
GAPS IN THE EXPONENT SET OF PRIMITIVE MATRICES

BY

A. L. DULMAG AND N. . MENDELSOHN

1. Introduction and definitions

An n by n mtrix A is reducible if there exists permutation mtrix P such
that p-lAp , c where B nd C re squre mtrices nd 0 is zero mtrix.
A mtrix A is positive if every entry is positive, nd is non-negative if every
entry is zero or positive. An n by n non-negative irreducible mtrix A is
primitive if there exists n integer 0 such that A is positive. In this
paper non-negative irreducible primitive mtrix will be clled simply
primitive mtrix. Let (A) be the least integer with the property that A
is positive for (A ). Wielndt [10] hs stated that (A (n 1) + 1.
Proofs of this theorem hve been given by Holldy nd Vrg [4] nd Perkins
[7].
In [3], (A) hs bee clled the exponent of the primitive mtrix A. Let

S be the set of ll exponents of n by n primitive mtrices. The min result
of this pper concerns gps in this exponent set S. Explicitly, if n is odd,
there is no primitive mtrix A for which

n-3n+4<(A) < (n- 1) or n-4n+6 <(A) <n-3n+2.
If n is even, there is no primitive mtrix A for which

n- 4n + 6 < (A) < (n-- 1).
A directed graph consists of vertex set V (1, 2, 3, ..., n) nd set of

edges ech of which is n ordered pir (i, j) of vertices. An edge (i, j) my
lso be clled path of length 1 from vertex i to vertex j. If vertices
lc lc2 ..., kt_ exist such that (i, lc), (k ]c), ..., (kt-1, j) re edges of the
graph, then i is sid to be connected to j by path of length t. A directed
graph is sid to be strongly connected, if for ny two vertices i, j of the vertex
set with i # j, there is pth of some length connecting i to j. A cycle is
pth which begins nd ends with the sme vertex. In such pth n edge
my pper more thn once. A circuit is cycle of which no proper subgrph
is cycle. If the pir (i, i) is n edge, then this circuit of length 1 is clled

loop nd i is clled loop vertex. The greatest common divisor of the
lengths of ll cycles is equal to the greatest common divisor of the lengths of
ll circuits. A strongly connected directed graph D in which this greatest
common divisor is 1 will be called primitive. The exponent (D) of primitive
graph D is the least integer with the property that for every (D) nd
every ordered pir of vertices, there is directed pth from the first vertex
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to the second of length t. A theorem of Schur asserts that a set of positive
integers which is closed under addition contains all but a finite number of the
multiples of its greatest common divisor. It is an easy consequence of this
theorem that every primitive graph D has an exponent.
The directed graph D4 of an n by n matrix A (aii) has vertex set

V (1, 2, 3, ..., n) and the ordered pair (i, j) is an edge of DA if and only
if ai 0. It is well known [3], [5], for a non-negative matrix A, that A is
primitive if and only if the graph DA is primitive. Moreover, the exponent
(A is equal to the exponent (D). Two directed graphs are isomorphic
if there is a 1 to 1 correspondence between vertices which preserves edges.
For two n by n matrices A and B, there exists a permutation matrix P such
that A and P-1BP have the same zero entries if and only if the graphs D
and D, are isomorphic.
IfD is a directed graph with vertex set V (1, 2, 3, ..., n) then the

th power of D, denoted by D is the directed graph with the same vertex set
V, such that the ordered pair (i, j) is an edge of D if and only if there is a
path in D from vertex i to vertex j of length t. Thus /(D) is the smallest
power of D which is a complete graph with n loops.

2. Theorems on the exponent of a primitive graph
In this section the theorems on the gaps in the exponent set of n by n

primitive matrices are established.
Theorem 1 is a generalisation of Wielandt’s result. The method of proof

is essentially that of Holladay and Varga [2] but the conclusion, which gives
an upper bound for ,(A in terms of the length of the shortest circuit in D
is stronger. The theorem is based on a few preliminary remarks.
Remark 1. If D is a primitive graph then D is primitive for all > 0.
Remark 2. If D is a primitive graph, then there exists for every vertex i

an integer h with the property that for every vertex j there is a path from
i to j of length h.
The least such integer h, denoted by hi is called the reach of vertex i.
Remark 3. Let D be a primitive graph and let h be the reach of vertex i.

