GAPS IN THE EXPONENT SET OF PRIMITIVE MATRICES

BY
A. L. DurmageE anp N. S. MENDELSOHN

1. Introduction and definitions

An n by n matrix 4 is reductble if there exists a permutation matrix P such
that P"'AP = |5 % | where B and C are square matrices and 0 is a zero matrix.
A matrix A is positive if every entry is positive, and is non-negative if every
entry is zero or positive. An nm by n non-negative irreducible matrix A4 is
primitive if there exists an integer ¢ > 0 such that A® is positive. In this
paper a non-negative irreducible primitive matrix will be called simply a
primitive matrix. Let v(A) be the least integer with the property that A°
is positive for t > y(A). Wielandt [10] has stated that y(4) < (n — 1)* + 1.
Proofs of this theorem have been given by Holladay and Varga [4] and Perkins
[71.

In [3], v(A) has been called the exponent of the primitive matrix A. Let
S be the set of all exponents of n by n primitive matrices. The main result
of this paper concerns gaps in this exponent set S. Explicitly, if n is odd,
there is no primitive matrix A for which

W —3n+4<y(A)<(n—1)" or n'—4n+6<~y(4) <n’—3n+2.
If n is even, there is no primitive matrix A for which
n—4n 4+ 6 < y(4) < (n — 1)°.

A directed graph consists of a vertex set V = (1,2, 3, ---, n) and a set of
edges each of which is an ordered pair (7, j) of vertices. An edge (7, j) may
also be called a path of length 1 from vertex 7 to vertex j. If vertices
ki, ke, -+, ke exist such that (4, k1), (k1, k2), - -, (ke1, 7) are edges of the
graph, then 7 is said to be connected to j by a path of length . A directed
graph is said to be strongly connected, if for any two vertices 1, j of the vertex
set with ¢ 5% j, there is a path of some length connecting ¢ to . A cycle is a
path which begins and ends with the same vertex. In such a path an edge
may appear more than once. A circuit is a cycle of which no proper subgraph
is a cycle. If the pair (¢, 2) is an edge, then this circuit of length 1 is called
a loop and < is called a loop vertex. The greatest common divisor of the
lengths of all cycles is equal to the greatest common divisor of the lengths of
all circuits. A strongly connected directed graph D in which this greatest
common divisor is 1 will be called primitive. The exponent v(D) of a primitive
graph D is the least integer with the property that for every ¢ > v(D) and
every ordered pair of vertices, there is a directed path from the first vertex

Received July 12, 1963.
642



GAPS IN THE EXPONENT SET OF PRIMITIVE MATRICES 643

to the second of length t. A theorem of Schur asserts that a set of positive
integers which is closed under addition contains all but a finite number of the
multiples of its greatest common divisor. It is an easy consequence of this
theorem that every primitive graph D has an exponent.

The directed graph D4 of an n by n matrix A = (a;;) has vertex set
Vv =(@1,2,3, -, n) and the ordered pair (4, j) is an edge of D, if and only
if a;; % 0. It is well known [3], [5], for a non-negative matrix 4, that A is
primitive if and only if the graph D, is primitive. Moreover, the exponent
v(A) is equal to the exponent v(D,4). Two directed graphs are isomorphic
if there is a 1 to 1 correspondence between vertices which preserves edges.
Ifor two m by n matrices A and B, therc exists a permutation matrix P such
that A and P7'BP have the same zero entries if and only if the graphs D,
and Dy are isomorphic.

If D is a directed graph with vertex set V = (1, 2, 3, ---, n) then the
tth power of D, denoted by D' is the directed graph with the same vertex set
V, such that the ordered pair (7, 7) is an edge of D* if and only if there is a
path in D from vertex ¢ to vertex j of length . Thus v(D) is the smallest
power of D which is a complete graph with n loops.

2. Theorems on the exponent of a primitive graph

In this section the theorems on the gaps in the exponent set of n by n
primitive matrices are established.

Theorem 1 is a generalisation of Wielandt’s result. The method of proof
is essentially that of Holladay and Varga [2] but the conclusion, which gives
an upper bound for y(A4) in terms of the length of the shortest circuit in D,
is stronger. The theorem is based on a few preliminary remarks.

Remark 1. If D is a primitive graph then D’ is primitive for all ¢ > 0.

