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In an earlier paper [4], there was developed a fundamental correspondence
between certain additive and multiplicative integration processes, where the
integration is directed along intervals in some linearly ordered system, and
where the functions involved have their values in a complete normed ring.
That development led to an analysis of linear integral equations of the form

(1) u(x) P-t- (R) V.u,

where the right integral is the limit, through successive refinement of sub-
divisions, of sums of the form V(ti-1, ti)u(h) [4, p. 155]. This analysis,
of the linear case, required only locally bounded variation of the functions
involved, thus obviating additional continuity hypotheses of earlier treat-
mcnts [9], [2], [3], [1] of similar systems. These interrelated treatments are
summarized in [4, Sec. 10] (also in [5]).
Now we present an extension to a nonlinear situation of the aforementioned

fundamental correspondence. This extension leads us to a characterization
of solutions u of equations of the form (1), where the linearity hypothesis on
the values V(x, y) (of the function V) is replaced by a Lipschitz-type con-
dition. Such a condition, in connection with integrals of the type contem-
plated here, seems first to have been investigated by J. W. Neuberger [7, p.
542 ff.]. Our results overlap those of Neuberger only in case the underlying
system is a linear continuum and all of the functions involved are subjected
to additional hypotheses of continuity (see [7, Theorems F and G]).
Throughout this paper, it is to bc supposed that S denotes some non-

degenerate set, with linear (_<) ordering 0; G, +, III denotes a complete
normed Abclian group, with zero element 0; and H denotes the class of all
functions from G to G to which /0, 01 belongs, with identity function 1.
As in [4], we let 0(+ denote the class of all 0-additive functions from S X S
to the set of nonnegative real numbers, and 01fie+ denote the class of all
0-multiplicative functions from S X S to the set of real numbers not less than
1. It should be recalled [4, Theorems 2.2 and 4.3] that there is a reversible
function 5+ to which the ordered pair {a, } belongs only in case one of the
following holds:

(a) a is in O(+ and/(x, y) II’[1 q- a] for all {x, y} in S X S.
(b) is in O)V+ and a(x, y) [ 1] for all {x, y} in S X S.
(c) {c, } is in 0(+ X Og1+ and, for each {x, y} in S X S,
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y

(x, y) 1 -1- (R) .( y).

The integral equation (1) is to be considered in connection with the class
(9a, consisting of all tunctions V from S S to H such that

(i) V is (-dditive iu the sense that, for each {x, z} in S S and P
in G, if {x, y, z} is an (0-subdivision of Ix, z} then

V(x, y)P Jr- V(y, z)P V(x, z)P,

and (ii) there is member of (Oa+ such that if Ix, y} is ins X S and
{P, Q} is in G X G then

V(x, y)P V(x, y)Q <- a(x, Y)II P Q

It is found that there is a reversible function , from the class 0( onto a
corresponding class OZ, such that a member {V, W} of g provides a solution
of (1) in the form u(x) W(x, c)P. Thus, analysis of , furnishes infor-
mation about gl’obal behavior of solutions of the nonlinear integral equation.
The linear case persists, of course, with those members of a having their
values in the ring of endomorphisms of the group {G, -t-}. As in [4, Sec. 5],
it is shown that the theory of the seemingly more general equation

ic(2) u(x) P -t- (R) Vl.U -4- V.2(x, c)P

is subsumed in this treatment. There is also a representation theory for
canonically ordered semigroups [4, p. 164], and there is an example related to
the defining differential equation of the tngent function.

1. Extension of the fundamental correspondence
(9aZ denotes the class of all functions W from S S to H such that

(i) W is 0-multiplicative in the sense that, for each {x, z} in S )< S
and P in G, if {x, y, z} is an 0-subdivision of {x, z} then

W(x, y)W(y, z)P W(x, z)P,

and(ii) there isa memberof 0+ such that if {x, y} is ins X Sand
{P, Q} is in G X G then

II[W(x, y)- 1]P- [W(x, y)- 1]Q _< [v(x, y)- 1]11 P- Q

Remark. It can be shown (but the sequel does not require it) that, as in
the purely linear case [4, Lemma 3.2], the latter condition (ii) is equivalent
to the condition that, for each [x, y} in S )< S, there exists a number b such
that if {t-} is an 0-subdivision of {x, y} and {P, Q} is in G X G then

ll[W(h-, t-) lIP [W(t-_, t.) 1]Qll <- bll p Q

A similar result holds with respect to (Oa (compare [4, Lemma 3.1]).
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Three lemmas, involving sequences of functions from G to G, will be con-
venient for the sequel. As in [4], we adopt the notational convention that
l-I A always means the "left-to-right" continued product A1...A and that
each of IIIA, and II+1 A denotes 1.