If p >_ h then there exists a path from i to any vertex j of length p.
Proof. Since D is strongly connected there is at least one vertex k of D

such that (/c, j) is an edge of D. Thus there is a path of length hi + 1 from
i to j for every j. The proof follows by induction.
Remark 4. If D is a primitive graph then -(D) Max [h, h2, ..., hn].
Remark 5. If D strongly connected and i is a loop vertex then hi _< n 1.
Proof. There is a path from i to j of length q <_ n 1. Combining this

with n 1 qi loops, we have a path from i to j of length n 1.

THEOREM 1. If D is a primitive graph and if s is the length of the shortest
circuit in D then .(D) <_ n + s(n 2). In other words, if A is a primitive
matrix, and if s is the length of the shortest circuit in the directed graph Da then
"(A) <_ n + s(n- 2).
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Proof. Since D is primitive, D is primitive by Remark 1.
Since D has a circuit of length s, D has at least s loop vertices. Thus for

any vertex i of D, there is a path in D of length p

_
n s from i to some

vertex/c of D which is a loop vertex in .D.
Since/c is a loop vertex in D’, there exists, by Remark 5, for any vertex j,

a path of D from ]c to j of length exactly n 1. Thus there is, for any
vertex j, a path in D from/c to j of length (n 1 )s.
Combining these paths we have a path from i to any vertex j of length

exactly pi-t- (n- 1)s. It follows that hi

_
pi (n- 1)s. Thus

,(D Max [h h,..., h]

_
n- s + (n- 1)s n + s(n- 2).

Since the greatest common divisor of the lengths of the circuits in a primitive
graph is 1, it follows that s

_
n 1. Thus

,(A)

_
n - (n-- 1)(n- 2) (n- 1) + 1.

Theorem 1 may be generalised us follows.

THEOREM 2. Let D be a primitive graph with vertex set V and let Y be any
subset of V. For each lc V let h(q) denote the reach of vertex k in Dq. Let
pi be the length of the shortest path in D from vertex i to a vertex lc of Y. Then

/(D) Maxi Minr{p -t- h(q)q}.

Proof. We have hi

_
pi -J- h(kq)q for all k e V and hence we have hi

_
pi + h(q)q for all/ e Y. Thus hi

_
Minr{p -k h(q)q}. Since ,(D)

Maxi(hi), the result follows.
Let X be the set of vertices of D each of which is in some circuit of length

q. Theorem 2 is most useful when Y is a subset of X and when q is the length
of the shortest circuit.
The following corollary is useful.

COROLLARY 1. Let h MaXy{h(q)} and let be the length of the longest
path in D required to get from any vertex i to some vertex ] of Y. Then

,(D <_ -[- hq.

Proof. We have Maxiv{Minrp}. Thus

,(D) <_ Max Minr{pi -b h(q)q} <_ Max, Minr{p -t- hql -k hq.

The number in this corollary is

_
n Y[ where Y is the cardinality

of Y.
Let p, p., ..., pu be relatively prime and let F(p, p., -.., p) denote the

largest integer which is not expressible in the form a p - a p -k -k au p
where ar is a non-negative integer for r 1, 2, ..., u. This function F has
been discussed by Bateman [1], Brauer and Seelbinder [2], Johnson [4], and
Roberts [8]. It is well known, if m and n are relatively prime, that F(m, n)
mn m-- n. Roberts has shown, ifa ao q- jd, j O, 1, ., s, ao >_ 2,
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then

F(a0,al, .’-,a,)--(I---]-t- 1) a0-(d- 1)(a0- 1) 1,

where as usual Ix] denotes the greatest integer

_
x. The proof of this result

has been simplified by Bateman. Johnson has given an ingenious algorithm
which can be used to find F in the case of three variables. At the end of
this paper two graphical methods for computing such F functions arc de-
scribed.