Remark 2. If D is a primitive graph, then there exists for every vertex 7
an integer h with the property that for every vertex j there is a path from
1 to 7 of length h.

The least such integer h, denoted by k; is called the reach of vertex <.

Remark 3. Let D be a primitive graph and let 4; be the reach of vertex <.
If p > h; then there exists a path from ¢ to any vertex j of length p.

Proof. Since D is strongly connected there is at least one vertex k of D
such that (k, j) is an edge of D. Thus there is a path of length h; + 1 from
1 to j for every j. The proof follows by induction.

Remark 4. If D is a primitive graph then v(D) = Max [h1, he, - -+, ha).

Remark 5. If D strongly connected and 7 is a loop vertex then h; < n — 1.

Proof. There is a path from 7 to j of length ¢;; < n — 1. Combining this
with n — 1 — ¢;; loops, we have a path from < to j of length n — 1.

THEOREM 1. If D is a primitive graph and if s is the length of the shortest
cireutt in D then v(D) < n 4+ s(n — 2). In other words, if A is a primitive
malriz, and if s is the length of the shortest circuit in the direcled graph D, then
vy(4) < n 4+ s(n — 2).
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Proof. Since D is primitive, D’ is primitive by Remark 1.

Since D has a circuit of length s, D° has at least s loop vertices. Thus for
any vertex ¢ of D, there is a path in D of length p; < n — s from 7 to some
vertex k of D which is a loop vertex in D",

Since k is a loop vertex in D’, there exists, by Remark 5, for any vertex j,
a path of D® from k to j of length exactly n — 1. Thus there is, for any
vertex 7, a path in D from k to j of length (n — 1)s.

Combining these paths we have a path from 7 to any vertex ;5 of length
exactly p; + (» — 1)s. It follows that h; < p; + (n — 1)s. Thus

y(D = Max [h he, -+, by < —s+ (n— 1)s =n+ s(n — 2).

Since the greatest common divisor of the lengths of the circuits in a primitive
graph is 1, it follows that s < n — 1. Thus

y(A)<n+(n—-1n—-2)=(m-1"+1L
Theorem 1 may be generalised as follows.

ToEOREM 2. Let D be a primitive graph with vertex set V and let Y be any
subset of V. For each keV let h\” denote the reach of vertex k wn D". Let
P be the length of the shortest path in D from vertex i to a vertex k of Y. Then

’Y(D) < Max;ey Minke!’{pik + h;ﬁwg},

Proof. We have h; < pa + hi%q for all ke V and hence we have h;, <
pix + hPq for all ke Y. Thus h; < Mingy{ps + hi%¢}. Since v(D) =
Max;ev(h;), the result follows.

Let X be the set of vertices of D each of which is in some eircuit of length
g. Theorem 2 is most useful when Y is a subset of X and when ¢ is the length
of the shortest circuit.

The following corollary is useful.

COROLLARY 1. Lel h = Maxgr{hi®} and let t be the length of the longest
path in D required to get from any vertex i to some vertex k of Y. Then

v(D) £t + hq.
Proof. We have { = Max,y{Mingey pa}. Thus
v(D) < Maxicy Mingey{pas + hlf:q)Q} < Maxgey Minger{pa + hq} =1+ hgq.

The number ¢ in this corollary is < n — | Y | where | Y| is the cardinality
of Y.

Let p1, p2, - - -, pu be relatively prime and let F(p1, p2, - - -, p.) denote the
largest integer which is not expressible in the form a; p1 4+ ae p2 + - -+ + au pu
where a, is a non-negative integer for » = 1, 2, ---, w. This function F has
been discussed by Bateman [1], Brauer and Seelbinder [2], Johnson [4], and
Roberts [8]. It is well known, if m and n are relatively prime, that F(m,n) =
mn — m — n. Roberts has shown, if a; = ao +jd,j = 0,1, ---, s, a0 > 2,
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then

Flas, as, -, a) =([“";2]+1)a0+ (d—1)(a—1) — 1,

where as usual [x] denotes the greatest integer < z. The proof of this result
has been simplified by Bateman. Johnson has given an ingenious algorithm
which can be used to find # in the case of three variables. At the end of
this paper two graphical methods for computing such F functions arc de-
seribed.

