A NONLINEAR INTEGRAL OPERATION!

BY
J. S. Mac NERNEY

In an earlier paper [4], there was developed a fundamental correspondence
between certain additive and multiplicative integration processes, where the
integration is directed along intervals in some linearly ordered system, and
where the functions involved have their values in a complete normed ring.
That development led to an analysis of linear integral equations of the form

(1) u(z) = P+ (R) f: V-u,

where the right integral is the limit, through successive refinement of sub-
divisions, of sums of the form D1 V(tiy, t:;)u(ts) [4, p. 155]. This analysis,
of the linear case, required only locally bounded variation of the functions
involved, thus obviating additional continuity hypotheses of earlier treat-
ments [9], [2], [3], [1] of similar systems. These interrelated treatments are
summarized in [4, Sec. 10] (also in [5]).

Now we present an extension to a nonlinear situation of the aforementioned
fundamental correspondence. This extension leads us to a characterization
of solutions u of equations of the form (1), where the linearity hypothesis on
the values V(z, y) (of the function V') is replaced by a Lipschitz-type con-
dition. Such a condition, in connection with integrals of the type contem-
plated here, seems first to have been investigated by J. W. Neuberger [7, p.
542 ff.].  Our results overlap those of Neuberger only in case the underlying
system is a linear continuum and all of the functions involved are subjected
to additional hypotheses of continuity (see [7, Theorems ¥ and GJ).

Throughout this paper, it is to be supposed that S denotes some non-
degenerate set, with linear (<) ordering 0; {G, +, || ||} denotes a complete
normed Abelian group, with zero element 0; and H denotes the class of all
functions from G to G to which {0, 0} belongs, with identity function 1.
As in [4], we let ©@" denote the class of all 0-additive functions from S X S
to the set of nonnegative real numbers, and 09" denote the class of all
O-multiplicative functions from S X S to the set of real numbers not less than
1. It should be recalled [4, Theorems 2.2 and 4.3] that there is a reversible
function &' to which the ordered pair {, u} belongs only in case one of the
following holds:

(a) aisin 0@" and u(z, y) = J][1 + o for all {z, y} in 8 X S.
(b) pisin oM™ and a(z, y) = .2 '[x — 1] for all {z, y} in S X S.
(¢) {a, p}isin 0@" X oot and, for each {z, y} in 8 X S,
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wlz,y) =1+ (R) f:a-u( YD

The integral equation (1) is to be considered in connection with the class
0@, consisting of all functions V from S X S to H such that

(i) V is 0-additive in the sense that, for each {z, 2z} in S X S and P
in @, if {x, y, 2} is an O-subdivision of {z, z} then
Viz, y)P + V(y, 2)P = V(z, 2)P,
and (ii) there is a member a of ©@" such that if {z, y} is in S X S and
{P, Q} is in G X @ then

It is found that there is a reversible function &, from the class 0@ onto a
corresponding class 091, such that a member {V, W} of & provides a solution
of (1) in the form w(z) = W(x, ¢)P. Thus, analysis of & furnishes infor-
mation about global behavior of solutions of the nonlinear integral equation.
The linear case persists, of course, with those members of 0@ having their
values in the ring of endomorphisms of the group {¢/, +}. As in [4, Sec. 5],
it is shown that the theory of the seemingly more general equation

(2) u(x) = P+ (R) /c Viu+ V2(x, C)P2

is subsumed in this treatment. There is also a representation theory for
canonically ordered semigroups [4, p. 164], and there is an example related to
the defining differential equation of the tangent function.
1. Extension of the fundamental correspondence
09 denotes the class of all functions W from S X S to H such that

(1) W is O-multiplicative in the sense that, for each {z, 2} in S X S
and P in G, if {z, y, 2} is an O-subdivision of {z, z} then

W(xy y)W(y7 2)1) = W(CL’, Z)Pa

and (ii) there is a member u of ©M* such that if {z, y} is in S X S and
{P, @} isin G X @ then

W (x, y) — 1P — [W(z,y) — URIl < [z, y) — P — Q.

Remark. It can be shown (but the sequel does not require it) that, as in
the purely linear case [4, Lemma 3.2], the latter condition (ii) is equivalent
to the condition that, for each [z, y} in S X S, there exists a number b such
that if {#;}¢ is an O-subdivision of {z, y} and {P, @} is in G X G then

W G,y 1) — 1P — W (s, &) — 1R S bIIP — Q.
A similar result holds with respect to ©@ (compare [4, Lemma 3.1]).
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Three lemmas, involving sequences of functions from @ to @, will be con-
venient for the sequel. As in [4], we adopt the notational convention that
H{” A; always means the “left-to-right”’ continued product 4;- - - 4, and that
each of [J14, and [] 1 A: denotes 1.