Let D be a primitive graph in which every circuit is of length p, p: ...,
or pu. For any ordered pair (i; j) of vertices, a non-negative integer r is
defined as follows. If i j and if for z 1, 2, ..., u there is a circuit through
vertex i of length p then r 0; otherwise r is the length of the shortest
path from i to j which has at least one vertex on some circuit of length p for

l, 2, ..., u. Let r Max(r) taken over all ordered pairs (i;j).

TEOREM 3. If D is a primitive graph then

(D) F(p, p, ..., p,,) + 1 + r.

Proof. For any set of on-negativc integers a, a, ..., a and any ordered
pair (i; j) of vertices, there is a path from vertex i to vertex j of length

r + ap + a: p + a p.

Thus there is a path from vertex i to vertex j of length

F(p, p, ..., pu) ri N

for every N 1. Choosing N 1 + r r,, we have a path from vertex i
to vertex j of length

F(p, p, -.-, p) + 1 + r,
so that

h,: F(p, p,..., p,,) + 1 - r.
Thus

,(D) Maxvlhi} _< F(p, p,,., ..., p) q- 1 q- r.

An ordered pair (/; o vertices i- a primitive graph D is said to have
the unique path property if every path. from vertex k, to vertex which has
length >_ r consists of some path a of length r augmented by a number of
circuits each of which has a vertex in common with a. (Note that the word
"unique" in this definition refers to the length of the path a rather than to
the path a itself.)

THEOREM 4. If D iz a primitive graph in which the ordered pair of vertices
k; l) has the unique path property, then

F(p, p, ..., p) + 1. + r <_ "I(D).
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Proof. There is no path from vertex k to vertex of length

w F(pl, p2, "", pu)

for such a path would imply the existence of non-negative al, a2, ..., au with

F(pl p "", p) alp1 - a p au pu

Thus by Remark 3, we have F(pl, p, ..., p.,) - rk < hk. Since h

_
Maxv{h} -(D), the result follows.
The following corollaries to Theorems 3 and 4 are immediate.

COROLLARY 2. If in Theorem 4, r r then

h /(D) F(pl, p2, ..., pu) - 1 -- r.

COnOLLnnY 3. If in Theorem 4, r rt r for all ordered pairs (i; j)
other than (/; l) then the graph D()- is complete except for the missing edge
(, ).

Theorems 3 nd 4 my be genemlised s follows. The definition of r.
my be weakened by defining r. to be the length of the shortest pth from
vertex i to vertex j which hs t least one vertex in common with circuit
of ech of the lengths p, p, p, ..., p (some subset of the circuit lengths)
with F(p p ..., p F(p p. ..., p). The unique pth property,
my be replaced by the weaker property for the ordered pair (k; l) of vertices
that if there is pth from vertex/c to vertex of length w >_ r then there
exist non-negative integers al, a, ..., a such that

w r ap a.p ap.

(It is a simple matter to show that this property is indeed weaker). Theorems
3 and 4 and Corollaries 2 and 3 are valid if these weaker definitions are used.

THEOREM 5. If S and n are relatively prime s < n ), lhere exists a primitive
graph D with n vertices and n 1 edges for which .(D) n s(n 2).

Proof. The graph D with the n 1 edges 1, 2) (2, 3), (n 1, n) (n, 1
and (s, 1) has a circuit of length s, and a circuit of length n. Since s and n
are relatively prime, D is primitive. The ordered pair (s + 1;n) has the
unique path property, with r.+. 2n s 1. Moreover, r+l, r.
By Corollary 2,

" (D F n,s -- l - r ns s-- n-- l -- 2n-- s 1 n-- s(n 2 ).
In this graph, we hve r < r for every ordered pir other thn (s + 1; n).

By Corollary 3, it follows, if s and n re relatively prime (s < n), then there
exists n n by n mtrix A of zeros nd ones, with exactly n + 1 ones, such that
An+s(n-2) > 0 and An+s(n-2)--1 has exactly one zero entry.

