GAPS IN THE EXPONENT SET OF PRIMITIVE MATRICES

BY
\section*{A. L. Dulmage and N. S. Mendelsohn}

1. Introduction and definitions

An n by n matrix A is reducible if there exists a permutation matrix P such that $P^{-1} A P=\left|\begin{array}{ll}B & 0 \\ D & C\end{array}\right|$ where B and C are square matrices and 0 is a zero matrix. A matrix A is positive if every entry is positive, and is non-negative if every entry is zero or positive. An n by n non-negative irreducible matrix A is primitive if there exists an integer $t \geq 0$ such that A^{t} is positive. In this paper a non-negative irreducible primitive matrix will be called simply a primitive matrix. Let $\gamma(A)$ be the least integer with the property that A^{t} is positive for $t \geq \gamma(A)$. Wielandt [10] has stated that $\gamma(A) \leq(n-1)^{2}+1$. Proofs of this theorem have been given by Holladay and Varga [4] and Perkins [7].

In [3], $\gamma(A)$ has been called the exponent of the primitive matrix A. Let S be the set of all exponents of n by n primitive matrices. The main result of this paper concerns gaps in this exponent set S. Explicitly, if n is odd, there is no primitive matrix A for which

$$
n^{2}-3 n+4<\gamma(A)<(n-1)^{2} \quad \text { or } \quad n^{2}-4 n+6<\gamma(A)<n^{2}-3 n+2 .
$$

If n is even, there is no primitive matrix A for which

$$
n^{2}-4 n+6<\gamma(A)<(n-1)^{2}
$$

A directed graph consists of a vertex set $V=(1,2,3, \cdots, n)$ and a set of edges each of which is an ordered pair (i, j) of vertices. An edge (i, j) may also be called a path of length 1 from vertex i to vertex j. If vertices $k_{1}, k_{2}, \cdots, k_{t-1}$ exist such that $\left(i, k_{1}\right),\left(k_{1}, k_{2}\right), \cdots,\left(k_{t-1}, j\right)$ are edges of the graph, then i is said to be connected to j by a path of length t. A directed graph is said to be strongly connected, if for any two vertices i, j of the vertex set with $i \neq j$, there is a path of some length connecting i to j. A cycle is a path which begins and ends with the same vertex. In such a path an edge may appear more than once. A circuit is a cycle of which no proper subgraph is a cycle. If the pair (i, i) is an edge, then this circuit of length 1 is called a loop and i is called a loop vertex. The greatest common divisor of the lengths of all cycles is equal to the greatest common divisor of the lengths of all circuits. A strongly connected directed graph D in which this greatest common divisor is 1 will be called primitive. The exponent $\gamma(D)$ of a primitive graph D is the least integer with the property that for every $t \geq \gamma(D)$ and every ordered pair of vertices, there is a directed path from the first vertex

[^0]to the second of length t. A theorem of Schur asserts that a set of positive integers which is closed under addition contains all but a finite number of the multiples of its greatest common divisor. It is an easy consequence of this theorem that every primitive graph D has an exponent.

The directed graph D_{A} of an n by n matrix $A=\left(a_{i j}\right)$ has vertex set $V=(1,2,3, \cdots, n)$ and the ordered pair (i, j) is an edge of D_{A} if and only if $a_{i j} \neq 0$. It is well known [3], [5], for a non-negative matrix A, that A is primitive if and only if the graph D_{A} is primitive. Moreover, the exponent $\gamma(A)$ is equal to the exponent $\gamma\left(D_{A}\right)$. Two directed graphs are isomorphic if there is a 1 to 1 correspondence between vertices which preserves edges. For two n by n matrices A and B, there exists a permutation matrix P such that A and $P^{-1} B P$ have the same zero entries if and only if the graphs D_{A} and D_{B} are isomorphic.

If D is a directed graph with vertex set $V=(1,2,3, \cdots, n)$ then the $t^{\text {th }}$ power of D, denoted by D^{t} is the directed graph with the same vertex set V, such that the ordered pair (i, j) is an edge of D^{t} if and only if there is a path in D from vertex i to vertex j of length t. Thus $\gamma(D)$ is the smallest power of D which is a complete graph with n loops.

2. Theorems on the exponent of a primitive graph

In this section the theorems on the gaps in the exponent set of n by n primitive matrices are established.

Theorem 1 is a generalisation of Wielandt's result. The method of proof is essentially that of Holladay and Varga [2] but the conclusion, which gives an upper bound for $\gamma(A)$ in terms of the length of the shortest circuit in D_{A} is stronger. The theorem is based on a few preliminary remarks.

Remark 1. If D is a primitive graph then D^{t} is primitive for all $t>0$.
Remark 2. If D is a primitive graph, then there exists for every vertex i an integer h with the property that for every vertex j there is a path from i to j of length h.

The least such integer h, denoted by h_{i} is called the reach of vertex i.
Remark 3. Let D be a primitive graph and let h_{i} be the reach of vertex i. If $p \geq h_{i}$ then there exists a path from i to any vertex j of length p.

Proof. Since D is strongly connected there is at least one vertex k of D such that (k, j) is an edge of D. Thus there is a path of length $h_{i}+1$ from i to j for every j. The proof follows by induction.

Remark 4. If D is a primitive graph then $\gamma(D)=\operatorname{Max}\left[h_{1}, h_{2}, \cdots, h_{n}\right]$.
Remark 5. If D strongly connected and i is a loop vertex then $h_{i} \leq n-1$.
Proof. There is a path from i to j of length $q_{i j} \leq n-1$. Combining this with $n-1-q_{i j}$ loops, we have a path from i to j of length $n-1$.