Lemma 1.1, If {A}{ s o sequence with values in H and {a:}{ is a numerical
sequence such that, for each {P, Q} in G X Gandi =1, --- | m,

I(4i = DP — (4 = DQ| < (a: = V| P — @,
then, for each {P, Q} in G X G,
@ L4 = )P — (114 — 1|l < (ITtes — DIP — Q1
and
) LA —np =204 — 0P || < (e — 1 = 220ec— 1D P .
Proof. Noting that, for each P in G,
(It = )P = qIi4)P — P = 2ia(4; — 1) (I 40P,
we see that if each of P and @ is in G then
ITr4: = P — (I1r4: = DR
< 2l = DT A)P — (4; — DT 4)Q||
< 2ile; — V|| (I 40P — (I3 49)Q ||
< 2iale = D(ne)| P —@ll = (IIfas — DI P — Q]
which establishes assertion (i). Using (i) we have, for each P in G,
I(ITr4: = P — 22814 = 1P|
< 2ll4; = (AT 40P — (45 — DP||
< 2ia(e — V|| (T 40P — P
< ID=e = DITHai = D Pl = (e — 1 = 2 3ac— 1] P I

Lemma 1.2. If each of {A:}1 and {B}1 is a sequence with values in H, and
each of {a}7 and {b}1 is a numerical sequence such that for each {P, Q} in
GXGandi=1, - n

l4:P — A:Q|| Sa:| P—QI, [B:P[ <[P,
and || B;P — A; P || < (bs — as)|| P ||, then for each P in G
|IrB)P — (ITr4)P|l < (ITib: — ITia)| P II.
Proof. If {P, @} isin G X @ then
|B1Q — AP || = ||(By — 41)Q + 4:1Q — A, P ||
S —a)|Ql +all@—P;
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hence a simple induection yields, for each {P, @} in G X G,

|IB)Q — ([Tr4)P || < ([Irbs — TTra)| @1l + ([Trad)l @ — P ||

LemMa 1.3. If each of {A:}1 and {Bi}i is a sequence with values in H and
each of {a:}r, (b1 and {c}1 is numerical sequence such that, for each {P, @}
mGE X Gandi =1, -+ n,

[4:iP — A;Q|| S a:|P—Ql, B:P| <b:|| P,
and || A; B;P — P || < ¢; || P ||, then for each P in G

[I24:) {IiBr-i)P — P < 2Z5a(TTi ae)e; (T nsoms baraa) | P[]
Proof. TFor each P in G, we have

| Tr4a) (I Buai)P — P
= [ 2201 4) Ty BunedP — 23T 4D T v Basid)P ||
< 2T el 45 B;(TT%o-i By — (I 4o Burio) P ||
< 2T as)es (T mvo—s bugai) | P l.

Concerning the conttnuously continued sum and continuously continued
product indicated in the following theorem, this definition is used (compare
[4, p. 150]): if ¢ is a function from S X S to G and A is a function from
S X Sto H and {z, y} isin S X S and P is in G, then

(i) »>_"g denotes a member P; of @ with the property that, for each
positive number ¢, there is an 0-subdivision s of {z, y} such that if {¢;}¢ is a
refinement of s then || Py — >-:g]| < ¢, where >, g denotes the continued
sum (in @)

209, ) = gllo, ) + - 4 gltaer, o),

and (ii) .]J"[h]P denotes a member P; of ( with the property that, for each
positive number ¢, there is an O-subdivision s of {x, ¥} such that if {¢;}¢ is a
refinement of s then H Py — []. WP H < ¢, where [], [h]P denotes the image
of P under the continued product (functional composite)

I3 A(tia, t) = B(to, &) <+ Aty , ta).

TaroreM 1.1. There is a reversible function & from O0G onlo O such thal
the following are equivalent:

(1) {V, W} belongs to &.

(2) Wisin 0 and V 1s the function defined by the condition thal, for each
{z,y} in S X Sand Pin G, V(z,y)P = .2 " [W — 1]P.

(8) Visin 0G and W is the function defined by the condition that, for each
{x,y} in 8 X Sand Pin G, W(z, )P’ = . J['11 + V]P.

(4) {V, W} isin 0@ X 0 and there is a member {o, u} of & such that,
for each {x, y} in S X S and P in G,

[ W, )P =P = V()P || < u(z,y) —1— alz,y)] | P
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Proof. Suppose W is in 091, u is a member of 09+ such that
I W (2,y) — 1P — [W(z,y) — UQ | < [ulz,y) = 1] || P — Q|
for each {z, y} in 8 X Sand {P,Q} in G X @, and u = & (a). If {z,y} is in
;(Sii>)< S and {s;}¢ is an 0-subdivision of {x, y} and P is in G then, by Lemma 1.1
| W (2, y) — 1P — 22, (W — 1P|
= H [H1n W(siz1,8:) — l]P — Z{' [W(siz1, 8:) — DIP H
< {IIT w(sion, s0) — 1 — 220 [w(sia, ) — DI P |l;

it follows directly that if s is an O-subdivision of {z, y} and ¢ is a refinement of
s and P is in ¢ then