THEOREM 13. Apart from isomorphism, there is exactly one primitive graph
D on n vertices for which ,(D) (n 1) + 1, and exactly one for which,(D) (n 1). These are the only graphs for which the length of the shortest
circuit is n 1.
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If s < n 1, then from Theorem 1,

/(D)

_
n-- (n-- 2) n2- 3n--4.

If s n 1, then, since the greatest common divisor of the lengths of the
circuits is 1, the graph must have a circuit of length n 1 and another of
length n. Thus the graph D must have as a subgraph, a graph which is
isomorphic to the graph of Theorem 4 with s n 1. Denote this graph
by E. The graph E is isomorphic to the graph of the matrix used by Wielandt
[11] to show that his result was best possible. There are two cases to consider.

Case (i). D E. From Theorem 5, we have

,(E) n -t- (n- 1)(n- 2) (n- 1) -- 1.

Case (ii). E is a proper subgraph of D. The only edge which can be
added to E without introducing a circuit of length less than n 1 is the edge
(n, 2) or the edge (n 2, n). Since the resulting graphs are isomorphic, it
is sufficient to consider the first case.
The ordered pair (1; n) has the unique path property with rl. n 1.

Moreover rl, r. By Corollary 2,

/(D) F(n, n- 1) -t- 1 -t-r
n(n-- 1) n-- (n-- 1) - 1 +n-- 1 (n-- 1)2.

COROLLARY 4. If A is an n by n primitive matrix and if
,(A) (n- )+ ,

then there exists a permutation matrix P such that P-IAP has the same zero
entries as

0 1 0 0

0 0 1 0

1 0 0 1

1 0 0 0

If A is an n by n primitive matrix and if ,(A
permutation matrix P such that

0 1 0

(n 1)2 then there exists a
p-lAp has the same zero entries as

1 0 0 1

1 1 0 0

Such an explicit matrix formulation will not be given for the remaining
results in this paper.

0 0 1 0
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n

n-I /"-n-2

2 2 G

5 n-4 n-4

(a) (b)
FIGURE 1

THEOREM 7.
such that

If n is even (n > 4), then (a there is no primitive graph D

n --4n-+-6 < 3,(D) < (n-- 1)

and (b) there are, apart from isomorphism, exactly 3 or exactly 4 primitive
graphs D with "v(D n 4n zc 6, according as n is or is not a multiple of 3.

Proqf. From Theorem 6, if -(D
s <_ n 3, by Theorem 1,

< (n-- 1)2, wehaves_< n-- 2. For

3’(D) _< n -t- (n- 3)(n- 2) n2- 4n -t-6.

If s n 2, since n and n 2 are not relatively prime, a primitive graph
D must have circuits of length n 2 and n 1. Beginning with a circuit
of length n 2, a circuit of length n 1 must either involve both of the
remaining vertices or one of the remaining vertices. It follows, that D must
have as subgraph, a graph which is isomorphic to one of the graphs F in
Figure 1 (a) or G in Figure l(b). There are two cases in the proof of (a).

Case (i). F is a subgraph of D. In F the ordered pair (n 1; n) has the
uMque path property and rn-i,n n r. By Corollary 2,

/(D) <_.y(F) F(n-- 1, n-- 2) -t- 1+ r n2- 4n-t- 6.

Case (ii). G is a subgraph of D. G is a primitive graph with
vertices of the same type as the graph E of Theorem 6. Thus

,(G) (n- 2) -F 1 n- 4n -F 5.

There must be at least one edge (n, il) of D, i n, and at least one edge
(i, n) of D, i2 n. We may assume i i., since otherwise we have a
circuit of length 2 which is less than s for n > 4. Let H be the subgraph of
D consisting of G together with the two edges (n, i) and (i., n). We show
that,(H) __< n: 4n-F 6. Ifj - n, there is a path from i to j in G of
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length exactly n 4n -t- 5 and adjoining (n, il) we have a path from n to
j of length exactly n 4n q- 6 in H. If i n, there is a path from i to i
in G of length exactly n 4n - 5 nd adjoining (i, n) there is a pth of
length exactly n 4n -t- 6 from i to n in H. For a path from n to n we use
the fact that at least one of i and i n 1. If ix n 1, there exists
vertex n of G such that (n, i) is the only edge in G out of n. There is a

pth from n to i in G of length exactly n 4n q- 5. Replacing (n, i)
by (n, i) nd adjoining (ie, n) yields a path from n to n in H of length
n 4n q- 6. Similarly if i n 1, there exists vertex n of G such that
(i, n) is the only edge into n. There is a pth from i to n in G of length
exactly n 4n -t- 5. Adjoining (n, i) and replacing (i., n) by (i, n)
yields a path from n to n of length n 4n q- 6 in H. We have