Let D be a primitive graph in which every circuit is of length p,, ps - - -,
or p,. For any ordered pair (z; j) of vertices, a non-negative integer r,; is
defined as follows. If¢ = jandif fors = 1,2, - - -, u there is a circuit through
vertex ¢ of length p, then r;; = 0; otherwise r;; is the length of the shortest
path from 7 to 7 which has at least one vertex on some circuit of length p, for
s = 1,2, ---,u. Letr = Max(r;;) taken over all ordered pairs (¢; 7).

TueoreM 3. If D 15 a primative graph then
YD) L F(pi,ps, ooy pu) + 141,

Proof. For any set of non-negative integers @, , @z, - - *, @, and any ordered
pair (7; j) of vertices, there is a path from vertex ¢ to vertex j of length

i aprt+ aprt+ oo+ AP

Thus there is a path from vertex 7 to vertex j of length
F(pr,pzy o5 pu) +1i; + N

for every N > 1. Choosing N = 1 4+ r — 74, we have a path from vertex ¢
to vertex j of length
F(py,pe, -, pu) + 1 + 1,
8o that
hi < F(pi,pey ooy pu) + 147
Thus
v(D) = Maxievihiy < F(pi, p2, <o+, pu) + 1+ 1.

An ordered pair (k; 1) of vertices in a primitive graph D is said to have
the unique path property if every path from vertex k to vertex [ which has
length > ri; consists of some path « of length r;,; augmented by a number of
circuits each of which has a vertex in common with . (Note that the word
“unique” in this definition refers to the length of the path « rather than to
the path « itself.)

TuvoreM 4. [f D is a primitive graph in which the ordered pasr of vertices
(k; 1) has the unique path property, then

F(pl) P2, ", pu) + 14+ 1 < 'Y(D)
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Proof. There is no path from vertex k to vertex [l of length

w = F(p1,pz, -+, pu) + a2
for such a path would imply the existence of non-negative a; , a,, - - -, @, with
F(pi, P2,y Pu) = 01p1+ QP2+ -+ + GuPu.
Thus by Remark 3, we have F(p1, p2, -+, Pu) + 12 < b . Since by <

Max;v{hi} = v(D), the result follows.
The following corollaries to Theorems 3 and 4 are immediate.

CoROLLARY 2. If in Theorem 4, rv; = r then
b = v(D) = F(p1, pz, ==+, pu) + 1 + .

CoroLLARY 3. If in Theorem 4, ry; < roy = r for all ordered pairs (¢; j)
other than (k; 1) then the graph D™ is complete excepl for the missing edge
(k, 1).

Theorems 3 and 4 may be generalised as follows. The definition of r;
may be weakened by defining r,;; to be the length of the shortest path from
vertex 7 to vertex j which has at least one vertex in common with a circuit
of each of the lengths p;, , ps, , sy, * * , Ps, (SOme subset of the cireuit lengths)
with F(ps, , Diy, =, i, = F(p1, P2, -+, pu). The unique path property,
may be replaced by the weaker property for the ordered pair (k; 1) of vertices
that if there is a path from vertex k to vertex [l of length w > 7;; then there
exist non-negative integers a:, @, - - -, @, such that

W="Tg+up + ap+ - + apu.

(It is a simple matter to show that this property is indeed weaker). Theorems
3 and 4 and Corollaries 2 and 3 are valid if these weaker definitions are used.

THEOREM 5. If s and n are relatively prime (s < n), there exists a primitive
graph D with n vertices and n 4 1 edges for which v(D) = n + s(n — 2).

Proof. The graph D with then 4 1 edges (1,2)(2,3), ---(n — 1,n)(n, 1)
and (s, 1) has a circuit of length s, and a circuit of length n. Since s and »
are relatively prime, D is primitive. The ordered pair (s + 1; n) has the
unique path property, with rg1, = 2n — s — 1. Moreover, roa, = 7.
By Corollary 2,

yD)=Fn,s)+1+r=ns—s—n—+14+2n—s—1=n++s(n—2).
In this graph, we have r;; < r for every ordered pair other than (s + 1;n).
By Corollary 3, it follows, if s and n are relatively prime (s < n), then there

exists an n by » matrix A of zeros and ones, with exactly n + 1 ones, such that
AP 5 0 and A" has exactly one zero entry.