Theorem 1. If D is a primitive graph and if s is the length of the shortest circuit in D then $\gamma(D) \leq n+s(n-2)$. In other words, if A is a primitive matrix, and if s is the length of the shortest circuit in the directed graph D_{A} then $\gamma(A) \leq n+s(n-2)$.

Proof. Since D is primitive, D^{s} is primitive by Remark 1.
Since D has a circuit of length s, D^{s} has at least s loop vertices. Thus for any vertex i of D, there is a path in D of length $p_{i} \leq n-s$ from i to some vertex k of D which is a loop vertex in D^{s}.

Since k is a loop vertex in D^{s}, there exists, by Remark 5 , for any vertex j, a path of D^{s} from k to j of length exactly $n-1$. Thus there is, for any vertex j, a path in D from k to j of length $(n-1) s$.

Combining these paths we have a path from i to any vertex j of length exactly $p_{i}+(n-1) s$. It follows that $h_{i} \leq p_{i}+(n-1) s$. Thus

$$
\gamma\left(D=\operatorname{Max}\left[h_{1} h_{2}, \cdots, h_{n}\right] \leq n-s+(n-1) s=n+s(n-2)\right.
$$

Since the greatest common divisor of the lengths of the circuits in a primitive graph is 1 , it follows that $s \leq n-1$. Thus

$$
\gamma(A) \leq n+(n-1)(n-2)=(n-1)^{2}+1
$$

Theorem 1 may be generalised as follows.
Theorem 2. Let D be a primitive graph with vertex set V and let Y be any subset of V. For each $k \in V$ let $h_{k}^{(q)}$ denote the reach of vertex k in D^{q}. Let $p_{i k}$ be the length of the shortest path in D from vertex i to a vertex k of Y. Then

$$
\gamma(D) \leq \operatorname{Max}_{i \epsilon V} \operatorname{Min}_{k \epsilon Y}\left\{p_{i k}+h_{k}^{(q)} g\right\}
$$

Proof. We have $h_{i} \leq p_{i k}+h_{k}^{(q)} q$ for all $k \epsilon V$ and hence we have $h_{i} \leq$ $p_{i k}+h_{k}^{(q)} q$ for all $k \in Y$. Thus $h_{i} \leq \operatorname{Min}_{k \in Y}\left\{p_{i k}+h_{k}^{(q)} q\right\}$. Since $\gamma(D)=$ $\operatorname{Max}_{i \epsilon V}\left(h_{i}\right)$, the result follows.

Let X be the set of vertices of D each of which is in some circuit of length q. Theorem 2 is most useful when Y is a subset of X and when q is the length of the shortest circuit.

The following corollary is useful.
Corollary 1. Let $h=\operatorname{Max}_{k \in Y}\left\{h_{k}^{(q)}\right\}$ and let t be the length of the longest path in D required to get from any vertex i to some vertex k of Y. Then

$$
\gamma(D) \leq t+h q
$$

Proof. We have $t=\operatorname{Max}_{i \epsilon v}\left\{\operatorname{Min}_{k \epsilon Y} p_{i k}\right\}$. Thus
$\gamma(D) \leq \operatorname{Max}_{i \epsilon V} \operatorname{Min}_{k \epsilon \mathcal{Y}}\left\{p_{i k}+h_{k}^{(q)} q\right\} \leq \operatorname{Max}_{i \epsilon V} \operatorname{Min}_{k \in \mathcal{Y}}\left\{p_{i k}+h q\right\}=t+h q$.
The number t in this corollary is $\leq n-|Y|$ where $|Y|$ is the cardinality of Y.

Let $p_{1}, p_{2}, \cdots, p_{u}$ be relatively prime and let $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)$ denote the largest integer which is not expressible in the form $a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{u} p_{u}$ where a_{r} is a non-negative integer for $r=1,2, \cdots, u$. This function F has been discussed by Bateman [1], Brauer and Seelbinder [2], Johnson [4], and Roberts [8]. It is well known, if m and n are relatively prime, that $F(m, n)=$ $m n-m-n$. Roberts has shown, if $a_{j}=a_{0}+j d, j=0,1, \cdots, s, a_{0} \geq 2$,
then

$$
F\left(a_{0}, a_{1}, \cdots, a_{s}\right)=\left(\left[\frac{a_{0}-2}{s}\right]+1\right) a_{0}+(d-1)\left(a_{0}-1\right)-1
$$

where as usual $[x]$ denotes the greatest integer $\leq x$. The proof of this result has been simplified by Bateman. Johnson has given an ingenious algorithm which can be used to find F in the case of three variables. At the end of this paper two graphical methods for computing such F functions are described.

Let D be a primitive graph in which every circuit is of length $p_{1}, p_{2} \cdots$, or p_{u}. For any ordered pair $(i ; j)$ of vertices, a non-negative integer $r_{i j}$ is defined as follows. If $i=j$ and if for $s=1,2, \cdots, u$ there is a circuit through vertex i of length p_{s} then $r_{i j}=0$; otherwise $r_{i j}$ is the length of the shortest path from i to j which has at least one vertex on some circuit of length p_{s} for $s=1,2, \cdots, u$. Let $r=\operatorname{Max}\left(r_{i j}\right)$ taken over all ordered pairs $(i ; j)$.