| W — 1P — 2 W — 1P| < { Dol — 11— il — 1} P I

Hence, by the completeness of {G, +, || ||}, there is a function V defined by

the condition that V(z, y)P = ). [W — 1]P for each {z, y} in S X S and

P in @G. Clearly V is 0-additive and each value of V contains the ordered

pair {0,0} in G X G. If {z, y} isin S X Sand {P, @} isin G X G then, since
| 220 — 1P — 25, W — Q| < 2w — Ul P - Q|

for each O©-subdivision s of {x, y}, it follows that

|V, )P = V(z, Q| < az, I P — Q|

so that V belongs to the class ©G. Moreover, statement (4) holds. Thus we
see that (2) implies (4); the converse implication is evident.
Suppose that V is in 0@, o is a member of ©@* such that

[V, )P — V(z, Q|| < alz, I P — Q]

for each {z, ¥} in S X Sand {P, Q} in G X G, and p = & (a). If {z, y} is
in 8 X Sand {s;}¢ is an O-subdivision of {z, y} and P is in G then, again by
Lemma 1.1(ii),

[TL0 4+ VIP — [1 + V(z, 1P|
= | IF 1 + V(sia, s)] — DP — 37 V(sia, s)P||
ST + alsin, 8] = 1= 220 a(sia, s}l P15

now, it follows from Lemma 1.2 that if s is an ©-subdivision of {z, y} and ¢ is a
refinement of s and P is in G then

[ TL.00 4+ viP = TL.0 + viP || < {IT:11 + of — TLIL + a1} P .

Hence, by the completeness of {G, 4, || ||}, there is a function W defined by
the condition that W(z, y)P = ,][*[1 + V]P for each {x, y} in S X S and
P in . Clearly W is ©0-multiplicative and each value of W contains the
ordered pair {0, 0} in G X G. If {z,y} isin S X Sand {P,Q}isin @ X G
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then, since by Lemma, 1.1(i)
I AL+ V1= 1D)P— JLit+ V1= 1)Q| < AL+l ~ 1) P~ Q|
for each O-subdivision s of {z, y}, it follows that

W (e, y) — 1UP — [W(z,y) — UQ| < [ul,y) — U|P — Q]

so that W belongs to the class 99%. Moreover, statement (4) holds. Thus
we see that (3) implies (4), which we know is equivalent to (2).

Suppose, now, that (2) is true. As we have seen in the first part of this
proof, there exists a member {a, u} of &" such that, for each P and Q in G and
{z, y} in S X 8, both the following hold:

14+ Ve, P =14+ V(z,Ql <1+ alz, ]| P — Q|

Hence, by Lemma 1.2, if P is in ¢ and {z, y} is in S X S and s is an O-sub-
division of {x, y} then

| Wz, )P — TL11 + VIP|| < {u(z,y) — L. (1 +ol}| P |,

and this implies (3). Theorem 1.1 is now proved.
There emerges from the preceding argument a fact which we record, for
convenient reference, as follows:

CoroLrary 1.1. If {V, W) is in & then there is a member {a, u} of & such
that, for each {z, y} in S X S and {P, Q} in G X G,

2) W, y) = 1P — W(x,y) — Q|| < [w,y) — 1| P — Q|

CoROLLARY 1.2. If{V, W} isin &and {a, u} is a member of & as in Corollary
1.1 and {¢, P} is in S X @ then, for each x in S and each O-subdivision {i;}¢ of
{z, ¢},

| Wa, P — P — 20Vt )W (L, )P ||
< Hwlm,e) — 1 — 20 altia, tiu(t, ¢) | Pl

Proof. Supposing {V, W}, {a, u}, {c, P}, x, and ¢ to be as indicated, we see
that

W(z, )P — P — 2.1 V(tj, t;))W(t;, c)P

= 20 Wi, )P — WL, )P — 220 Vit , t)W (L, ¢)P

= D Wi, )Wty c)P — W(ty, )P — V(ti, t;))W(ls, ¢) P,
and therefore, by Corollary 1.1(3),
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| Wz, e)P — P — 320 V(ts, t)W(ts, 0)P |
< 2, ) — 1 — a(tia, )] || W, 0P ||
< 2wty &) — 1 — a(tion, t)lu(t, o) P .

TrroreM 1.2. If {V, W} is in & then the following are equivalent:

(1) Foreach {z,y} in S X Sand P in G, W(x, y)W(y, )P = P.