LEMMA 1.1. U {A} is a sequence with values in H and ai} is a numerical
sequence such that, for each P, Q} in G X G and i 1, n,

lhen, for each {P, Q] in G X G,

(i) II(HrA-,- 1)P- (HrA,- e)oll (Hra,- 1)l] P- Q

and

(ii) II (HrA,- 1)P [A,- 1]P II (Ha, 1 [[a,- 1])11 P

Proof. Noting that, for each P in G,

(H:A- )P (H:A,)P- P s,(As )(HA,)P,
we see that if each of P and Q is in G then

tl (H;. 1) (H;. 1)o II

E(a 1)11 (H; ,)P (HV ,)e I1
s(ai-- 1)(H+a)[P- Q]I (H:a- 1)]IF- Q

which establishes assertion (i). Using (i) we have, for each P in G,

II (H;. 1). Errs. 1. 11
Ell( 1)(H; ,)p ( 1)p 1

N Hl(a- 1)(H% a,- 1)11 P (Hra,- r[a,- 1])11 P
LEMMA 1.2. U each of {A} and B} is a sequence with values in H, and

each of a} and {b}[ is a numerical sequence such that for each P, Q} in
G N Gandi 1, ,n,

and B P AP (b a)ll P l[, then for each P in G

I (H;B,)P (HrA,)P [ (Hrb, Hra)l p [[.

Proof. If{P,Q}isinG X Gthen

B1 Q- A P ll(B- A)Q + A Q- Ax P

N (51 a)llQ[l + allQ P;
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hence a simple induction yields, for each {P, Q} in G )< G,

[I (I-I{’B)Q- (II;A)P [I-< (II;b- II{a)l[ Q / (II{ai)l] Q- P

LEMMA 1.3. If each of {Ai} and {B} {’ is a sequence with values in H and
each of {ai}, lbi} and {c} is numerical sequence such that, for each {P, Q}
in G X G and i 1, n,

and AB P P c P II, then for each P in G

BII (1-I1A) (II ,+_i)P P [I < EJ=([I’-lai)cj(I,+2-J b,+l_i) l[P

Proof. For each P in G, we have

IIE   (IE Ai)(Hnn+l-./B +I_i)P E.=(iI{-1A,)(IIn+_ B+t_,)P II
E,?.=1

j--1

Concerning the continuously continued sum and continuously continued
product indicated in the following theorem, this definition is used (compare
[4, p. 150]): ifgis a function fromS X Sto Gand his a function from
S X StoHand {x,y} is ins X S and P is in G, then

(i) g denotes a member P1 of G with the property that, for each
positive number c, there is an O-subdivision s of {x, y} such that if {t.} is a
refinement ors then I1 P E g II < c, where E g denotes the continued
sum (in G)

E g(tj-, tj) g(to, tl) -+- -- g(tn-, tn),

and (ii) xII [h]P denotes a member P2 of G with the property that, for each
positive number c, there is an 0-subdivision s of {x, y} such that if {t.}3 is a
refinement of s then P IIt [h]P < c, where I-It [h]P denotes the image,
of P under the continued product (functional composite)

I-I h(t_l, re) h(to, tl) h(tn_, tn).

THEOREM 1.1. There is a reversible function from onto l such thal
the following are equivalent:

(1) V, W} belongs to .
(2) W is in and V is the function defined by the condition that, for each

{x, y} in S X S and P in G, V(x, y)P x’ [W 1]P.
(3) V is in (t and W is the function defined by the condition that, for each

{x, y} in S X S and P in G, W(x, y)l ,]-I [1 q- V]P.
(4) {V, W} is in ( X and lhere is a member {a, ,} of + such that.

for each {x, y} in S X S and P in G,

W(x, y)P P V(x, y)P <- [(x, y) 1 (x, y)] P Ii.
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Proof. Suppose W is in 09Tt, , is a member of 091Z+ such that

[W(x, y) 1]P [W(x, y) 1]Q -< [,(x, y) 1] I1 P- Q

for each{x,y}inSXSand{P,Q}inGXG, and,= +(a). If{x,y}isin
S X S and {si} is an 0-subdivision of {x, y} and P is in G then, by Lemma 1.1
(i),