Theorem 3. If D is a primitive graph then

$$
\gamma(D) \leq F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r
$$

Proof. For any set of non-negative integers $a_{1}, a_{2}, \cdots, a_{u}$ and any ordered pair $(i ; j)$ of vertices, there is a path from vertex i to vertex j of length

$$
r_{i j}+a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{u} p_{u}
$$

Thus there is a path from vertex i to vertex j of length

$$
F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+r_{i j}+N
$$

for every $N \geq 1$. Choosing $N=1+r-r_{i j}$, we have a path from vertex i to vertex j of length

$$
F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r
$$

so that

$$
h_{i} \leq F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r
$$

Thus

$$
\gamma(D)=\operatorname{Max}_{i \epsilon v}\left\{h_{i}\right\} \leq F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r
$$

An ordered pair $(k ; 1)$ of vertices in a primitive graph D is said to have the unique path property if every path from vertex k to vertex l which has length $\geq r_{k l}$ consists of some path α of length $r_{k l}$ augmented by a number of circuits each of which has a vertex in common with α. (Note that the word "unique" in this definition refers to the length of the path α rather than to the path α itself.)

Theorem 4. If D is a primitive graph in which the ordered pair of vertices $(k ; l)$ has the unique path property, then

$$
F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r_{k l} \leq \gamma(D)
$$

Proof. There is no path from vertex k to vertex l of length

$$
w=F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+r_{k l}
$$

for such a path would imply the existence of non-negative $a_{1}, a_{2}, \cdots, a_{u}$ with

$$
F\left(p_{1}, p_{2}, \cdots, p_{u}\right)=a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{u} p_{u}
$$

Thus by Remark 3, we have $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+r_{k l}<h_{k}$. Since $h_{k} \leq$ $\operatorname{Max}_{i \epsilon V}\left\{h_{i}\right\}=\gamma(D)$, the result follows.

The following corollaries to Theorems 3 and 4 are immediate.
Corollary 2. If in Theorem $4, r_{k l}=r$ then

$$
h_{k}=\gamma(D)=F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r .
$$

Corollary 3. If in Theorem $4, r_{i j}<r_{k l}=r$ for all ordered pairs $(i ; j)$ other than $(k ; l)$ then the graph $D^{\gamma(D)-1}$ is complete except for the missing edge (k, l).

Theorems 3 and 4 may be generalised as follows. The definition of $r_{i j}$ may be weakened by defining $r_{i j}$ to be the length of the shortest path from vertex i to vertex j which has at least one vertex in common with a circuit of each of the lengths $p_{i_{1}}, p_{i_{2}}, p_{i_{3}}, \cdots, p_{i_{v}}$ (some subset of the circuit lengths) with $F\left(p_{i_{1}}, p_{i_{2}}, \cdots, p_{i_{v}}=F\left(p_{1}, p_{2}, \cdots, p_{u}\right)\right.$. The unique path property, may be replaced by the weaker property for the ordered pair ($k ; l$) of vertices that if there is a path from vertex k to vertex l of length $w \geq r_{k l}$ then there exist non-negative integers $a_{1}, a_{2}, \cdots, a_{u}$ such that

$$
w=r_{k l}+a_{1} p_{1}+a_{2} p_{2}+\cdots+a_{u} p_{u}
$$

(It is a simple matter to show that this property is indeed weaker). Theorems 3 and 4 and Corollaries 2 and 3 are valid if these weaker definitions are used.

Theorem 5. If s and n are relatively prime $(s<n)$, there exists a primitive graph D with n vertices and $n+1$ edges for which $\gamma(D)=n+s(n-2)$.

Proof. The graph D with the $n+1$ edges $(1,2)(2,3), \cdots(n-1, n)(n, 1)$ and $(s, 1)$ has a circuit of length s, and a circuit of length n. Since s and n are relatively prime, D is primitive. The ordered pair $(s+1 ; n)$ has the unique path property, with $r_{s+1, n}=2 n-s-1$. Moreover, $r_{s+1, n}=r$. By Corollary 2,
$\gamma(D)=F(n, s)+1+r=n s-s-n+1+2 n-s-1=n+s(n-2)$.
In this graph, we have $r_{i j}<r$ for every ordered pair other than $(s+1 ; n)$. By Corollary 3, it follows, if s and n are relatively prime $(s<n)$, then there exists an n by n matrix A of zeros and ones, with exactly $n+1$ ones, such that $A^{n+s(n-2)}>0$ and $A^{n+s(n-2)-1}$ has exactly one zero entry.

Theorem 6. Apart from isomorphism, there is exactly one primitive graph D on n vertices for which $\gamma(D)=(n-1)^{2}+1$, and exactly one for which $\gamma(D)=(n-1)^{2}$. These are the only graphs for which the length of the shortest circuit is $n-1$.

Proof. If $s<n-1$, then from Theorem 1,

$$
\gamma(D) \leq n+(n-2)^{2}=n^{2}-3 n+4
$$

If $s=n-1$, then, since the greatest common divisor of the lengths of the circuits is 1 , the graph must have a circuit of length $n-1$ and another of length n. Thus the graph D must have as a subgraph, a graph which is isomorphic to the graph of Theorem 4 with $s=n-1$. Denote this graph by E. The graph E is isomorphic to the graph of the matrix used by Wielandt [11] to show that his result was best possible. There are two cases to consider.

Case (i). $\quad D=E$. From Theorem 5, we have

$$
\gamma(E)=n+(n-1)(n-2)=(n-1)^{2}+1
$$

Case (ii). E is a proper subgraph of D. The only edge which can be added to E without introducing a circuit of length less than $n-1$ is the edge $(n, 2)$ or the edge $(n-2, n)$. Since the resulting graphs are isomorphic, it is sufficient to consider the first case.