(2) There is a function v from S X S to the nonnegative real numbers such
that, for each {z,y} in 8 X Sand Pin @, ,2.' v = 0 and

114+ V(z, I+ V(y, 2)IP — P < vz, )| P

Proof. Suppose {V, W} isin & and {a, u} is a member of &' as in Corollary
1.1. If (2) is true and {z, y} isin S X S and P is in G and {¢;}¢ is an ©-sub-
division of {z, y} then, by Lemma 1.3,

H T + Ve, tDIIE L + V({tayaei, tai)]P — P ||
< ZJ,'L=1 M((I), tj—-l)')'(tf—l ) tf)l‘(ti—l ’ y)“ P ”
< w(z, y)uy, ) 2] | P,

so that (1) is true. Suppose, now, that (1) is true and let v be the function
from S X S defined by
v(@, y) = [u@, y) — 1 — al@, Yy, 2) + u@, Yy, 2) — 1 — a(y, 2)].
Clearly, if {x, y} isin 8 X S then ,» Y ¥ = 0 and, for each P in G,
[0+ V(z, Il + V(y,2)IP — P
=[1+ V(x,y) — W(z, Il + V(y, )P

+ Wz, yll + V(y, ©)IP — W(z, y)W(y, )P
which has norm not exceeding
[w(z, y) — 1 — a(z, Y] |1 + V(y, 2)IP |

+ wlx, I+ V(y, DIP — W(y, 2)P |,

and this in turn does not exceed y(z, ¥)|| P ||, so that (2) is true.

2. The first integral equation

O® denotes the class of all functions U from S to H such that dU belongs to
the class 0@ (cf. [4, p. 155], and also [7, p. 542]).

LemMa 2.1, Ifcisin S and W is in ON, then W( |, ¢) is in O® and thereisa
member B of OQ" such that, for each {z, y} in S X S and P in G,

Remark. Tor the purely linear case [4, Corollary 3.2, p. 154], the latter
conclusion implies that W (e, ) is also a member of O®.



628 J. 8. MAC NERNEY

Indication of proof. Supposing ¢ to be in S and W in 091, let u be a member
of 09" such that, for each {2, ¥} in § X Sand {P,Q} in G X G,

W (z,y) — 1P — [W(2,y) — UQ| < [wz,y) — 1P — Q.
There are members o and 8 of ©@" defined as follows:
(1) if {=, y, ¢} is an O-subdivision of {z, ¢} then

a(z, y) = u(@, ¢) — w(y, ¢) and Bz, y) = wlc, y) — u(c z),
(i) if {z, ¢, y} is an O-subdivision of {x, y} then

a(x’ y) = :U'(x7 C) — 1+ IJ«(yy C) -1
and

,3(.’13, y) = IJ'(Cy .’,C) -1+ ,U,(C, y) -1,
and (iii) if {¢, «, y} is an O-subdivision of {c, y} then

a(z,y) = u(y, ¢) — u(z,¢) and B(z,y) = (e, y) — ule, ).
If {P, @} isin ¢ X G then, for case (i),
Wy, ¢) = Wz, e)IP — [W(y, c) — W(z, )@ ||
= [t = W(z, IW(y, e)P — [1 — W(=z, NIV (y, c)Q |

< [w(z,y) — 1| W(y, 0P — W(y,e)Q || < alzx, Y| P — Q|
whereas

| W(e, )P — W(c,2)P || < u(e,y)| P — W(y,2)P | < B8z, y)| P;

cases (il) and (iii) are readily checked by similar calculation.
If u is a function from S to G, V is a function from S X S to H, and ¢ is the
function defined on S X S by g(z, y) = V(z, y)u(y), then

®) [ V=3

for each {z, y} in S X 8 (see definition preceding Theorem 1.1; also, compare
[4, p. 155}). For each {c, P} in 8 X @,

(1) F(c, P) denotes the class of all functions u from S to ¢ such that
u(c) = P and there is a member 8 of 0@" such that || u(y) — u(z) || < 8(x,y)
for each {z, y} in 8 X S (i.e., u is of bounded variation on each ©-interval
of S),
and (ii) (¢, P) denotes the class of all functions  from S to G such that u
is the limit, uniformly on each ©-interval of S, of an infinite sequence with
values in F(c, P).

Remark. In case {S, 0} is the real line with its usual ordering then, for
each {c, P} in 8 X @, ¥ (¢, P) is the class of all functions u from S to G such
that, for each z in S, each of the limits u(x—) and u(x+) exists (i.e., v is
quasi-continuous) and u(c) = P.
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Lemma 2.2. If {¢c, P} isin S X G and u is in §' (¢, P) then, for each V in
OQ, there is a member w of F(c, 0) such that

w(z) = (R) f;V-u for each x in S.

Indication of proof. Suppose {¢, P} isin 8 X G, V isin 0@, and « is a
member of 0@" such that, for each {z, y} in 8 X S and {P, Q} in G X G,
| Ve, )P — V(z, Q|| < a(x, )| P — Q||

If u is in §(¢, P) and B is a member of 0@" such that || du | < 8, then, for
each {z, y} is S X S such that {z, y, ¢} is an ©-subdivision of {x, ¢} and each
O-subdivision {¢;}¢ of {z, y},

I (R) 220V u — V(z, y)uly) ||
= || 228 V(tir, t)u(ts) — 220 V(b to)u(y) |
< 220 Vit t)u(ts) — V(t, tuly) |
< 20 altin, Bt y) = (R) 2 B(, ¢) — alx, y)B(y, c);

it follows that, if s is an 0-subdivision of {z, ¢} and ¢ is a refinement of s, then
(compare [4, Lemma 4.3, p. 156])

| (R) 2 Vu — (R, Voul| £ (R)2iaB(,e) — (R) D .aB( , o)

since (R)[°a-B( , ¢) exists then, by the completeness of {@, +, || [}, the
right integral (R) [, V-u also exists.