II [H W(Si_l ,8i)- lIP- E: [W(si_l,si)- 1)]P II
<_ [1-I ,(si_l, si) 1 i’ [,(s_, s) 1)}[I p

it follows directly that if s is an 0-subdivision of {x, y} and is a refinement of

s and P is in G then

Hence, by the completeness of {G, +, II}, there is a function V defined by
the condition that V(x, y)P .’Y [W 1]P for each {., y} in S X S and
P in G. Clearly V is 0-additive and each value of V contains the ordered
pair {0, 0} in G X G. If {., y} is in S X S and {P, Q} is in G X G then, since

II [w lip "5,’ [w 1]Q I[ -< -,, [u 1] II P Q II
for each 0-subdivision s of {x, y}, it follows that

V(x, y)P V(x, y)Q <- a(x, y)ll P Q II,
so that V belongs to the class 00:. Moreover, statement (4) holds.
see that (2) implies (4); the converse implication is evident.
Suppose that V is in 00:, a is a member of 00:+ such that

Thus we

V<x, y)P V(x, y)Q (x, yDII P Q

for each{x,y} ins X Sand {P,Q} inG X G, and 8+(). If {x,y} is
in S X S and {s} is an O-subdivision of {x, y} and P is in G then, again by
Lemma 1. l(ii),

II H. + v]P -[1 -}- V(x, y)]P II

--< {II’ [1 + a(si_, s)] 1 ’ a(s_, s)}ll p II;
now, it follows from Lemma 1.2 that if s is an 0-subdivision of {x, y} and is a
refinement of s and P is in G then

II Ht [1 + v]P- H [1 + v]P {H, [1 + ]- ILl1 + ]}II P I1,

Hence, by the completeness of {G, +, [I}, there is a function W defined by
the condition that W(x, y)P ,Hy [1 + v]P for each {x, y} in S X S and
P in G. Clearly W is 0-multiplicative and each value of W contains the
ordered pair {0,0} inG X G. If{z,y} is ins X Sand {P,Q} is inG X G



626 J.s. MAC NERNEY

then, since by Lemma 1.1(i)

for each e-subdivision s of {x, y}, it follows that

[W(x, y) 1IF [W(x, y) 1]Q

so that W belongs to the class to. Moreover, statement (4) holds. Thus
we see that (3) implies (4), which we know is equivalent to (2).

Suppose, now, that (2) is true. As we have seen in the first part of this
proof, there exists a member {a, u} of 8+ such that, for each P and Q in G and
Ix, y} in S X S, both the following hold"

[1 + V(x, y)]P [1 -+- y(x, y)]Q

W(x, y)P [1

Hence, by Lemma 1.2, if P is in G and {x, y} is in S X S and s is an t0-sub-
division of {x, y} then

II W(x, y)P l [1

and this implies (3). Theorem 1.1 is now proved.
There emerges from the preceding argument a fact which we record, for

convenient reference, as follows"

COROLLARY ]..]. If IV, W} is in then there is a member {a, } of 5+ such
that, .(or each {x, y} in S X S and P, Q} in G X G,

(1)

(2)

and (3)

COROLLARY 1.2. If V, W} is in and a, } is a member of 8+ as in Corollary
1.1 and c, P} is in S X G then, for each x in S and each to-subdivision {ts} of

II w(z, c)p P

Proof. Supposing {V, W}, {a, t}, {c, P}, x, and to be as indicated, we see
that

W(x, c)P P --’. V(t_l, t)W(t, c)P

E [W(t_l, c)P W(ti, c)P] V(ti_, t)W(t, c)P

’ [W(t_, t)W(t, c)P W(t, c)P- V(t_., t)W(t, c)P],

and therefore, by Corollary 1.1 (3),
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II W(x,, c)P P E V(tj_l, tj)W(tj, c)P I[
<--- E [tt(t’-I, tj) 1 o(tj_x, tj)]

[(t_, t) 1 a(t_, t)](t, c)] P

THEOnEM 1.2. If V, W} is in then the following are equivalent"
(1) For each {x, y} in S X S and P in G, W(x, y)W(y, x)P P.
(2) There is a function from S X S to the nonnegative real numbers such

that, for each {x, y} in S X S and P in G, 0 and

[1 + V(x, y)][1 + V(y, x)]P P (x, y)] P .
Proof. Suppose {V, W} is in and {a, } is a member of + as in Corollary

1.1. f (2) is true and {x, y} is in S X S and P is in G and {t} is an V-sub-
division of {x, y} then, by Lemma 1.3,

[1 + V(t_., t)] [1 + V(t+_, t_)]P- P

u(x, t_)(t_, t)u(t_, y)]] P

so that (1) is true. Suppose, now, that (1) is true and let y be the function
from S X S defined by

(x, ) [u(x, u) a (x, v)]u(u, x) + u(x, v)[u(v, ) 1 (, x)].