The ordered pair $(1 ; n)$ has the unique path property with $r_{1, n}=n-1$. Moreover $r_{1, n}=r . \quad$ By Corollary 2,

$$
\begin{aligned}
\gamma(D) & =F(n, n-1)+1+r \\
& =n(n-1)-n-(n-1)+1+n-1=(n-1)^{2}
\end{aligned}
$$

Corollary 4. If A is an n by n primitive matrix and if

$$
\gamma(A)=(n-1)^{2}+1
$$

then there exists a permutation matrix P such that $P^{-1} A P$ has the same zero entries as

$$
\left|\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
1 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right| .
$$

If A is an n by n primitive matrix and if $\gamma(A)=(n-1)^{2}$ then there exists a permutation matrix P such that $P^{-1} A P$ has the same zero entries as

$$
\left|\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
1 & 0 & 0 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 0
\end{array}\right|
$$

Such an explicit matrix formulation will not be given for the remaining results in this paper.

Figure 1

Theorem 7. If n is even $(n>4)$, then (a) there is no primitive graph D such that

$$
n^{2}-4 n+6<\gamma(D)<(n-1)^{2}
$$

and (b) there are, apart from isomorphism, exactly 3 or exactly 4 primitive graphs D with $\gamma(D)=n^{2}-4 n+6$, according as n is or is not a multiple of 3 .

Proof. From Theorem 6, if $\gamma(D)<(n-1)^{2}$, we have $s \leq n-2$. For $s \leq n-3$, by Theorem 1,

$$
\gamma(D) \leq n+(n-3)(n-2)=n^{2}-4 n+6
$$

If $s=n-2$, since n and $n-2$ are not relatively prime, a primitive graph D must have circuits of length $n-2$ and $n-1$. Beginning with a circuit of length $n-2$, a circuit of length $n-1$ must either involve both of the remaining vertices or one of the remaining vertices. It follows, that D must have as subgraph, a graph which is isomorphic to one of the graphs F in Figure 1(a) or G in Figure 1(b). There are two cases in the proof of (a).

Case (i). $\quad F$ is a subgraph of D. In F the ordered pair $(n-1 ; n)$ has the unique path property and $r_{n-1, n}=n=r$. By Corollary 2,

$$
\gamma(D) \leq \gamma(F)=F(n-1, n-2)+1+r=n^{2}-4 n+6
$$

Case (ii). G is a subgraph of $D . \quad G$ is a primitive graph with $n-1$ vertices of the same type as the graph E of Theorem 6. Thus

$$
\gamma(G)=(n-2)^{2}+1=n^{2}-4 n+5
$$

There must be at least one edge (n, i_{1}) of $D, i_{1} \neq n$, and at least one edge (i_{2}, n) of $D, i_{2} \neq n$. We may assume $i_{1} \neq i_{2}$, since otherwise we have a circuit of length 2 which is less than s for $n>4$. Let H be the subgraph of D consisting of G together with the two edges $\left(n, i_{1}\right)$ and $\left(i_{2}, n\right)$. We show that $\gamma(H) \leq n^{2}-4 n+6$. If $j \neq n$, there is a path from i_{1} to j in G of
length exactly $n^{2}-4 n+5$ and adjoining (n, i_{1}) we have a path from n to j of length exactly $n^{2}-4 n+6$ in H. If $i \neq n$, there is a path from i to i_{2} in G of length exactly $n^{2}-4 n+5$ and adjoining $\left(i_{2}, n\right)$ there is a path of length exactly $n^{2}-4 n+6$ from i to n in H. For a path from n to n we use the fact that at least one of i_{2} and $i_{2} \neq n-1$. If $i_{1} \neq n-1$, there exists a vertex n_{1} of G such that $\left(n_{1}, i_{1}\right)$ is the only edge in G out of n_{1}. There is a path from n_{1} to i_{2} in G of length exactly $n^{2}-4 n+5$. Replacing (n_{1}, i_{1}) by $\left(n, i_{1}\right)$ and adjoining $\left(i_{2}, n\right)$ yields a path from n to n in H of length $n^{2}-4 n+6$. Similarly if $i_{2} \neq n-1$, there exists a vertex n_{2} of G such that $\left(i_{2}, n_{2}\right)$ is the only edge into n_{2}. There is a path from i_{1} to n_{2} in G of length exactly $n^{2}-4 n+5$. Adjoining (n, i_{1}) and replacing (i_{2}, n_{2}) by (i_{2}, n) yields a path from n to n of length $n^{2}-4 n+6$ in H. We have

$$
\gamma(D) \leq \gamma(H) \leq n^{2}-4 n+6
$$

If $i_{1} \neq n-1$ and $i_{2} \neq n-1$ it is easy to see, using the replacement edges $\left(n_{1}, i_{1}\right)$ and $\left(i_{2}, n_{2}\right)$ that $\gamma(D) \leq \gamma(H) \leq n^{2}-4 n+5$.

It remains to prove (b). If D has a circuit of length n in addition to those of length $n-2$ and $n-1$, and if F is a subgraph of D, then the $r_{i j}$ for a pair of vertices in D is less than or equal to the $r_{i j}$ for the same pair in F, since the additional condition that the path must have a vertex on a circuit of length n is satisfied for any path. If G is a subgraph of D, then r for D is less than or equal to $r+1$ for G. For F and G we have $r=n$ and $n-1$ respectively. Thus for D, we have $r \leq n$. By Corollary 2, and the result of Roberts [9], referred to earlier, we have

$$
\begin{aligned}
\gamma(D) & \leq F(n, n-1, n-2)+1+r \\
& \leq\left[\frac{n-2}{2}\right](n-2)-1+1+n<n^{2}-4 n+6
\end{aligned}
$$

Cases in which D has a circuit of length n have been disposed of.
Now consider the case in which F is a subgraph of D. The only edges which can be added to F without introducing a circuit of length n, or of length $<n-2$ or reducing the number r (either of which reduces the exponent), are the edges $(n-2, n)$ and $(n-1, n-2)$. In each case the ordered pair ($n-1 ; n$) has the unique path property and $r_{n-1, n}=n=r$, so that $\gamma(D)=n^{2}-4 n+6$. If $(n-2, n)$ is added the resulting graph is denoted by F_{1}, if $(n-1, n-2)$ by F_{2}. If both edges are added there is a circuit of length n.