THEOREM 6. Apart from isomorphism, there is exactly one primitive graph
D on n vertices for which y(D) = (n — 1)* + 1, and exactly one for which
v(D) = (n — 1)’.  These are the only graphs for which the length of the shortest
carcutt tsm — 1.
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Proof. 1If s < n — 1, then from Theorem 1,
y(D) <n+ (n—2)Y =2"—3n+ 4.

If s = n — 1, then, since the greatest common divisor of the lengths of the

circuits is 1, the graph must have a circuit of length n — 1 and another of

length ». Thus the graph D must have as a subgraph, a graph which is

isomorphic to the graph of Theorem 4 with s = n — 1. Denote this graph

by E. The graph E is isomorphic to the graph of the matrix used by Wielandt

[11] to show that his result was best possible. There are two cases to consider.
Case (i). D = E. From Theorem 5, we have

Y(EB)=n+ (n—1)(n—2) = (n— 1)+ 1.

Case (ii). E is a proper subgraph of D. The only edge which can be
added to E without introducing a circuit of length lessthan n — 1 istheedge
(n, 2) or the edge (n — 2, n). Since the resulting graphs are isomorphie, it
is sufficient to consider the first case.

The ordered pair (1; n) has the unique path property with r;, = n — 1.
Moreover r1,, = r. By Corollary 2,

v(D) =Fn,n—1)+1+r
=nn—1)—n—(n—1)+14+n—1=(n— 1),
CoroLLARY 4. If A is an n by n primitive matriz and +f
v(4) = (n = 1)" + 1,

then there exists a permutation matriz P such that PT'AP has the same zero
entries as

10
0 0
100 --- 1
100 --- 0

If A is an n by n primitive matriz and if y(A) = (n — 1)* then there exists a
permutation matriz P such that P~'AP has the same zero eniries as

o010 --- 0
001 --- 0
100 --- 1
110 --- 0

Such an explicit matrix formulation will not be given for the remaining
results in this paper.
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(a) (b)

Ficure 1

THEOREM 7. If n s even (n > 4), then (a) there is no primitive graph D
such that

nt—dn + 6 < y(D) < (n — 1),

and (b) there are, apart from isomorphism, exactly 3 or exactly 4 primitive
graphs D with v(D) = n* — 4n + 6, according as n is or is not a multiple of 3.

Proof. From Theorem 6, if v(D) < (n — 1)*, we have s < n — 2. Tor
s < n — 3, by Theorem 1,

¥v(D)<n+(n—3)(n—2)=n"—4n + 6.

If s = n — 2, since n and n — 2 are not relatively prime, a primitive graph
D must have circuits of length n — 2 and n — 1. Beginning with a circuit
of length n — 2, a circuit of length » — 1 must either involve both of the
remaining vertices or one of the remaining vertices. It follows, that D must
have as subgraph, a graph which is isomorphic to one of the graphs F in
Figure 1(a) or G in Figure 1(b). There are two cases in the proof of (a).

Case (i). F is a subgraph of D. In F the ordered pair (n — 1;n) has the
unique path property and r,_1,, = n = r. By Corollary 2,

v(D) < y(F) =F(n—1,n—2)+1+r=n"—4n + 6.
Case (ii). G is a subgraph of D. (@ is a primitive graph with n — 1
vertices of the same type as the graph E of Theorem 6. Thus
v(G) = (n—2)"+1=n"—4n+ 5.

There must be at least one edge (n, 71) of D, 71 ¥ n, and at least one edge
(%2, n) of D, iy # n. We may assume 7; # 4y, since otherwise we have a
circuit of length 2 which is less than s for n > 4. Let H be the subgraph of
D consisting of @ together with the two edges (n, 41) and (43, n). We show
that y(H) < n° — 4n + 6. If j  n, there is a path from 4; to j in ¢ of
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length exactly n* — 4n + 5 and adjoining (n, %) we have a path from » to
j of length exactly n° — 4n + 6 in H. If ¢ 5 n, there is a path from ¢ to %,
in G of length exactly n® — 4n + 5 and adjoining (7, n) there is a path of
length exactly n° — 4n + 6 from ¢ to n in H. For a path from n to n we use
the fact that at least one of 7 and 4o # n — 1. If 7, ## n — 1, there exists
a vertex n, of @ such that (n, 7;) is the only edge in G out of n;. There is a
path from 7, to 4 in G of length exactly n° — 4n + 5. Replacing (ny, 1)
by (n, %) and adjoining (7», n) yields a path from n to n in H of length
n® — 4n + 6. Similarly if 4, % n — 1, there exists a vertex n, of G such that
(12, m2) is the only edge into n.. There is a path from %; to n; in G of length
exactly n® — 4n + 5. Adjoining (n, %) and replacing (iz, n2) by (¢2, n)
yields a path from n to n of length n° — 4n + 6 in H. We have

v(D) < y(H) < n’ — 4n + 6.