/(D)

_
,(H)

_
n 4n + 6.

If il n 1 and i2 n 1 it is easy to see, using the replacement edges
(nl, il) and (i2, n2) that ,(D)

_
/(H)

_
n 4n -t- 5.

It remains to prove (b). If D has a circuit of length n in addition to those
of length n 2 and n 1, and if F is a subgraph of D, then the r for a pair
of vertices in D is less than or equal to the r. for the same pair in F, since
the additional condition that the path must have a vertex on a circuit of
length n is satisfied for any path. If G is a subgraph of D, then r for D is
less than or equal tor-t- 1 forG. For F and G we have r nandn- 1
respectively. Thus for D, we have r

_
n. By Corollary 2, and the result

of Roberts [9], referred to earlier, we have

"(D) <_ F(n, n- 1, n 2) -t- 1 -- r

n-- 2) 1 -t- 1 -t- n < n-4nq- 6.

Cases in which D has a circuit of length n have been disposed of.
Now consider the case in which F is a subgraph of D. The only edges

which can be added to F without introducing a circuit of length n, or of
length < n 2 or reducing the number r (either of which reduces the ex-
ponent), are the edges (n 2, n) and (n- 1, n- 2). In each case the
ordered pair (n 1; n) has the unique path property and rn-l. n r,
so that ,(D) n 4n + 6. If (n 2, n) is added the resulting graph is
denoted by F, if (n 1, n 2) by F:. If both edges are added there is a
circuit of length n.

There remains the case in which G is a subgraph of D. In the proof of
(a) it was noted that, if /(D) n 4n -t- 6 then, either i n 1 or
i2 n- 1, butnotboth. Ifil n- 1, theni n-- 3, for ifi n- 2
we have a cycle of length n and if i n 4, we have r run n 1, and
in other cases, we have a circuit of length less than n 2. With il n 1
and i n 3, the resulting graph is isomorphic to F1. The case in which
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i2 n 1 is handled in a similar way. In this case we find that il must be
2 and we get a graph isomorphic with

If s n 3 and the graph has a circuit of length n 1 or n 2, then
using Corollary 2, it follows that ,(D) < n 4n + 6. In other cases,
since D is primitive, n is not a multiple of 3. Moreover, D has as a subgraph
the graph K of Theorem 5 with s n 3. In K, the ordered pair (n 2; n)
has the unique path property and rn-2.n n + 2 r. Thus /(K)
n 4n + 6. Since no edge can be added to K without introducing a cycle
of length other than n and n 3, or reducing the number r, we have K D.

THEOREM 8. If n is odd (n > 3) then (a) there is no primitive graph D
such that n 3n 4 < /(D) < (n 1 )2, and (b) apart from isomorphism
there is exactly one primitive graph D with (D n 3n 4, and exactly
one primitive graph D with .(D) n 3n 3, and exactly two primitive
graphs D with .(D n 3n 2, and c there is no primitive graph D
such that n 4n 6 < /(D < n 3n 2, and d apart from isomorph-
isms, there are exactly 3 or exactly 4 primitive graphs D with . D n 4n 6
according as n is or is not a multiple of 3.

Proof. Ifv(D) < (n-- 1)2, thens

_
n- 2andhence, byTheorem 1,

,(D)

_
n 3n + 4. If s _< n 2, and if the graph has a circuit of length

n 1, then (D)

_
n 4n -t- 6. This follows, because the proof of this

result given in Theorem 7 for n even holds also for n odd. Thus parts (a)
and (d) of Theorem 8 are established.
The only other graphs which need be classified are those in which the

circuits are of lengths n 2 and n. Any such graph must have as a subgraph
the graph L of Theorem 5 in which s n 2. In L, the pair (n; n 1.) has
the unique path property with

rn,n-1 n -- 1 r and (L) F(n, n 2) -- 1 -- r n 3n -- 4.