There remains the case in which G is a subgraph of D. In the proof of (a) it was noted that, if $\gamma(D)=n^{2}-4 n+6$ then, either $i_{1}=n-1$ or $i_{2}=n-1$, but not both. If $i_{1}=n-1$, then $i_{2}=n-3$, for if $i_{2}=n-2$ we have a cycle of length n and if $i_{2}=n-4$, we have $r=r_{n n}=n-1$, and in other cases, we have a circuit of length less than $n-2$. With $i_{1}=n-1$ and $i_{2}=n-3$, the resulting graph is isomorphic to F_{1}. The case in which
$i_{2}=n-1$ is handled in a similar way. In this case we find that i_{1} must be 2 and we get a graph isomorphic with F_{2}.

If $s=n-3$ and the graph has a circuit of length $n-1$ or $n-2$, then using Corollary 2, it follows that $\gamma(D)<n^{2}-4 n+6$. In other cases, since D is primitive, n is not a multiple of 3 . Moreover, D has as a subgraph the graph K of Theorem 5 with $s=n-3$. In K, the ordered pair ($n-2 ; n$) has the unique path property and $r_{n-2, n}=n+2=r$. Thus $\gamma(K)=$ $n^{2}-4 n+6$. Since no edge can be added to K without introducing a cycle of length other than n and $n-3$, or reducing the number r, we have $K=D$.

Theorem 8. If n is odd $(n>3)$ then (a) there is no primitive graph D such that $n^{2}-3 n+4<\gamma(D)<(n-1)^{2}$, and (b) apart from isomorphism there is exactly one primitive graph D with $\gamma(D)=n^{2}-3 n+4$, and exactly one primitive graph D with $\gamma(D)=n^{2}-3 n+3$, and exactly two primitive graphs D with $\gamma(D)=n^{2}-3 n+2$, and (c) there is no primitive graph D such that $n^{2}-4 n+6<\gamma(D)<n^{2}-3 n+2$, and (d) apart from isomorphisms, there are exactly 3 or exactly 4 primitive graphs D with $\gamma(D)=n^{2}-4 n+6$ according as n is or is not a multiple of 3 .

Proof. If $\gamma(D)<(n-1)^{2}$, then $s \leq n-2$ and hence, by Theorem 1, $\gamma(D) \leq n^{2}-3 n+4$. If $s \leq n-2$, and if the graph has a circuit of length $n-1$, then $\gamma(D) \leq n^{2}-4 n+6$. This follows, because the proof of this result given in Theorem 7 for n even holds also for n odd. Thus parts (a) and (d) of Theorem 8 are established.

The only other graphs which need be classified are those in which the circuits are of lengths $n-2$ and n. Any such graph must have as a subgraph the graph L of Theorem 5 in which $s=n-2$. In L, the pair $(n ; n-1)$ has the unique path property with

$$
r_{n, n-1}=n+1=r \quad \text { and } \quad \gamma(L)=F(n, n-2)+1+r=n^{2}-3 n+4
$$

In the graph L_{1}, formed by adding to L the edge $(n-1,2)$ the ordered pair (n; n) has the unique path property and $r_{n n}=n=r$. By Corollary 2, $\gamma\left(L_{1}\right)=n^{2}-3 n+3$.

In the graph L_{2}, formed by adding to L the edge ($n, 3$), the ordered pair $(1 ; n)$ has the unique path property with $r_{1 n}=n-1=r$. Thus

$$
\gamma\left(L_{2}\right)=n^{2}-3 n+2
$$

In the graph L_{3} formed by adding to L the edges $(n, 3)$ and $(n-1,2)$, the ordered pair $(1 ; n)$ has the unique path property and $r_{1 n}=n-1=r$. Thus $\gamma\left(L_{3}\right)=n^{2}-3 n+2$.

There are alternative edges which may be added to L without introducing circuits of other lengths, but, in each case, the resulting graph is isomorphic to L_{1}, L_{2} or L_{3}. This completes the proof of Theorem 8.

For any $s<n$, let $a(s)$ and $b(s)$ be the minimum and maximum of the set of exponents of all primitive graphs in which the shortest circuit has length
s. Theorem 1 implies that $b(s) \leq n+s(n-2)$. Theorem 9 leads to an upper bound for $a(s)$. In Theorem 9 we require the following definition. A graph with m vertices is complete with respect to the ordering $v_{1}, v_{2}, \cdots, v_{m}$ if the ordered pair $\left(v_{i}, v_{j}\right)$ is an edge if and only if v_{i} precedes v_{j} in the ordering.