Clearly, if {x, y} is in S X S thenu y 0 and, for each P in G,
[1 + V(x, y)][1 + v(v, x)]P- P

[1 + V(x, )- W(x, u)][1 + V(y,x)]P

+ w(x, )[ + v(u, x)]P- W(x, v)W(y, x)P
which has norm not exceeding

[u(, )- -(, u)] [ + V(y, x)]P

+ u(x, ) [1 + v(u, )]P w(v, x)p If,,, thi i. t.r. does -or xd (x, V)l] P II, o that (Z) is true.

2. The first inteora] equation

denotes the class of all fimctions U from S to H such that dU belongs to
the class Oa (cf. [4, p. 155], and lso [7, p. 542]).

LMMA 2.1. If C is in S and W is in 0, then W( c) is in and there is a
member of+ such that, for each {x, y} in S X S and P in G,

W(c, ) W(c, )P (x,

Remark. For the purely linear case [4, Corollary 3.2, p. 154], the ltter
conclusion implies that W(c, is lso member of
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Indication of proof. Supposing c to be in S and W in (01)E, let tt be a member
of (0I+ such that, for each Ix, Yl in S X S and IP, Q1 in G X G,

II [W(x, y) 1]P [W(x, y) 1]Q -< [(x, y) 1] P Q

There are members a and/ of (9(t+ defined as follows"

(i) if Ix, y, c} is an V-subdivision of {x, c} then

a(x, y) t(x, c) t(Y, c) and fl(x, y) t(c, y) t(c, x),

(ii) if {x, c, y} is an O-subdivision of {x, y} then

a(x, y) t(x, c) 1 -- t(y, c) 1
and

fl(x, y) (c, x) 1 -t- t(c, y) 1,

and (iii) if c, x, y} is an V-subdivision of lc, y} then

a(x,y) =(y,c)--t(x,c) and (x,y) (c,y)-t(c,x).

If/P, Q} is in G X G then, for case (i),

[W(y, c) W(x, c)]P [W(y, c) W(x, c)Q

[1 W(x, y)]W(y, c)P [1 W(x, y)]W(y, c)Q

_< [(x, y) 1] W(y, c)P W(y, c)Q <- a(x, y)ll p Q
whereas

I1W(c, y)P W(c, x)P <_ t(c, Y)II P W(y, x)P <- (x, y)ll p

cases (ii) and (iii) are readily checked by similar calculation.
If u is a function from S to G, V is a function from S X S to H, and g is the

function defined on S X S by g(x, y) V(x, y)u(y), then

(R) V.u

for each {x, y} in S X S (see definition preceding Theorem 1.1; also, compare
[4, p. 155]). For eachlc, P} ins X G,

(i) if(c, P) denotes the class of all functions u from S to G such that
u(c) P and there is a member fl of (9(+ such that u(y) u(x) <- fl(x, y)
for each Ix, y} in S S (i.e., u is of bounded vriation on ech V-interval
of S),
nd (ii) ’(c, P) denotes the class of M1 functions u from S to G such that u
is the limit, uniformly on ech @-intervM of S, of n infinite sequence with
vlues in (c, P).

Remark. In cse {S, O} is the reM line with its usual ordering then, for
each {c, P} in S X G, ’(c, P) is the class of 11 functions u from S to G such
that, for each x in S, each of the limits u(x-) and u(x-t-) exists (i.e., u is
quasi-continuous) and u(c) P.
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LEMMA 2.2. If {C, P} is in S X G and u is in f’(c, P) then, for each V in
0(, there is a member w of f(c, O) such that

w x R V u for each x in S.

Indication of proof. Suppose {c, P} is in S X G, V is in (ga, and a is a
member of (9(+ such that, for each {x, y} in S X S and {P, Q} in G X G,

IV(x, y)P Y(x, y)Q < a(x, Y)I] p Q

If u is in if(c, P) and is a member of (ga+ such that du < , then, for
each {x, y} is S S such that {x, y, c} is an V-subdivision of {x, c} and each
V-subdivision t} of {x, y},

(R) Y. Y(x, )u() 1
l y(t_, t)(t)- y(t_, t)u()1

E v(t_, t)u(t) v(t_, t)u()l

a(t_, t)(t, y) (R) ,a.( c) a(x, y)(y, c);

it follows that, if s is an O-subdivision of {x, c} and is a refinement of s, then
(compare [4, Lemma 4.3, p. 156])

[ (R) V.u (R) V. [] (R) , .(, c) (R) .(, c);

since (R)f a.( c) exists then, by the completeness of G, +, }, the
right integral (R)f V-u also exists.