In the graph L1, formed by adding to L the edge (n 1, 2) the ordered
pair (n; n) has the unique path property and rnn n r. By Corollary 2,
(L1) n- 3n + 3.

In the graph L2, formed by adding to L the edge (n, 3), the ordered pair
(1; n) has the unique path property with r. n 1 r. Thus

’(L2) n2- 3n + 2.

In the graph La formed by adding to L the edges (n, 3) and (n 1, 2),
the ordered pair (1; n) has the unique path property and r n 1 r.
Thus /(La) n 3n - 2.

There are alternative edges which may be added to L without introducing
circuits of other lengths, but, in each case, the resulting graph is isomorphic
to L, L2 or L. This completes the proof of Theorem 8.

For any s n, let a(s) and b(s) be the minimum and maximum of the set
of exponents of all primitive graphs in which the shortest circuit has length
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s. Theorem 1 implies that b(s) <_ n -- s(n 2). Theorem 9 leads to an
upper bound for a(s). In Theorem 9 we require the following definition.
A graph with m vertices is complete with respect to the ordering vl, vs, "., vm
if the ordered pair (vi, vj) is an edge if and only if vi precedes vj in the ordering.

THEOREM 9. For any n and s, s < n, there exists a primitive graph M1 in
which the shortest circuit has length s, and

"), M1) s 2r- 1 -+- s,

and a primitive graph Ms in which the shortest circuit has length s, and

"(Ms) s + s.

Proof. Let N be the graph with n s -F 2 vertices s, s -F 1, s -- 2, ...,
n 1, n, 1 which is complete with respect to this ordering. If the edges
(1, 2)(2, 3)(3, 4)... (s 1, s) are added to N, denote the resulting graph
by M1. In M1, the pair (n; s -F 1) has the unique path property with
rn,s+l S -- i r and circuits of lengths s, s -t- 1, s -F 2, ..., n 1, n.
Thus

y(MI) F(n,n-- 1, n 2, ,s) + 1 + r s+ 1+ s.

Now let Ms be the graph obtained from M1 by adding the edges (i, 2) for
i s - 1, s-F 2, -..,n. In M2 the pair (1;s-t- 1) has the unique path
property with rl.s+l s r and circuits of lengths s, s q- 1, ..., n. Thus

"(M2) F(n, n- 1,..., s) q- 1 --r s q- s.

COROLLARY 5. If a(s) is the minimum of the set of exponents of all primitive
graphs with shortest circuit of length s, then

a(s) y(M.) s+ s.

THEOREM 10. If D is a primitive graph with n vertices and if w is a positive
integer then

(a) (h(w) 1)w w, fori 1,2, ...,n, and
(b) w’r(D) --w < "I(D) <_ w’l(D).

Proof. Part (a) follows from the definition of h and h(s)
i. Sincey(D)

Max.{hi} and "/(D }, we have (b).

COROLLARY 6. Let D be a primitive graph in which the ordered pair of
vertices (; l) has the unique path property with r r. If p p ..., p are
the lengths of the circuits in D then, for every positive integer w,
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w,(D) (1 -t- r) w < F(pl p2 ", pu)

_
w’(D) (1 -t- r).

This follows since F(pl p., ..., p) -F 1 r ,(D).