Theorem 9. For any n and $s, s<n$, there exists a primitive graph M_{1} in which the shortest circuit has length s, and

$$
\gamma\left(M_{1}\right)=s\left[\frac{n-2}{n-s}\right]+1+s
$$

and a primitive graph M_{2} in which the shortest circuit has length s, and

$$
\gamma\left(M_{2}\right)=\left[\frac{n-2}{n-s}\right] s+s
$$

Proof. Let N be the graph with $n-s+2$ vertices $s, s+1, s+2, \cdots$, $n-1, n, 1$ which is complete with respect to this ordering. If the edges $(1,2)(2,3)(3,4) \cdots(s-1, s)$ are added to N, denote the resulting graph by M_{1}. In M_{1}, the pair $(n ; s+1)$ has the unique path property with $r_{n, s+1}=s+1=r$ and circuits of lengths $s, s+1, s+2, \cdots, n-1, n$. Thus

$$
\gamma\left(M_{1}\right)=F(n, n-1, n-2, \cdots, s)+1+r=\left[\frac{n-2}{n-s}\right] s+1+s
$$

Now let M_{2} be the graph obtained from M_{1} by adding the edges ($i, 2$) for $i=s+1, s+2, \cdots, n$. In M_{2}, the pair $(1 ; s+1)$ has the unique path property with $r_{1, s+1}=s=r$ and circuits of lengths $s, s+1, \cdots, n$. Thus

$$
\gamma\left(M_{2}\right)=F(n, n-1, \cdots, s)+1+r=\left[\frac{n-2}{n-s}\right] s+s
$$

Corollary 5. If $a(s)$ is the minimum of the set of exponents of all primitive graphs with shortest circuit of length s, then

$$
a(s) \leq \gamma\left(M_{2}\right)=\left[\frac{n-2}{n-s}\right] s+s
$$

Theorem 10. If D is a primitive graph with n vertices and if w is a positive integer then
(a) $\left(h_{i}^{(w)}-1\right) w<h_{i} \leq h_{i}^{(w)} w$, for $i=1,2, \cdots, n$, and
(b) $\quad w \gamma\left(D^{w}\right)-w<\gamma(D) \leq w \gamma\left(D^{w}\right)$.

Proof. Part (a) follows from the definition of h_{i} and $h_{i}^{(s)}$. Since $\gamma(D)=$ $\operatorname{Max}_{i \epsilon \eta}\left\{h_{i}\right\}$ and $\gamma\left(D^{s}\right)=\operatorname{Max}_{i \epsilon \eta}\left\{h_{i}^{(s)}\right\}$, we have (b).

Corollary 6. Let D be a primitive graph in which the ordered pair of vertices $(k ; l)$ has the unique path property with $r_{k l}=r$. If $p_{1}, p_{2}, \cdots, p_{u}$ are the lengths of the circuits in D then, for every positive integer w,

$$
w_{\gamma}\left(D^{w}\right)-(1+r)-w<F\left(p_{1}, p_{2}, \cdots, p_{u}\right) \leq w \gamma\left(D^{w}\right)-(1+r)
$$

This follows since $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r=\gamma(D)$.

3. A Connection with number theory

We now illustrate the graphical methods referred to earlier for computing F functions. Since the computation of the function F is still an untractable problem in number theory and since the graphical methods can be applied in different ways, we give two proofs of the result that

$$
F(n, n-1, n-2, \cdots, s)=s\left[\frac{n-2}{n-s}\right]-1
$$

In the first proof, the formula which we use is the formula $\gamma(D) \leq t+h q$ of Corollary 1, applied to the graph M_{1} of Theorem 9.

In the graph M_{1}^{s}, consider the vertices arranged in cyclic order $1,2,3, \cdots, n$, as in the circuit C of length n in M_{1}. In M_{1}^{s}, the vertex 1 is the first member of the edges $(1,1)(1, n)(1, n-1), \cdots,(1, s+1)$ and the vertex 2 is the first member of the edges $(2,2)(2,1)(2, n), \cdots,(2, s+2)$. In fact each of the vertices $1,2, \cdots, s$ is edge connected to itself and to the $n-s$ edges which precede it in the circuit C. The vertex $s+1$ is edge connected to the $n-s$ previous edges, the vertex $s+2$ to $n-s-1$ previous edges beginning with s, \cdots and finally, vertex $n-1$ is edge connected to s and $s-1$ and n is edge connected only to s. In Corollary 1 take $Y=\{1,2, \cdots, s\}$. It is a simple matter to see that

$$
h_{i}^{(s)}=\left[\frac{n-2}{n-s}\right]+1
$$

for $i \in Y$.
Thus

$$
h=\left[\frac{n-2}{n-s}\right]+1
$$

Also $t=1$. We have $\gamma\left(M_{1}\right) \leq t+h q=1+s h$ where

$$
h=h_{1}^{(s)}=h_{2}^{(s)}=\cdots=h_{s}^{(s)}=\left[\frac{n-2}{n-s}\right]+1
$$

We have $h_{n}^{(s)}=h_{s}^{(s)}+1=1+h$, since the only path of length s for vertex n terminates in vertex s. Also $h_{n}^{(s)} \leq \operatorname{Max}_{i \epsilon V}\left(h_{i}^{(s)}\right)=\gamma\left(M_{1}^{s}\right)$. Thus by Theorem 10 part (a), $s h_{n}^{(s)}-s<\gamma\left(M_{1}\right)$. But $\gamma\left(M_{1}\right) \leq 1+s h$, so that $s(h+1)-s<\gamma\left(M_{1}\right) \leq 1+s h$. Thus $\gamma\left(M_{1}\right)=1+s h$. Since

$$
F(n, n-1, \cdots, s)+1+r=\gamma\left(M_{1}\right)
$$

we have

$$
F(n, n-1, \cdots, s)=\left[\frac{n-2}{n-s}\right] s-1
$$

To sum up the relationship between the F function and the exponent which
is revealed in this first proof, note that if $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)$ is known and if there is an ordered pair $(k ; l)$ with the unique path property such that $r_{k l}=r$, then Corollary 2 may be used to find $\gamma(D)$. Conversely, if $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)$ is unknown, it may be possible to construct an appropriate graph D and use Corollary 1 and Theorems 3 and 4, to get

$$
F\left(p_{1}, p_{2}, \cdots, p_{u}\right)+1+r_{k l} \leq \gamma(D) \leq t+h q
$$

which gives an upper bound for F. Furthermore, Corollary 6, gives upper and lower bounds for F and as we have just seen these can actually yield exact values.