If 44 %2 n — 1 and 4 £ n — 1 it is easy to see, using the replacement edges
(m1, 41) and (42, ne) that y(D) < y(H) < 0" — 4n + 5.

It remains to prove (b). If D has a circuit of length n in addition to those
of length » — 2 and n — 1, and if F is a subgraph of D, then the r,; for a pair
of vertices in D is less than or equal to the r; for the same pair in F, since
the additional condition that the path must have a vertex on a circuit of
length n is satisfied for any path. If ¢ is a subgraph of D, then r for D is
less than or equal to » + 1 for . For F and G we have r = nand n — 1
respectively. Thus for D, we have r < n. By Corollary 2, and the result
of Roberts [9], referred to earlier, we have

v(D) < Flnyn —1,n —2) + 147

_<_["'2‘2] (n—2)—1+14+n<n—4n+ 6.

Cases in which D has a circuit of length n have been disposed of.

Now consider the case in which F is a subgraph of D. The only edges
which can be added to F without introducing a circuit of length n, or of
length < n — 2 or reducing the number r (either of which reduces the ex-
ponent), are the edges (n — 2, n) and (n — 1, n — 2). In each case the
ordered pair (n — 1; n) has the unique path property and r,—1, = n = 7,
so that y(D) = n* — 4n + 6. If (n — 2, n) is added the resulting graph is
denoted by Fy,if (n — 1, n — 2) by F,. If both edges are added there is a
circuit of length n.

There remains the case in which ¢ is a subgraph of D. In the proof of
(a) it was noted that, if y(D) = n® — 4n + 6 then, either ¢, = n — 1 or
72 =n — 1, but not both. If4, =n — 1,thends, =n — 3, forif 5o = n — 2
we have a cycle of length n and if 72 = n — 4, we haver = r,, = n — 1, and
in other cases, we have a circuit of length less thann — 2. Withs; =n — 1
and 7, = n — 3, the resulting graph is isomorphic to #;. The case in which
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1 = n — 1is handled in a similar way. In this case we find that ¢, must be
2 and we get a graph isomorphic with F; .

If s = n — 3 and the graph has a circuit of length » — 1 or n — 2, then
using Corollary 2, it follows that v(D) < n* — 4n + 6. In other cases,
since D is primitive, n is not a multiple of 3. Moreover, D has as a subgraph
the graph K of Theorem 5 with s = n — 3. In K, the ordered pair (n — 2;n)
has the unique path property and 7,2, = n + 2 = r. Thus y(K) =
n* — 4n + 6. Since no edge can be added to K without introducing a cycle
of length other than n and n — 3, or reducing the number r, we have K = D.

TaEOREM 8. If n 7s odd (n > 3) then (a) there is no primitive graph D
such that n® — 3n + 4 < y(D) < (n — 1)*, and (b) apart from isomorphism
there is exactly one primitive graph D with y(D) = n* — 3n + 4, and exactly
one primitive graph D with v(D) = n* — 3n + 3, and exactly two primitive
graphs D with v(D) = n® — 3n + 2, and (¢) there is no primitive graph D
such that n’ — 4n + 6 < y(D) <’ — 3n + 2, and (d) apart from isomorph-
isms, there are exactly 3 or exactly 4 primitive graphs D with v(D) = n* — 4n + 6
according as n s or is not @ multiple of 3.

Proof. If v(D) < (n — 1)%, then s < n — 2 and hence, by Theorem 1,
v(D) £ 0w’ — 3n +4. If s <n — 2, and if the graph has a circuit of length
n — 1, then v(D) < #* — 4n + 6. This follows, because the proof of this
result given in Theorem 7 for n even holds also for n odd. Thus parts (a)
and (d) of Theorem 8 are established.