If, now, u is in if(c, P) and u is in ff’(c, P) and x is in S and m is a number
such that u(y) u(y) m for all y in S such that {x, y, c} is an V-sub-
division of {x, c} then, for each V-subdivision of {x, c},

[l ()Et .1- (R)E, y.:[I g (R)E, y.,- y.: g :(x, ).

Therefore, the integral (R)f V.u exists for each u in ’ (c, P) and each x in
S; the function w so defined is clearly a member of (c, 0).

LEMMA 2.3. If C, P} is in S G and u and u are in ’( c, P) then
(i) there is a member of a+ such that, for each x in S,

Ul() u(x) (x, c),

and (ii) for each such fl, if V is in Va and a is in Va+ and

V(x, y)Q V(x, y)Q a(x, y) Q Q

for each {x, y} in S X S and Q Q} in G X G then, for each x in S

(R) V.u (R) V.u (R) .( c).

Indication q( proof. For each x in S, let

(x, c) (c, x) L.U.B. u(y) u(y)
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for all y in S such that {x, y, c} is an 0-subdivision of {x, c}, and extend this
definition so that is a member of 0(+. Assertion (ii) is an immediate con-
sequence of relevant estimates on approximating sums.

THEOREM 2. If IV, W} is in and c, P} is in S X G and u is a function
from S to G, the following ae equivalent:

(1) u(x W(x, c )P for each x in S.
(2) u is in c, P) and u(x) P + R f: V. u for each x in S.
(3) If ho is in ’ (c, P) and h (n 1, 2, is defined by

h,.(x) P + R) V.h,-i

then the sequence h has limit u, uniformly on each V-interval of S.

for each x in S,

Indication of proof. By Corollary 1.2 and Lemma 2.1, (1) implies (2).
On the other hnd, by Lemma 2.2, (2) is equivalent to

(2’) uisin’(c,P) andu(x) P + (R)fV.uforeachxinS.
Now, letting K be the function from fit(c, P) into ff’(c, P) defined by

K[w](x) P -t- (R) V.w,

the last assertion of Lemma 2.3 has the form

K[ul](x) K[u2](x) <= (R) ,c);

moreover, fit (c, P).is closed with respect to the topology of uniform conver-
gence on each (0-interval of S. Therefore [6] there is only one member w of
if’ (c, P) such that K[w] w and it is the limit, uniformly on each )-interval

of S, of each infinite sequence h as indicated ia (3).

COROLLARY 2.1. If V is in 0 and W is a function from S X S each value
of which is a function from G into G then, in order that W be the member (V)
of 9, it is necessary and sucient that, for each {y, P} in S X G, W( y)P
be a member of ff (y, P) and, for each x in S,

W(x, y)P P + (R) V.W( y)P.

COROLLARY 2.2. If V, W} belongs to then there is an infinite sequence L
such that

(ii)
each value of L is a function from S X S to H,
if {x, y} is in S X S then Lo(x, y) 1 and for each P in G

y

L(x, y)P P + (R) V.L,-I( y)P (n 1,2,-..),
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and (iii) for each {a, y} in S X S and P in G, if x is in S then

L,(x, y) P--+ W(x, y)P as n--+ oo,

and the convergence is uniform over the set of all x such that a, x, y} is an -sub-.
division of {a, y}.

COnOLAnY 2.3. If V, W} is in and {a, } is a member of + as in Corol-
lary 1.1, and c is in S and P and Q are members of G, and u and u are members
of (c, P) and (c, Q) respectively, such that for each x in S

u(x) P + (R) V.u and u(x) Q + (R) V.u,

then, for each x in S, u(x) u(x) (x, c) P Q .
CoRoLhnV 2.4. Suppose V, W} is in and {a, } is a member of a+ as

in Corollary 1.1, {c, d} is in S S and Q is in G, and, for each x in S, fl is a
member of Oa+ such that

(c, d) ,(x, c) ,(x, d) or

=,(x,c)-- l+,(z,d)-- 1 or

,(x, d) ,(x, c),

according as c, d, x} is an -subdivision of c, x}, or c, x, d} is an -subdivision
of c, d}, or {x, c, d} is an V-subdiision of {x, d}. If u and u are members
of (c, Q) and (d, Q), respectively, such that for each x in S

d

V.m,

then, for each x in S, u(x) u(x) fl(c, d) Q .
Indication of proof. See the rgument for Lemm 2.1.