We proceed now to the second proof. In M_{1}, the pair ($n ; s+1$) has the unique path property with $r_{n, s+1}=r=s+1$. By Corollary 2,

$$
h_{n}=F(n, n-1, \cdots, s)+s+2=\gamma\left(M_{1}\right)
$$

Also, as in the previous proof,

$$
h_{i}^{(s)}=\left[\frac{n-2}{n-s}\right]+1, \quad \text { for } i=1,2, \cdots, s
$$

By Theorem 10, $h_{1}^{(s)} s-s<h_{1} \leq h_{1}^{(s)} s$ and $\left(h_{n}^{(s)}-1\right) s<h_{n}<h_{n}^{(s)} s$. Combining these with $h_{n}^{(s)}=h_{1}^{(s)}+1$ and $h_{n}=h_{1}+1$ we obtain $h_{1}=s h_{1}^{(s)}$ and $h_{n}=s h_{1}^{(s)}+1$ and from these the value of

$$
F(n, n-1, \cdots, s)=s\left[\frac{n-2}{n-s}\right]-1
$$

It may be worth mentioning that the computation of the more general result of Roberts, namely, the formula for $F(n, n-d, n-2 d, \cdots, n-k d)$ can be carried out in the same way.

We conclude this paper with a theorem which is suggested by the second proof of the formula for $F(n, n-1, \cdots, s)$. Then two examples are given each of which translates the number theory problem of finding an F function into the problem of locating a certain vertex in a primitive graph D, together with the reach of this vertex in a power of D. Finally, a few F functions found by this method are listed.

The out-valence of a vertex i of a directed graph is the number of edges which have i as first member.

Theorem 11. Let $(1,2)(2,3) \cdots(f, f+1)$ be a path of length f in a primitive graph D in which each of the f vertices $1,2,3, \cdots, f$ has out-valence 1 . Let w be an integer, $0<w<f+1$.

Then (a) $\quad h_{i+1}=h_{i}-1$ for $i=1,2, \cdots, f$,
(b) $h_{i+w}^{(w)}=h_{i}^{(w)}-1$ for $i=1,2, \cdots, f+1-w$,
and (c) $\quad h_{i+1}^{(w)} \leq h_{i}^{(w)}$ for $i=1,2, \cdots, f$.
Moreover, if W is a set of w vertices $(0<w<f+1)$ which are consecutive
in the path from 1 to $f+1$, then there exists a unique vertex $g \in W$ such that $h_{g}=h_{g}^{(w)} w$.

Proof. Let j be any vertex of D and let p be any positive integer. For $i=1,2, \cdots, f+1-w$ there is a 1 to 1 correspondence between paths from vertex i to vertex j of length $p w$ and paths from vertex $i+w$ to vertex j of length $(p-1) w$. This proves (b). Putting $w=1$ we have (a).

By Theorem 10 we have

$$
\left(h_{i}^{(w)}-1\right) w<h_{i} \leq h_{i}^{(w)} w, \quad \text { and } \quad\left(h_{i+1}^{(w)}-1\right) w<h_{i+1} \leq h_{i+1}^{(w)} w .
$$

Since $h_{i+1}=h_{i}-1$, we have $\left(h_{i+1}^{(w)}-1\right) w+1<h_{i} \leq h_{i}^{(w)} w$. Thus $h_{i+1}^{(w)} \leq h_{i}^{(w)}$.

Let $i_{1}, i_{2}, \cdots, i_{w}$ be w consecutive vertices in the path from 1 to $f+1$ and let $W=\left(i_{1}, i_{2}, \cdots, i_{w}\right)$.

Now suppose $h_{i}^{(w)}=h_{i_{w}}^{(w)}$. By Theorem 10, $\left(h_{i_{w}}^{(w)}-1\right) w<h_{i_{w}} \leq h_{i_{w}}^{(w)} w$ and $w\left(h_{i_{1}}^{(w)}-1\right)<h_{i_{1}} \leq h_{i_{1}}^{(w)} w$. By (a), $h_{i_{1}}=h_{i_{w}}+w-1$. Combining these, we have $\left(h_{i_{1}}^{(w)}-1\right) w+(w-1)<h_{i_{1}} \leq h_{i_{1}}^{(w)} w$. Thus $h_{i_{1}}=h_{i_{1}}^{(w)} w$. By (a), it follows that $h_{i}<h_{i}^{(w)} w$ for $i=i_{2}, i_{3}, \cdots, i_{w}$. Thus the vertex g is i_{1}.

If $h_{i_{1}}^{(w)} \neq h_{i_{w}}^{(w)}$, it follows from (b) and (c) that $h_{i_{1}}^{(w)}=h_{i_{w}}^{(w)}+1$ and that there exists a unique vertex g in W such that $h_{g-1}^{(w)}=h_{g}^{(w)}+1$. Using Theorem 10 relative to vertices $g-1$ and g, and using $h_{g}=h_{g-1}-1$, it follows that $h_{g}=h_{g}^{(w)} w$. Furthermore $h_{i}>h_{g}^{(w)} w$ if vertex i precedes vertex g in the path from i to $f+1$ and $h_{i}<h_{g}^{(w)} w$ if g precedes i in this path. This completes the proof.