The only other graphs which need be classified are those in which the
circuits are of lengths n — 2 and n. Any such graph must have as a subgraph
the graph L of Theorem 5 in which s = n — 2. In L, the pair (n;n — 1) has
the unique path property with

Pama=n-+1=7r and (L) =F(m,n—2)+1+r=n"—3n-+4.

In the graph L;, formed by adding to L the edge (n — 1, 2) the ordered
pair (n; n) has the unique path property and ., = n = r. By Corollary 2,
v(Ly) = n* — 3n + 3.

In the graph L., formed by adding to L the edge (n, 3), the ordered pair
(1; ») has the unique path property with 7, = n — 1 = r. Thus

v(Ly) = n* — 3n + 2.

In the graph L; formed by adding to L the edges (n, 3) and (n — 1, 2),
the ordered pair (1; n) has the unique path property and r, = n — 1 = r.
Thus v(Ls) = n* — 3n + 2.

There are alternative edges which may be added to L without introducing
circuits of other lengths, but, in each case, the resulting graph is isomorphic
to Ly, Ly or Ly . This completes the proof of Theorem 8.

For any s < m, let a(s) and b(s) be the minimum and maximum of the set
of exponents of all primitive graphs in which the shortest circuit has length
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s. Theorem 1 implies that b(s) < n 4+ s(n — 2). Theorem 9 leads to an
upper bound for a(s). In Theorem 9 we require the following definition.
A graph with m vertices is complete with respect to the ordering v1 , vz, « -+, v
if the ordered pair (v, v;) is an edge if and only if v; precedes v; in the ordering.

THEOREM 9. For any n and s, s < n, there exists a primitive graph M, in
which the shortest circuit has length s, and

v (M) =8[n—2]—l-1+s,

n — s

and a primitive graph Ms in which the shortest circuit has length s, and

(M) = [Z — i]s—l— s.

Proof. Let N be the graph with n — s + 2 vertices s, s + 1, s + 2, - - -,
n — 1, n, 1 which is complete with respect to this ordering. If the edges
(1, 2)(2, 3)(3,4)---(s — 1, s) are added to N, denote the resulting graph
by Mi. In M, the pair (n; s + 1) has the unique path property with

Twsrt = 8 + 1 = r and circuits of lengthss, s + 1, s+ 2, ---, n — 1, n.
Thus
n—2
v(My) =F(n,n—1,n——2,~--,s)+1+r=|:n_8]3—[— 1+ s

Now let M, be the graph obtained from M; by adding the edges (7, 2) for
i=s+ 1,84+ 2, ---,n In M,, the pair (1; s + 1) has the unique path
property with 7,11 = s = r and circuits of lengths s, s + 1, - -+, n. Thus

ﬂM»=me—4,~,w+1+r=["“ﬂs+&

n— s

COROLLARY 5. If a(s) is the minimum of the set of exponents of all primitive
graphs with shortest circuit of length s, then

a@)ﬁvw@>=[”“2]s+&

n-—s

TaeorEM 10. If D is a primitive graph with n vertices and tf w is a positive
integer then

(a) (A — Dw < by < bw, fori = 1,2, -+, n, and

(b) wy(D*) —w < v(D) < wy(D®).

Proof. Part (a) follows from the definition of A, and R, Since v(D) =
Max,ep{h} and y(D°) = Max.y{h{"}, we have (b).

CoROLLARY 6. Let D be a primitive graph in which the ordered pair of
vertices (k; 1) has the unique path property with ri; = r. If p1, pa, -+ -, Du are
the lengths of the circuits in D then, for every positive integer w,
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w’Y(Dw) - (1 +T) —w <F(p17p2’ )pu) Sw'Y(Dw) - (1+T)-
This follows since F(p1, p2, -+, pu) + 1 + 7 = y(D).

3. A Connection with number theory

We now illustrate the graphical methods referred to earlier for computing
F functions. Since the computation of the function F is still an untractable
problem in number theory and since the graphical methods can be applied in
different ways, we give two proofs of the result that

Fn,m —1,n—2 .-+ 3) = sl:n~2] -1
n—s

In the first proof, the formula which we use is the formula y(D) < t + hg
of Corollary 1, applied to the graph M, of Theorem 9.