3. A Connection with number theory
We now illustrate the graphical methods referred to earlier for computing

F functions. Since the computation of the function F is still an untractable
problem in number theory and since the graphical methods can be applied in
different ways, we give two proofs of the result that

F(n,n --1, n--2, s) s[.nn
In the first proof, the formula which we use is the formula ,(D)

_
-F hq

of Corollary 1, applied to the graph M1 of Theorem 9.
In the graph M, consider the vertices arranged in cyclic order 1, 2, 3, ., n,

as in the circuit C of length n in M1. In M, the vertex I is the first member
of the edges (1, 1)(1, n)(1, n 1), ---, (1, s - 1) and the vertex 2 is the
first member of the edges (2, 2) (2, 1 (2, n), --., (2, s - 2). In fact each
of the vertices 1, 2, ---, s is edge connected to itself and to the n s edges
which precede it in the circuit C. The vertex s -- 1 is edge connected to
the n s previous edges, the vertex s -F 2 to n s 1 previous edges
beginning with s, and finally, vertex n 1 is edge connected to s and
s 1 and n is edge connected only to s. In Corollary i take Y 1, 2, ., sl.
It is a simple matter to see that

h) [: _-2sl-F1 for ie Y.

Thus

h= [nn--]-t-1.
Also 1. We have-(M1)

_
W hq 1 -- sh where

We have h( h) -F 1 1 -- h, since the only path of length s for vertex
n terminates in vertex s. Also h(n)

__
Maxiv(h!)) ,(M). Thus by

Theorem 10 part (a), sh() s < /(M1). But ,(M1)

_
1 + sh, so that

s(h-F 1) s < ,(M1)

_
-F sh. ThusT(M1) 1 -sh. Since

we have
F(n,n-- 1, ...,s) + 1 -- r

F(n, n 1, s)

To sum up the relationship between the F function and the exponent which
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is revealed in this first proof, note that if F(pl, p2, "", pu) is known and if
there is an ordered pair (/c; l) with the unique path property such that r: r,
then Corollary 2 may be used to find ,(D). Conversely, if F(pl, p2, ..., pu)
is unknown, it may be possible to construct an appropriate graph D and use
Corollary 1 and Theorems 3 and 4, to get

F(p, p,., ..., pu) -4- 1 q- r <_ .(D) <_ -4- hq

which gives an upper bound for F. Furthermore, Corollary 6, gives upper
and lower bounds for F and as we hve just seen these can actually yield
exact values.
We proceed now to the second proof. In M1, the pair (n; s q- 1) has the

unique path property with r,+ r s q- 1. By Corollary 2,

h, F(n, n- 1,..., s) q- s q- 2 "r(M).

Also, as in the previous proof,

E:--’2s] fori= 1,2, s.=. q-l,

By Theorem 10, h*)s s < h, <_ h}*)s and (h() 1)s < h. < h*)s. Com-
bining these with h( h}*) q- 1 and h. h q- 1 we obtain h sh) and
h,, sh}) 4- 1 and from these the value of

F(n, n 1, s) s 1.

It may be worth mentioning that the computation of the more general
result of Roberts, namely, the formula for F(n, n d, n 2d, ..., n kd)
can be carried out in the same way.
We conclude this paper with a theorem which is suggested by the second

proof of the formula for F(n, n 1, ..., s). Then two examples are given
each of which translates the number theory problem of finding an F function
into the problem of locating a certain vertex in a primitive graph D, together
with the reach of this vertex in a power of D. Finally, few F functions
found by this method are listed.
The out-valence of vertex i of a directed graph is the number of edges

which have i as first member.

THEOREM 11. Let 1, 2) (2, 3)... (f f q- 1 be a path of length f in a primi-
tive graph D in which each of the f vertices 1, 2, 3, ..., f has out-valence 1. Let
w be an integer, 0 w f -4- 1.

Then(a) h+ h l for i 1, 2, ...,f,

a.i+w .o l for i 1, 2, ...,f q- 1- w,

and (c) /ti+i-() <_ he() for i 1, 2, f
Moreover, if W is a set of w vertices (0 < w < f q- 1) which are consecutive
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in the path from 1 to f + 1, then there exists a unique vertex g e W such that
ltg W.