If, now, u; is in (¢, P) and w2 is in §’(¢, P) and z is in S and m is a number
such that || ui(y) — u(y) || < m for all y in S such that {x, y, ¢} is an 0-sub-
division of {z, ¢} then, for each ©-subdivision ¢ of {z, ¢},

()X Ve — R Vel < R)Z N Vow — Vew || < alz, y)m.

Therefore, the integral (R)fi V -u exists for each u in (¢, P) and each x in
S; the function w so defined is clearly a member of F(c, 0).

Lemma 2.3. If {c, P} isin S X G and u; and uz are in §' (¢, P) then
(i) there is a member 8 of OQ" such that, for each x in S,

| w(x) — us(z) || < B(z, ¢),

and (ii)  for each such B, if V is in 0@ and o is in OQ" and

I V(2,1 — Vi, Q|| < alz, y)|| @ — Q]
for each {x, y} in 8 X S and {Q:, Q:} in G X G then, for each x in S
®) [ Vow— ®) [ V| < ®) [ sl 0.
Indicatron of proof. Tor each z in S, let

B(z, ¢) = B(c, ) = LUB. || wa(y) — ua(y) ||
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for all  in S such that {z, y, ¢} is an ©-subdivision of {z, ¢}, and extend this
definition so that § is a member of ©@*. Assertion (ii) is an immediate con-
sequence of relevant estimates on approximating sums.

TaeoREM 2. If {V, W} isin & and {c, P} s in S X G and u s a function
from S to G, the following are equivalent:

(1) wu(zx) = W(x, ¢)P for each x in S.

(2) wisinF(c, P) and u(z) = P + (R)[: V-u for each x in 8.

(3) IfhoisinF (¢, P)and h, (n = 1,2, --+) is defined by

ha(z) = P + (R)f Vhus for each @ in S,

then the sequence h has limit u, uniformly on each O-interval of S.

Indication of proof. By Corollary 1.2 and Lemma 2.1, (1) implies (2).
On the other hand, by Lemma 2.2, (2) is equivalent to

(2") wisin ¥ (¢, P) and u(z) = P + (R)f: V -u for each z in S.
Now, letting K be the function from §'(¢, P) into §'(¢, P) defined by

Klul(z) = P+ (R) [ Vow,
the last assertion of Lemma 2.3 has the form

| Klul(e) — Klul(a) | < (B) [ ()

moreover, 5 (c, P) is closed with respect to the topology of uniform conver-
gence on each O-interval of S. Therefore [6] there is only one member w of
F'(¢, P) such that K[w] = w and it is the limit, uniformly on each ©-interval
of S, of each infinite sequence h as indicated in (3).

CoroLLARY 2.1. If V isin 0@ and W is a function from S X S each value
of which is a function from G into G then, in order that W be the member &(V')
of O, 1t is mecessary and sufficient that, for each {y, P} in S X G, W( , y)P
be a member of F(y, P) and, for each x in S,

y
Wz P =P+ (B) [ V-W(,yP.
CoroLLARY 2.2. If {V, W} belongs to & then there is an infinite sequence L
such that
(1) each value of L is a function from S X S to H,
(it) of {x, y} isn S X S then Lo(z, y) = 1 and for each P in G

Ln(z,y)P = P + <R>f: VLoa( , )P (n=1,2-),
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and (iil) for each {a, y} in S X S and P in G, if x is in S then
Lu(z,y) P— W(x,y)P as n— o,

and the convergence is uniform over the set of all x such that {a, x, y} is an O-sub-
division of {a, y}.

CoroLLARY 2.3. If {V, W} isin & and {a, u} is a member of & as in Corol-
lary 1.1, and ¢ zs in S and P and Q are members of G, and u, and us are members
of F(c, P) and (¢, Q) respectively, such that for each x in S

w(z) = P+ (R) ch-ul and u(x) = Q + (R) fc Veou,

then, for each x in S, || ur(zx) — us(z) || < p(x, )| P — Q.

COROLLARY 2.4. Suppose {V, W} is in & and {a, u} is a member of OQ" as
in Corollary 1.1, {c, d} isin S X S and Q is in G, and, for each x in S, B, is a
member of OQT such that

Bs(c, d) = u(z, ¢) — u(z, d) or
= u(x,¢c) — 1+ plz,d) — 1 or
= ,u,(.’l), d) - l"’(xy C),

according as {c, d, x} is an O-subdivision of {c, x}, or {c, x, d} ©s an O-subdivision
of {¢c, d}, or {z, ¢, d} is an O-subdivision of {z, d}. If uz and uz are members
of 5(c, Q) and F(d, Q), respectively, such that for each x in S

w(@) = Q@+ (R) fVu wnd @) = Q+ (B) [ Vo,

then, for each x in S, || us(z) — us(z) || < B:(c, )| Q |.
Indication of proof. See the argument for Lemma 2.1.