In the graph M1 , consider the vertices arranged in cyclic order 1,2, 3, - - -, n,
as in the circuit C of length n in M, . In M7, the vertex 1 is the first member
of the edges (1, 1)(1, n)(1, n — 1), ---, (1, s + 1) and the vertex 2 is the
first member of the edges (2, 2)(2, 1)(2,n), ---, (2, s + 2). In fact each
of the vertices 1, 2, - - -, s is edge connected to itself and to the n — s edges
which precede it in the circuit C. The vertex s + 1 is edge connected to
the n — s previous edges, the vertex s + 2 to n — s — 1 previous edges
beginning with s, --- and finally, vertex n — 1 is edge connected to s and
s — 1 and n is edge connected only tos. In Corollary 1take Y = {1,2, ---, s}.
It is a simple matter to see that

n—2

B = [_——] +1 forieVY.

n — 8

h=["“2]+1.
n — 8

Alsot = 1. Wehave y(M;) <t 4+ hg = 1 + sh where

h=h" =0 = ... =h§8)=l:n—2:|+l.

n — s

Thus

We have b = bl + 1 = 1 + h, since the only path of length s for vertex
n terminates in vertex s. Also A < Maxiw(h”) = y(M}). Thus by
Theorem 10 part (a), shy’ — s < y(M;). But v(M;) < 1 + sh, so that
s(h+1) —s < y(M,) <1+ sh. Thusy(M,) =1+ sh. Since

F(’IL,’I’L-—1,"',8)+1+7‘=7(M1)

Fn,m — 1, ---s) =[n_2]s—1.

n — s

we have

To sum up the relationship between the F function and the exponent which
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is revealed in this first proof, note that if F(p:, p2, - -, p.) is known and if
there is an ordered pair (k; 1) with the unique path property such that r,; = 7,
then Corollary 2 may be used to find v(D). Conversely, if F(p1, P2, * -+, Pu)
is unknown, it may be possible to construct an appropriate graph D and use
Corollary 1 and Theorems 3 and 4, to get

F(pl;p27""pu)+1+rle7(D)St+hq

which gives an upper bound for #. IFurthermore, Corollary 6, gives upper
and lower bounds for /' and as we have just seen these can actually yield
exact values.

We proceed now to the second proof. In M, the pair (n; s + 1) has the
unique path property with », .41 = r = s + 1. By Corollary 2,

ho =F(n,n—1,---,8) + s+ 2 = vy(M).
Also, as in the previous proof,
hgs>=[n_2]+1, fore =1,2,--- s

n — 8

By Theorem 10, 2{?s — s < by < hi®sand () — 1)s < h, < bs. Com-
bining these with B =k + 1and b, = b + 1 we obtain by = sh{® and
h, = sh{® 4+ 1 and from these the value of

F(n,nm —1,---,5s) =s[n—2]——l.

It may be worth mentioning that the computation of the more general
result of Roberts, namely, the formula for F(n,n — d,n — 2d, ---, n — kd)
can be carried out in the same way.

We conclude this paper with a theorem which is suggested by the second
proof of the formula for F(n,n — 1, ---, s). Then two examples are given
each of which translates the number theory problem of finding an F function
into the problem of locating a certain vertex in a primitive graph D, together
with the reach of this vertex in a power of D. Finally, a few F functions
found by this method are listed.

The out-valence of a vertex 7 of a directed graph is the number of edges
which have 7 as first member.

TaeorEM 11.  Let (1,2)(2,3)---(f, f + 1) be a path of length f in a primi-
tive graph D in which each of the f vertices 1, 2, 3, - - -, f has out-valence 1. Let
w be an integer, 0 < w < f + 1.

Then (8) hiy = hi — Lfori=1,2, -, f,
() B, =R —1fori=1,2, -, f+1— w,
and (¢) R < B fori=1,2,---,1.

Moreover, if W is a set of w vertices (0 < w < f + 1) which are consecutive
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tn the path from 1 to f 4+ 1, then there exists a unique vertex g e W such that
hy = h{w.

Proof. Let j be any vertex of D and let p be any positive integer. For
t=1,2,---,f+ 1 — wthereis a 1 to 1 correspondence between paths from
vertex ¢ to vertex j of length pw and paths from vertex ¢ + w to vertex ;7 of
length (p — 1)w. This proves (b). Putting w = 1 we have (a).