Corollary 7. In the previous theorem let the circuit lengths in the graph D be $p_{1}, p_{2}, \cdots, p_{u}$. Suppose there exists a vertex k such that the ordered pair $(1 ; k)$ has the unique path property with $r_{1 k}=r$. Let g be defined as follows. If $h_{i_{1}}^{(w)}=h_{i_{w}}^{(w)}$ then $g=1$. If $h_{i_{1}}^{(w)} \neq h_{i_{w}}^{(w)}$ then g is the unique vertex of W such that $h_{g-1}^{(w)}=h_{g}^{(w)}+1$. If v is the length of the unique path from vertex 1 to vertex g,

$$
h_{1}=\gamma(D)=h_{g}+v=h_{g}^{(w)} w+v=1+r+F\left(p_{1}, p_{2}, \cdots, p_{u}\right)
$$

Thus $F\left(p_{1}, p_{2}, \cdots, p_{u}\right)=h_{g}^{(w)} w+v-r-1$.
In the following examples the problem of finding an F function is replaced by the problem of finding the vertex g of Corollary 7 and the reach of vertex g in D^{s}. This may be done in various ways using different primitive graphs for the same F.

Example 1. Consider $F(s, n-k, n-k+1, \cdots, n)$ where $k \geq 1$ and $s<n-k$. Let D be the graph defined as follows. $\quad D$ consists of the circuit $(1,2)(2,3) \cdots(n, 1)$ together with edges $(s, 1)$ and those edges necessary to make the subgraph with vertices $s, s+1, s+2, \cdots, s+k+1$ complete with respect to that ordering. The circuit lengths are $s, n-k, n-k+1$,
\cdots, n. In the path from $s+k$ to s every vertex except the last has out-valence 1. This path has $n-k+1$ vertices and hence $f=n-k$. Moreover $s<f+1$. Now use Corollary 7 with $w=s$ and $W=(1,2, \cdots, s)$. The ordered pair of vertices $(s+k ; s+1)$ has the unique path property with $r_{s+k, s+1}=r=n-k+1$. If $g \epsilon W$ is the unique vertex defined in corollary 7 then $v=n-(s+k)+g$. Thus

$$
F(s, n-k, n-k+1, \cdots, n)=h_{g}^{(s)} s+v-r-1=h_{g}^{(s)} s-s+g-2
$$

Example 2. Consider $F(s, s+1, s+2, \cdots, s+u, n)$ with $u \geq 1$ and $s+u<n$. Let D consist of the circuit $(1,2),(2,3), \cdots,(n, 1)$ augmented by the edges $(s, 1)(s+1,1)(s+2,1), \cdots,(s+u, 1)$. In the path from $s+u+1$ to s every vertex except s has out-valence 1. The path has $n-u=f+1$ vertices with $f+1>s$. Now use Corollary 7 with $w=s$ and $W=(1,2, \cdots, s)$. The pair $(s+u+1 ; s+u+1)$ has the unique path property with $r_{s+u+1, s+u+1}=r=n$. If $g \epsilon W$ is the unique vertex defined in the corollary then $v=n-(s+u+1)+g$. Thus
$F(s, s+1, s+2, \cdots, s+u, n)=h_{g}^{(s)} s+v-r-1=\dot{h}_{g}^{(s)} s-s-u+g-2$.
The following are samples of results obtained by the authors using these graphical methods.

$$
\begin{aligned}
F(n, n+1, n+2, n+4)= & {\left[\frac{n}{4}\right](n+1)+\left[\frac{n+1}{4}\right] } \\
& +2\left[\frac{n+2}{4}\right]-1 \\
F(n, n+1, n+2, n+5)=n & {\left[\frac{n+1}{5}\right]+\left[\frac{n}{5}\right]+\left[\frac{n+1}{5}\right] } \\
& +\left[\frac{n+2}{5}\right]+2\left[\frac{n+3}{5}\right]-1 \\
F(n, n+1, n+2, n+6)= & n\left[\frac{n}{6}\right]+2\left[\frac{n}{6}\right]+2\left[\frac{n+1}{6}\right]+5\left[\frac{n+2}{6}\right] \\
& +\left[\frac{n+3}{6}\right]+\left[\frac{n+4}{6}\right]+\left[\frac{n+5}{6}\right]-1 .
\end{aligned}
$$

These results apparently cannot be obtained by a direct application of other methods.

Bibliography

1. P. T. Bateman, Remark on a recent note on linear forms, Amer. Math. Monthly, vol. 65 (1958), pp. 517-518.
2. A. T. Brauer and B. M. Seelbinder, On a problem of partitions-II, Amer. J. Math., vol. 76 (1954), pp. 343-346.
3. A. L. Dulmage and N. S. Mendelsohn, The exponent of a primitive matrix, Canad. Math. Bull., vol. 5 (1962), pp. 241-244.
4. J. C. Holladay and R. S. Varga, On powers of non-negative matrices, Proc. Amer. Math. Soc., vol. IX (1958), p. 631.
5. S. M. Johnson, A linear diophantine problem, Canad. J. Math., vol. 12 (1960), pp. 390-398.
6. J. G. Kemeny and J. L. Snell, Finite Markov chains, Van Nostrand, 1960.
7. P. Perkins, A theorem on regular matrices, Pacific J. Math., vol. II (1961), pp. 15291533.
8. R. S. Varga, Matrix iterative analysis, Prentice Hall, 1962.
9. J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc., vol. 7 (1956), pp. 465469.
10. H. Wielandt, Unzerlegbare, nicht negativen Matrizen, Math. Zeitschrift, vol. 52 (1950), pp. 642-648.

University of Manitoba, Winnipeg, Canada

[^0]: Received July 12, 1963.