CorollaRy 2.5. Suppose {V, W} and {V, W} are members of , with
corresponding members {a } and {a } of + as in Corollary 1.1, and fl
is a member q( a+ such that for each {x, y} in S S and P in G

Y(x, y)P V(x, y)P (x, y)] P .
If [c, P} is in S G and u and u are members of (c, P) such that for each x
in S

(z) P + (R) . ad (z) P + (R) V.,

hen, for each z i S,
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Indication of proof. If ti} 3 is an O-subdivision of Ix, c} and P is in G then,
by an apparent extension of Lemma 1.2, we hve

l II [1 + V]P- H [1 + V]P

i (H- [1 + a(ti__, t)])fl(t-, ti)(H1%1 [1 + a(t_, t,)])l
Ej. v2(x, t_)(t_, t)m(t, c)]P ]
(, ) ,(, )..,( ) .

Remark. In cse 3 a a then the indicated left-right integrM is
simply (x, c) (, c);in any cse, we hve the estimate

. lhe second nerl
As indicated in ghe introduction, he heory of he second equagion men-

gioned here is subsumed in ghe resulgs of ghe preceding seegion. To see ghis,
we proceed as in our reahneng of he nonhomogeneous equations in he purely
linear ease [4, pp. 158-159].
We consider ghe seg G N G, wigh addition and norm defined by

{-P,, 2} + {Q1, Q2} {re + Q1, ])2 + Q2}, {rl, 2} 111 + l
For this complete normed group, we let Oa" and e" be the functional elasses
corresponding, respectively, to the classes ea and for the group
{(, +, II, and let a" be the corresponding mapping from Oa" onto
as given by the apparent analogue of fheorem 1.1.

If each of V1 and V is in Oa then there is a member V of 0a determined by
the eonditio that, for Ix, y} in S X S and P in G X G,

V(x, y)) {Vl(, y) + v(z, y)’, 0l;

moreover, if c is in S and u is in (c, P) and u is in (c, P) then

(R) V.u (R) V.u + (R) V.ue for x in

where u is the function {u u} from S to G G; hence, with these identifica-
tions, we see that the condition that, for ech z in S,

u(x) P. + R) V.u + V(x, c)P and u(x) P

is equivalent to the eoditio that, for eaeh x in S,

u(x) P+ (t) V.u.
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These considerations show that the following theorem is a reinterpretation
of Theorem 2; we desist from stating the corresponding reinterpretatios of the
corollaries.

THEOREM 3. Suppose c is in S, P is in G X G, and each of V1 and V2 is
in (9(; let V be the member of (9(" determined by the condition that

V(x, y)Q {Yl(X, y)ql + V2(x, y)q., 0}

for each {x, y} in S X S and Q in G X G, and let W be g"(V). If co is a func-
tion from S to G, the following are equivalent"

(1) {co(x), P} W(x, c)P for each x in S.
(2) co is a member of (c, P) such that, for each x in S,

co(x) P1 + (R) V.co + V.(x,c)P2.

(3) co is the limit, uniformly on each (9-interval of S, of each infinite sequence
h such that ho is in ’(c, P) and, for each positive integer n, h, is the function
from S to G defined by

h(x) P + (R) V.h- + V(z, c)P2 for each z in S.

d. epresentions of semirous
In this seegion, {S, r} denotes a canonically ordered semigroup [4, p. 164:

ft.], 0 is supposed go be the linear ordering of S determined by o-, is the func-
tion determined by he requirement [4, Theorem 8.1]

(x, (x, z)) z for each {x, z} in (9,

and e is the member of S with the property [4, Theorem 8.2] that if x is in S
then a(e, x) a(x, e) x.

Remark. There is an example, noticed by A. C. Mewborn (June 1962,
oral communication), which supplements earlier examples and which can
not be embedded in a group" S is the set to which x belongs only in case x is a
complex number and either Re x 0 and Im x >_ 0 or Re x > 0, and for each
{x,y} inSXS

za(x,y) x + y or z(x,y) (Rex) + y

according as Re y 0 or Re y > 0, respectively. In this case, as with Zl

and z2 [4, p. 166], where for each {x, y} in S X S

z(x,y) x + y and z.(x,y) x-t- (1-t- Rex)y,

the linear ordering (9 is the subset of S )< S to which {x, z} belotgs only in
case either Rex RezandImx <_ ImzorRex < Rez.