By Theorem 10 we have

(B — Dw < by < AMw, and (A — 1w < by < B w.

Since hir = hy — 1, we have (h{f] — Dw + 1 < h; < h{”w. Thus
il < .

Let 41, %2, ---, 7 be w consecutive vertices in the path from 1 to f -+ 1
and let W = (41, %2, -+, tw).

Now suppose h{” = h{”. By Theorem 10, (" — 1)w < h;, < h{”w

and w(h{” — 1) < by < h{”w. By (a), by = hi, + w — 1. Combining
these, we have (h{ — Dw + (w — 1) < by < b{”w. Thus h;, = b w.
By (a), it follows that h; < h{”w for ¢ = 4,43, - -+, 4. Thus the vertex ¢
1S 7.

If h$” 5 h{Y) it follows from (b) and (¢) that h{” = h{* + 1 and that
there exists a unique vertex g in W such that 2] = b + 1. Using Theorem
10 relative to vertices ¢ — 1 and ¢, and using h, = h,_; — 1, it follows that
h, = h{”w. Furthermoreh, > h{”w if vertex ¢ precedes vertex ¢ in the path
from 4 to f + 1 and h; < h{”w if g precedes ¢ in this path. This completes
the proof.

CoOROLLARY 7. In the previous theorem let the circuit lengths in the graph D
be p1, P2, -+, Pu. Suppose there exislts a vertex k such that the ordered pair
(1; k) has the unique path property with ru. = r. Let g be defined as follows.
If B = k™ then g = 1. If h{” 5 i then g is the unique vertex of W
such that b = b 4 1. If v is the length of the unique path from vertex 1
o vertex g,

b= (D) = hy +v =h"w+0v =147+ F(ps, pr, -+, Pu)-
Thus F(py, D2, -+ Pu) = Bw 4+ v — r — 1.

In the following examples the problem of finding an F function is replaced
by the problem of finding the vertex g of Corollary 7 and the reach of vertex ¢
in D°. This may be done in various ways using different primitive graphs for
the same F.

Example 1. Consider F(s,n — k,n — k + 1, ---, n) where £ > 1 and
s <n — k. Let D be the graph defined as follows. D consists of the circuit
(1,2)(2,3)---(n, 1) together with edges (s, 1) and those edges necessary to
make the subgraph with vertices s, s + 1, s + 2, ---, s + k + 1 complete
with respect to that ordering. The circuit lengths are s, n — k, n — k + 1,
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-+, n. In the path from s + & to s every vertex except the last has out-val-
ence 1. This path has n — k& 4 1 vertices and hence f = n — k. Moreover
s < f+4+ 1. Now use Corollary 7 with w = sand W = (1,2, ---,s). The
ordered pair of vertices (s + k; s + 1) has the unique path property with
Tonorr = 7 =n — k + 1. If g e W is the unique vertex defined in corollary
7thenv =n — (s + k) +¢g. Thus

Fssm—lkn—k+1,---,n)=h"s+v—1r—1=h"s —s+4+g—2.

Example 2. Consider F(s,s + 1,s + 2, -+, s + u, n) withu > 1 and
s+ u < n. Let D consist of the circuit (1, 2), (2,3), ---, (n, 1) augmented
by the edges (s, 1) (s +1,1) (s +2,1), ---, (s + u, 1). In the path from

s + u + 1 to s every vertex except s has out-valence 1. The path has
n — u = f -+ 1 vertices with f + 1 > s. Now use Corollary 7 with w = s
and W = (1,2, ---,s). The pair (s + u + 1; s + u + 1) has the unique
path property with 7s1u11,01041 = 7 = n. If g ¢ W is the unique vertex defined
in the corollary thenv = n — (s + u + 1) + ¢g. Thus

F(s,s+1,84+2,---,s+un)=ha"s+vo—r—1=0s—s—ut+g—2

The following are samples of results obtained by the authors using these

graphical methods.
F(n,n+ 1,n+ 2,n+ 4) []( +1)+["+ ]
+2["+2]—1

F(n,n+1,n+2,n+5)=n|:n_g:| [] [ 5 }
e[ [25

[i] 2[5l 2[5 ][5
L] ]

These results apparently cannot be obtained by a direct application of other
methods.

[

II

F(n,m+ 1,n+ 2, n 4+ 6)
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