CoroLLARY 2.5. Suppose {Vi, Wi} and {Vs, Ws} are members of &, with
corresponding members {ou , w1} and {as, us} of & as in Corollary 1.1, and 8
is a member of ©Q" such that for each {z, y} in S X S and P in G

| Vi(z, y)P — Valz, )P || < B(, )| P .

If {¢, P} is in S X G and uy and uy are members of F(c, P) such that for each x
m S

() = P+ (B) [ Viw and w(e) = P+ (B) [ Vo,

then, for each x in S,

) = we) | < (5 R) [z, )ogml e | P
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Indication of proof. 1If {t;}¢ is an O-subdivision of {x, ¢} and P is in @ then,
by an apparent extension of Lemma 1.2, we have
[TL.00+ vigp — IL0 + valP |
= [ (T 1t + Viltia, t)DP — (TT8 11 + Valtica, t))P ||
< 20 (I + aa(ti, DB, ) AT L + ar(tis, )] P
< 2w, Ga)B(ti, t)m(ly, o) Pl
(L, R) 2w, )-B-ml , o) Pl

Remark. In case 8 = a1 — ap then the indicated left-right integral is
simply pi(x, ¢) — wpe(x, ¢); in any case, we have the estimate

Il

(L B) [, )-Boin(0) < pula, (i, )8, o).

3. The second integral equation

As indicated in the introduction, the theory of the second equation men-
tioned there is subsumed in the results of the preceding section. To see this,
we proceed as in our treatment of the nonhomogeneous equations in the purely
linear case [4, pp. 158-159].

We consider the set G X (7, with addition and norm defined by

(PP} 4 (Q, Q) = (Pr+Qu, P+ @, (PP} = | P 4] Pl

TFor this complete normed group, we let 0@” and ©9” be the functional classes
corresponding, respectively, to the classes 0@ and 09 for the group
{G, +, 1| ||}, and let &” be the corresponding mapping from 0@” onto ©M”
as given by the apparent analogue of Theorem 1.1.

If each of V;and Vyis in 0@ then there is a member V of 9@” determined by
the condition that, for {z, y} in S X Sand Pin (¢ X G,

Viz, y)P = {Vi(z, y)Pr + Va(z, y) P2, O};
moreover, if ¢ is in S and u, is in F(¢, P1) and us is in F(¢, Py) then

(R)f: Veu = {(R) f View + (R) f Vg-uz,o} for z in S,

where u is the function {u; , 2} from S to (¢ X (; hence, with these identifica-
tions, we sce that the condition that, for each x in S,

wlx) = Py + (R)[ Viewg + Volz, )Py and wus(x) = Py
is equivalent to the condition that, for each z in S,

w(z) = P+ (R) fc V-u.



A NONLINEAR INTEGRAL OPERATION 633

These considerations show that the following theorem is a reinterpretation
of Theorem 2; we desist from stating the corresponding reinterpretations of the
corollaries.

TuroreEM 3. Suppose ¢ is in S, P is in G X G, and each of V; and Vy is
m OQ; let V be the member of ©Q” determined by the condition that

V(z, 1)Q = {Vi(z, y)Q1 + Vu(z, y)Q2, 0}

for each {x, y} in S X Sand Qin G X G, and let W be 8”(V). If wis a func-
tion from S to G, the following are equivalent:

(1) A{w(z), Py} = W(z, c)P for each x in S.

(2)  wis a member of F(c, P1) such that, for each x in S,

(@) = P+ (R) j Vi-o + Va(s, )P

(3)  w 1is the limit, uniformly on each O-interval of S, of each infinite sequence
h such that ho s in F' (¢, P1) and, for each positive integer n, h, is the function
from 8 to G defined by

ha(e) = Prt (B) [ Vichu + Vi, o) P Jor each z in .

4. Representations of semigroups

In this section, {S, ¢} denotes a canonically ordered semigroup [4, p. 164
ff.], © is supposed to be the linear ordering of S determined by o, § is the func-
tion determined by the requirement [4, Theorem 8.1]

o(z, 8(x,2)) = 2 for each {z, z} in 0

and e is the member of S with the property [4, Theorem 8.2] that if z is in S
then o(e, 2) = o(x, €) = .

Remark. There is an example, noticed by A. C. Mewborn (June 1962,
oral communication), which supplements earlier examples and which can
not be embedded in a group: S is the set to which z belongs only in case z is a
complex number and either Re z = 0 and Im & > 0 or Re z > 0, and for each
{x,y} In S X 8§

os(z,y) =x+y or o(z,y) = (Rezx) +y
according as Re y = 0 or Re y > 0, respectively. In this case, as with oy
and o3 [4, p. 166], where for each {z, y} in S X S
oz, y) =z +y and os(z,y) =z + (1 + Rex)y,

the linear ordering O is the subset of S X S to which {z, z} belongs only in
case either Rex = Rezand Im 2 < Imzor Rez < Rez.