Returning to the present development, we easily find the following variation
of Theorem 8.3 of [4], and this leads (via Theorem 1.1) to the next theorem
(compare [4, Remark 3, p. 168]).
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LEMMA 4.1. If each of x, y, and c is in S then
(i) if si} is an O-subdivision of {x, y}, (r(c, si) is then an O-sub-

division of (r( c, x ), r( c, y) },
and (ii) if {ti}2 is an O-subdivision of {a(c, x), ((c, y)}, {6(c, ti)}2 is then an
e)-subdivision of {x, y}.

[HEOREM 4.1. If V, W} belongs to 5, lhe .following are equivalent"
(1) V(r(c, x), r(c, y) V(x, y) .for all x, y, and c in S.
(2) W(r(c, x), a(c, y) W(x, y) for all x, y, and c in S.

C denotes the class of all functions U from S to H such that there is a
member of 0+ such that, if {x, y} is in 0 and {P, Q} is in (; G,

[U((x, y)) 1]P [U(ti(x, y)) 1] Q __< [(x, y) 1] P Q

THEOREM 4.2. If the member W of is invariant with respect to r as in
Theore’m 4.1 (2), then

(1) W(e, is a member U of such that U(a)Ui(b) U((r(a, b))
fo"" each{a, b} in S X S,
and (2) W( e) is a member U. of e such that U(a)U:(b) U:(a(b, a)
.fo each a, b} in S X S.
Conversely, each such ordered pair [U1, U} determines such member W
of c%q as follows:

W(x, y) Gift(x, y)) if {x, y} is in O,

U.((y, x) if {y, x} is in O.

Indication of proof. In connection with the primary implication, it is useful
to otc that if {a, b} is in S S then

b t(a, a(a, b)) and a ti(b, a(b, a));

with respect to the converse implication, it may be noted that if each of tl

ad t is a member of 00re+ then there is a member of 0+ such that (x, y)
is (x, y) or (y, x), according as {x, y} is in or {y, x} is in 0. Verification
then presents no difficulties.

l}lZ and rc denote, respectively, the class of all functions U1 as in Theorem
4.2(1) and the class of all functions U as in Theorem 4.2(2); ( denotes the
class of all function,s F from S to H such that dF belongs to the class oa and
F(a) nt- E(b) F(((a, b) for each {a, b} ins X S (compare [4, p. 166]).

THEOREM 4.3. There is a reversible function from ( onto NZ such that
the .following are equivalent:

(1) IF, U} bel(ngs to (;1.
(2) U is in . an(! F is lhe .(unction from S to H defined by the condition

that F(x)P [U(/i) lIP for each [x, P} in S X G.
(3) F is in ( and U is the funclion flom S to H defined by the condition that

U(x)l’ l[x[1 + dF]P for each Ix, P} ins X G.
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Remark. In the purely linear case, if {F, U} is in 1 then U is a solution of
a certain left-integral equation (see [4, Theorem 9.3]).

THEOREM 4.4. There is a reversible function 2 from ( onto 9 such that
the following are equivalent:

(1) F, U} belongs to
(2) U is in and F is the function from S to H defined by the condition

that F(x)P e [1 U(5)]P for each {x, P} in S X G.
(3) F is in a and U is the function from S to H defined by the condition that

U x P xII [1 + dF]P for each x, P} in S X G.
(4) F is in ( and U is a function from S each value of which is a function

from G to G such that, for each P in G, U( )P is a member of (e, P) and, for
each x in S,

U(x)P P- (R) dF.U( )P.

Indication of proofs. The fully additive members of (O( which are invariant
with respect to a, as in Theorem 4.1 1 ), are of the form dF for F in a. The
mappings and arise as follows (see Theorem 4.2)" if F is in a and
W 5(dF) then I(F) W(e, and 3(F) W( e). The various
assertions are consequences of results from Sections 1 and 2.

THEOREM 4.5. If each of F1 and F is in (, and U 3(F1), and
U 2(F), then the following hold"

(1) In order that U(x)U(x) 1 for each x in S, it is necessary and suf-
ficient that there exist a function / from to the nonnegative real numbers such
that, for each {x, y} in and P in G, e"Xy 0 and

[1 -+- dF(x, y)][1 dF:(x, y)]P P - (x, y)ll P II.
(2) In order that U(x)Ul(x) 1 for each x in S, it is necessary and suf-

ficient that there exist a function y from to the nonnegative real numbers such
that, for each [x, y} in and P in G,’ 0 and

[1 dF(x, y)][1 - dF(x, y)]P P - (x, y)ll p

Indication q( proof. There is a member V of 9a such that

(i) V(x, y) dF(x, y) if {x, y} is in
(ii) V(x, y) dF(x, y) if ly, x} is in

and (iii) V is inriant with respect to a as in Theorem 4.1(1).