Proof. Let j be ny vertex of D and let p be ny positive integer. For
i 1, 2, -., f 1 w there is 1 to 1 correspondence between pths from
vertex i to vertex j of length pw nd pths from vertex i w to vertex j of
length (p 1)w. This proves (b). Putting w 1 we hve ().
By Theorem 10 we hve

.() w, and 1)w < h+ < a+w.(,o 1)w < h < h() (w) ,_(w)
ki+l

(w) /(w)Since hi+ hi- 1, we have (ai+- 1)w 1 < hi < ,i w. Thus
h() < h()i+1

Let i, i, -.., i be w consecutive vertices in the path from 1 to f + 1
and letW (i,i, ..-,i.).

]. (w) (w),,h() By Theorem 10, (,. 1)w < h.Now suppose h)
and w(.(.) 1) < h < h(),, w. By (a), hi hiw -- W 1. Combining

"() Thus!o) 1)w + (w 1) < hi1

__
nil w. i W.these, we have (.o,1

By (a), it follows that hi < hW)w for i i, i, -.-, i. Thus the vertex g
is i.

If hi()1. # h() it follows from (b) and (c) that h()1 h()w + 1 and that
,_() .(w)+ 1 Using Theoremthere exists a unique vertex g in W such that a- .o

10 relutive to ertices g 1 and g, and using h, h,_ 1, it follows that
h, h)w. Furthermore hi > hW)w if vertex i precedes vertex g in the puth
from i to f + 1 and h < h’)w if g precedes i in this pth. This completes
the proof.

COROLLARY 7. In the previous theorem let the circuit lengths in the graph D
be p, p, ..., p. Suppose there exists a vertex ]c such that the ordered pair
(1; k) has the unique path property with r r. Let g be defined as follows.

] (.w) ] (w)h() h() then g 1 If ,,1 # .o then g is the unique vertex of Wf il iw

such that ,-() ,.() 1. If v is the length of the unique path from vertex 1
to yertex g,

l (w)h .(D) h v , w v 1 + r F(p, p, ..., p).

Thus F p p P , wWv--r-- 1.

In the following exumples the problem of finding an F function is replaced
by the problem of finding the vertex g of Corollary 7 and the reach of vertex g
in D. This may be done in various ways using different primitive graphs for
the sme F.

Example 1. ConsiderF(s,n-- k, n lc + 1, ..., n) wherelc >_ 1 nd
s < n lc. Let D be the graph defined as follows. D consists of the circuit
1, 2) (2, 3). (n, 1 together with edges (s, 1 and those edges necessary to
make the subgraph with vertices s, s + 1, s + 2, ..., s + k + 1 complete
with respect to that ordering. The circuit lengths are s, n k, n k + 1,
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.-, n. In the path from s - /c to s every vertex except the last has out-val-
ence 1. This path has n- /c 1 vertices and hence f n- k. Moreover
s <f 1. Now use Corollary7withw sandW (1,2, ...,s). The
ordered pair of vertices (s W /c; s 1) has the unique path property with
r+k,+l r n / W 1. If g W is the unique vertex defined in corollary
7thenv n- (s+ k) +g. Thus

F(s,n k,n k+ 1, ,n) n s + r-- 1 h)s-- s + g 2.

Example 2. Consider F( s, s - 1, s + 2, ...,s + u,n) withu >_ land
sWu<n. Let D consist of the circuit (1, 2), (2, 3), (n, 1) augmented
by the edges(s, 1) (s+l, 1) (s+2,1), .-., (s+u,l). In the path from
s - u + to s every vertex except s has out-valence 1_. The path has
n- u f- vertices withf-F 1 > s. Now use Corollary7withw s
andW (1,2, .-.,s). The pair (s+u- 1;s+u- 1) has the unique
path property with r+u+l.+u+l r n. If g W is the unique vertex defined
in the corollary thenv n- (s+ u- 1) -Fg. Thus

F(s,s + l,s + 2, s W u, n) .()=. s-Fv-r- s-s-u--g-2.

The following are samples of results obtained by the authors using these
graphical methods.

F(n,n- i,n+ 2, n- 4)= Il (n-F 1)-t- -[.n -4 1

F(n,n -1, n 2, n 5)= n[n5 1[
5 +

F(n,n+ 1, n+2, n +6)= n[]+2E]+2[n :
+ 6

These results apparently cannot be obtained by a direct application of other
methods.
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