduces to the logarithm of

(3.10) max {.n,I<_ (1--)/ I_<O (1--)1;},
which thus has a distribution. The numerator in (3.10) is the fraction of
integers less than n having in common with n no prime factor not exceeding 0.

Moreover, one could in principle find the joint distributions of arithmetic
functions by taking h to be an appropriate mapping into R. Thus the present
method gies information beyond that contained it Theorem 3.2. On the
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other hand, in Part II of [2] ErdSs proved (3.8) under a hypothesis weaker
than (3.7), namely, the hypothesis that the two series _,f’(p)/p and
_,i (f’(p))2/p converge. Whether a result analogous to Theorem 3.1 holds
in this case is unknown to me. The difficulty is that Xx must be replaced by a
space of conditionally convergent series and the Chebyshev inequality used in
the proof of Theorem 3.1 must be replaced by an inequality of the Kolmogorov
type.

4. Comparison with Paul’s results
Theorem 3.1 has an interesting connection with the results of Paul [7].

We first reformulate his results; the reformulation will only be sketched, since
nothing really new is involved.
With each subset A of the space X introduced in Section 1 associate the set

A- consisting of the elements of A together with those x in X for which
(xl, xk, 0, 0, lies in A for infinitely many values of k. This defines
a closure operator which determines a topology 5; if V,(x) consists of x
together with the points (xl, xk, 0, 0, for k >_ n, then

{(x) n >_ , x}

is a base for 5. With this topology, X is a locally compact, completely dis-
connected, completely regular Hausdorff space; it is first countable but not
second countable (or even LindelSf) any compact subset of X is countable;
the countable set X0 is dense in X and is discrete in the relative topology.
The z-field 63 of Baire sets (the z-field generated by the continuous functions)
coincides with that generated by the cylinders, or sets of the form

{x" xi vi,i-- 1, ...,
with (v, v) a finite sequence of nonnegative integers. The class 63 is
properly contained in the z-field $ of Borel sets; contain all subsets of X
(in fact, any subset of X is a G).
Let tN denote the measure (on 63 this time) corresponding to a mass of 1IN

at the point a(n), n 1, 2, ..., N; let * denote the measure on 63 cor-
responding to a mass of n-X/_=l k-1 at the point a(n), n 1, 2, N.
Since 63 coincides with the z-field generated by the cylinders, it follows by
Kolmogorov’s existence theorem [5] that there exists a unique probability
measure on 63 satisfying (3.1). (It is interesting to note that is not tight,
or even r-smooth; see [6] or [9].) Paul has shown in effect that if A c X0
then the upper and lower logarithmic densities of {n a(n) e A} lie between
the -measure of the set A- and that of its interior (A-); this fact can be
restated"

(4.1) ((A-)) _< lim infN *(A _< lim sup (A _< (A-) (A c Z0).

Paul’s result is analogous to Theorem 3.1 because it can be shown that (4.1)
is equivalent to t . (We are here dealing with weak convergence in a



704 PATRICK BILLINGSLEY

general topological space; see [6] or [9].) Paul’s result is in a sense stronger
than Theorem 3.1, since the topology , relativized to Xx, is much finer than
the topology introduced into Xx in Section 1. On the other hand, his result
fails if logarithmic density is replaced by natural density:it can be shown that
vN does not converge weakly to
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