Now, if W (V) then U W(e, and U W( e). The result follows
from an argument which purallels that given for Theorem 1.2.

Remar]c. The result of Corollary 2.2 is available here, to give approximation
theorems for members of 1 and, in accordance with the result described
i Theorem 4.2.
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5. An example
Let /c be positive number. Let To be the function defied o the rel

line as follows"

To(x) 1/(1 x) if x_< 1 1/1,

lcq--l"(x-- 1 q- 1/lc,) if 1 1/1 <_ x.

Let Ti be the function defined on the real line as follows"

T(x) --lcq- (1 q- l)(xq- tan-lc) if x_< --tan-lc,
tanx if --tan-l_< x < tan

lc -t- (1 -t- /c)(x tan- It) if tan-lie _< x.

Note that T0 and T1 are, respectively, increasing functions from the real
line onto the positive numbers and onto the real line, and are solutions of the
nonlinear differential equations"

u’ inf(/c,u) and u’ inf (lc,u)-t- 1.

Let A0 and A1 denote the inverses of To and T, respeetively.
Now, let {S, z} be a semigroup such that S is a set of nonnegative real num-

bers which contains all nonnegative rational numbers and, for each {x, y} in
S X S, z(x, y) x -t- y, so that the linear ordering 0 determined by z is
the intersection of S S with the usual _< ordering of the real line. Let
the normed group {G, -t-, II1 be s follows. G is the set of all ordered pairs
{r, m] such that r is a real number and m 0 or m 1; addition is ordinary
addition in the first component and modulo-2 addition in the second; for each
{r, m} in G, {r, m} II- I+ m. Thus, l-, +} is he direct sum of the
additive group of real numbers and a group of order two.

It can be shown that a function F, from S to H, belongs to ( only in ease
there exists a positive number b and a function h from G to the set of real
numbers such that h(0, 0) 0 and

(i) F(x){r, m} {xh(r, m), 0} for each x in S and/r, m} in G,
and (ii) for each r, m} and s, n} in G,

h(r, m) h(s,

Moreover, for such an F (and b and h), we have the formulas

[1 -t- F(x)](1 F(x)]{r, n} [1 -F F(x)]{r xh(r, n), n}

{r xh(r, n) -t- xh(r xh(r, n), n), n},
so that

[1 -t- F(x)][1 F(x)]{r, n} {r, n}

<_ xb {r xh(r, n), n} {r, n}
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and, similarly,

[1 F(x)][1 -{- F(x)]{r, n} {r, n} - x2b211{r, n} x2b2(I r + n);

therefore the conditions contemplated in Theorem 4.5 (with F1 F) are
automatically satisfied in the present setting.
Now, for the example, let h(r, n) -[inf (/c, r) - n]; the function F,

as in (i) of the preceding paragraph, belongs to ( (indeed, we may take b as
sup (2k, 1) ). The function U2 82(F) (as in Theorem 4.4) is readily found
to be given by the following formulas:

U(x)lr, 0} I-To(Ao(--r) x), 0} or {T0(A0(r) + x), 0}

according as r < 0 or r > O, with U:(x){O, O} {0, 0}, and

U:(x){r, 1} TI(AI(r) -- x), 1}.

The function U1 81(F) (as in Theorem 4.3) is found by Theorem 4.5 and
the last observation of the preceding paragraph; for instance,

Ul(X)lr 1} {TI(AI(r) x), 1}.

Finally, the function W, determined on S X S by

W(x,y) UI(y- x) if 0_ x_ y,

U2(x-- y) if 0_< y < x,

is seen, by Theorem 4.2, to be the member 8(dF) of the class 0E.

Remark. It should be pointed out that, in this example, there is exhibited
a method of analyzing the integral equation 1 for the case that the function
V satisfies all the conditions of membership in the class (9a except that
V(x, y)O 0 for some {x, y} in S X S. Namely, one considers the direct
sum G’ of the group G and the group of order two mentioned here, and in this
context defines for each {x, y} in S X S

V’(x, y){P, m} {V(x, y)P V(x, y)O A- mV(x, y)O, 0}.

if there exists a member of (ga+ such that, if {x, y} is in S X S,

y<x, y)O I1 <_ y),

then it is easy to see that V’ does belong to the corresponding class 0a’ for
this enlarged group; subsequent procedures can parallel those of Section 3.
Thus, one sees some point in the generality obtained by imposing only a group
structure, rather than a vector space structure, on G in the initial development.
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