Returning to the present development, we easily find the following variation
of Theorem 8.3 of [4], and this leads (via Theorem 1.1) to the next theorem
(compare [4, Remark 3, p. 168]).
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Lemma 4.1. If each of z, y, and ¢ is in S then
(1) o {si}o s an O-subdivision of {x, y}, {o(c, s:)}o is then an O-sub-
division of {a(c, x), o(c, y)},
and (1) < {t:}o is an O-subdivision of {a(c, ), a(c, y)}, {8(c, t:)}o is then an
O-subdivision of {x, y}.

TuvoreMm 4.1. If {V, W} belongs to &, the following are equivalent:
(1) Viele, x), ae, y)) = V(x,y) forall z,y, and ¢ in S.
(2) W(a(e, ), 0(c,y)) = W(x, y) for all z, y, and ¢ in S.

@, denotes the class of all functions U from S to H such that there is a
member u of O " such that, if {2, y} isin © and {P, Q} isin ¢ X G,

UGz, ) — 1P — [UG(z, ) — Q| < [u(z,y) —1]P — Q.

TaHEOREM 4.2. If the member W of O is tnvariant with respect to o as in
Theorem 4.1(2), then

(1) W(e, ) isa member Uy of @, such that Ui(a)U(b) = Ui(o(a, b))

for each {a, b} in S X S,
and (2) W( ,e) is a member Us of @, such that Us(a)Us(b) = Us(a(b, a))
for each {a, b} in S X S.
Conversely, each such ordered pair {U,, U,} determines such a member W
of O as follows:

Wz, y)

Il

Ul(s(xa y)) 'Lf {xy Z/} s in 07
= Ux(8(y, x)) if {y,x} dsn 0.

Indication of proof. In connection with the primary implication, it is useful
to note that if {a, b} is in S X S then

b = d(a,a(a, b)) and a = 5(b, a(b, a));

with respect to the converse implication, it may be noted that if each of u;
and . is a member of O™ then there is a member u of OM " such that u(z, y)
is wi(x, y) or we(y, x), according as {z, y} isin O or {y, z} isin ©. Verification
then presents no difficulties.

91, and M denote, respectively, the class of all functions U; as in Theorem
4.2(1) and the class of all functions U, as in Theorem 4.2(2); @, denotes the
class of all functions F from S to H such that dF belongs to the class 0@ and
F(a) + F(b) = F(o(a,b)) for each {a, b} in S X S (compare [4, p. 166]).

TuEoREM 4.3. There is a reversible function & from @, onto M. such that
the following are equivalent:

(1) {F, U} belongs lo &, .

(2) U isin O and F is the function from S to H defined by the condition
that F(z)P = .2 [U(8) — 1]P for each {z, P} in S X G.

(3) Fisin @, and U is the function from S to H defined by the condition that
U(x)P = T [t + dFIP for each {x, P} in S X G.
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Remark. 1In the purely linear case, if {F, U} is in &, then U is a solution of
a certain left-integral equation (see [4, Theorem 9.3]).

TaEOREM 4.4. There is a reversible function gl from @, onto M2 such that
the following are equivalent:

(1) {F, U} belongs to &, .

(2) U isin M, and F is the function from S to H defined by the condition
that F(z)P = )" [1 — U(5)]P for each {x, P} in S X G.

(3) Fisin @, and U is the function from S to H defined by the condition that
U@)P = . [I'[1 + dF)P for each {z, P} in S X G.

(4) Fisin @, and U is a function from S each value of which is a function
Sfrom G to G such that, for each P in G, U( )P is a member of $(e, P) and, for
each x in S,

U)P = P+ (R) f aF-U( )P,

Indication of proofs. The fully additive members of ©@ which are invariant
with respect to ¢, as in Theorem 4.1(1), are of the form dF for F in @, . The
mappings & and &, arise as follows (see Theorem 4.2): if F is in @, and
W = &(dF) then &,(F) = W(e, ) and &(F) = W( ,e). The various
assertions are consequences of results from Sections 1 and 2.

THEOREM 4.5. If each of Fy and Fy is in @Q,, and Uy = &.(F:), and
Us = &.(F,), then the following hold:

(1) In order that Ui(x)Us(z) = 1 for each x in S, it ¢s necessary and suf-
Jicient that there exist a function v from O to the nonnegative real numbers such
that, for each {z, y} in © and P in @, .2." v = 0 and

(1 4 dFi(z, Il — dFs(z, y)IP — P || < v(z, )| P .

(2) In order that Ux(x)Ui(x) = 1 for each x in S, 1t ¢s necessary and suf-
ficient that there exist a function v from O to the nonnegative real numbers such
that, for each {z, y} in © and P in G, ,)_"v = 0 and

|1 — dFs(z, YL + dFi(z, IP — P < v(z, »)| P .
Indication of proof. There is a member V of O® such that

(1) V(z,y) = dFy(z, y) if {z, y} isin 0,
and (iii) V is invariant with respect to ¢ as in Theorem 4.1(1).

Now, if W = &§(V) then Uy = W(e, )and U= W( ,e). The result follows
from an argument which parallels that given for Theorem 1.2.

Remark. The result of Corollary 2.2 is available here, to give approximation
theorems for members of 9> and o2 , in accordance with the result described
in Theorem 4.2.
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5. An example

Let k& be a positive number. Let T be the function defined on the real
line as follows:

To(z) = 1/(1 — x) if 2<1-—1/k,
=k+ k@ —1+1/k) if 1 —1/k<a.
Let T be the function defined on the real line as follows:
Tyz) = —k 4+ (1 + &) (z + tan” k) if 2 < —tan? k,
= tan x if —tan 'k < z < tan™ k,

E+ (1 + ) (z — tan™" k) if tan 'k < 7.

I

Note that T, and T, are, respectively, increasing functions from the real
line onto the positive numbers and onto the real line, and are solutions of the
nonlinear differential equations:

W = inf (K, ') and o = inf (K, «’) + 1.

Let A, and A, denote the inverses of 7T and 7'y, respectively.

Now, let {S, ¢} be a semigroup such that S is a set of nonnegative real num-
bers which contains all nonnegative rational numbers and, for each {z, y} in
S X 8, o(z, y) = & + y, so that the linear ordering O determined by o is
the intersection of S X S with the usual (<) ordering of the real line. Let
the normed group {@, -+, || ||} be as follows: @ is the set of all ordered pairs
{r, m} such that r is a real number and m = 0 or m = 1; addition is ordinary
addition in the first component and modulo-2 addition in the second; for each
{r,m}in@, || {r,m} ]| = |r| 4+ m. Thus, {G, +} is the direct sum of the
additive group of real numbers and a group of order two.

It can be shown that a function F, from S to H, belongs to &, only in case
there exists a positive number b and a function kA from G to the set of real
numbers such that 2(0, 0) = 0 and

(1) F(x){r, m} = {zh(r, m), 0} for each x in S and {r, m} in G,
and (ii) for each {r, m} and {s, n} in G,

| h(r, m) — h(s, n) [ < b|| {r,m} — {s,n} [.
Moreover, for such an F (and b and &), we have the formulas
(1 4+ F(2)(1 = F(z)l{r, n} = [1 4+ F(z)l{r — zh(r, n), n}

= {r — ah(r, n) + xh(r — xh(r, n), n), n},
so that

L+ F(@)I1 — F(x)f{r,n} — {r,n} |

Il

| zh(r — zh(r,n),n) — zh(r,n) |
xb” {V - xh(r, 71/), n} - {T> n} ”

ab| zh(r, n) | < 2% {r, n} |,

IA
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and, similarly,

I = F@IL + F@)lfr, n} — {r, o} | < & ([{r, n} || = (|7 | + n);
therefore the conditions contemplated in Theorem 4.5 (with F; = F,) are
automatically satisfied in the present setting.

Now, for the example, let h(r, n) = —[inf (X, #*) + n]; the function F,
as in (1) of the preceding paragraph, belongs to @, (indeed, we may take b as
sup (2k, 1)). The function U, = &.(F) (as in Theorem 4.4) is readily found
to be given by the following formulas:

Us(z){r, 0} = {—To(Ao(—7) — ), 0} or {To(Ao(r) + z), 0}
according as r < 0 or » > 0, with Ux(x){0, 0} = {0, 0}, and
Us(2){r, 1} = {T1(As(r) + =), 1}.
The funection U; = 8‘1,(17 ) (as in Theorem 4.3) is found by Theorem 4.5 and
the last observation of the preceding paragraph; for instance,
Ui(z){r, 1} = {T1(As(r) — =), 1}.
Finally, the function W, determined on S X S by
W(x,y) = Uy —2) if 0<a<y,
= Uz —y) if 0<y<ug,
is seen, by Theorem 4.2, to be the member &(dF') of the class O9N.

Remark. It should be pointed out that, in this example, there is exhibited
a method of analyzing the integral equation (1) for the case that the function
TV satisfies all the conditions of membership in the class 0G except that
V(x, y)0 # 0 for some {z, y} in S X S. Namely, one considers the direct
sum G’ of the group ¢ and the group of order two mentioned here, and in this
context defines for each {z, y} in S X S

if there exists a member 8 of 0@" such that, if {z, y} isin S X S,
| Ve, )0 < B(z, ),

then it is easy to see that V' does belong to the corresponding class 0@’ for
this enlarged group; subsequent procedures can parallel those of Section 3.
Thus, one sees some point in the generality obtained by imposing only a group
structure, rather than a vector space structure, on (7 in the initial development.
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