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I. Introduction and Statement of Results
If A is an r-square complex matrix then the permanent of A is defined by

per (A) --sr II=l
where the summation extends over the whole symmetric group Sr of degree
r. This function has considerable significance in certain combinatorial prob-
lems [7, p. 24]. The problem of finding relationships between rather awkward
combinatorial matrix functions such as the permanent, and the more classical
algebraic invariants is one of considerable interest and importance.

In a paper in the Illinois Journal in 1957 [3] the firs.t of the present authors
obtained an upper bound for the sum of the squares of all (n) r-square sub-
determinants of an n-square matrix A. This work was very recently gen-
eralized and improved in an interesting paper by Ryff [6]. In the present
paper we turn our attention to the substantially more difficult problem of
obtaining a significant upper bound for the sum of the squares of the absolute
values of all () r-square subpermanents of an n-square complex matrix A.
We then apply our main result to the ease of an incidence matrix for a (v, k, X)
configuration (Theorem 3).
We shall use the following notation throughout the paper. If A has real

eigenvalues, then Xl(A) _>_ X(A) >- >- X(A) will denote these. The
),1/2 *Asingular values ofA (defined to be the numbers ,,. (A >_- 0, j 1, 2, n)

will be designated byl(A) >__ a(A) __> >__ a(A). If1 -< r -< n, then
Qr, will denote the set of N () strictly increasing sequences w,
1 -< < 0. < < 0 <__ n; G, is the set of (+r-) non-decreasing se-
quences , 1 -< w __< w =< _<_ 50r n. If a and are in G,n then A[a
is the r-square matrix whose i, j entry is a,a, i, j 1, 2,..., r.
If at _>- a. >- >_- a >__ 0 is any set of n non-negative numbers then there
are (+-) homogeneous products ao I=a ,we G,. Now, although

r--1a >= a a are the two largest of these products, it is not true generally that
the ordering according o magnitude and the lexicographic ordering of the

r--2 a aa). Wea, Gr, coincide (e.g. a a. is not necessarily smaller than -1

let L(a, a, ..., a) designate the sum of the largest N (n) of the
(+-) homogeneous products a.
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If Zl, z2, z are complex numbers of modulus 1, then a matrix

A P diag (zl, z., z),

where P is a permutation matrix, is called a generalized permutation matric,

Our main result is

THEOREM 1. If 1 <= r <- n and A is an n-square complex matrix, then

8r(A .,Q [per A[a ]
(1)

2(A))"<- Lr(o(A ), a2(A ), ...,
If r 1 equality holds in (1). If r > 1 and A has no zero row (or no zero
column), then equality holds in 1 if and only if A R where > 0 and R is
a generalized permutation matrix.

COROLLARY 1. Under the same hypotheses, if N () then
2r8r(A) - al (A) + (N 1)o/(r-i) (A)a(A).

For r > 1 the equality statement is the same as in Theorem 1.

We are interested in applying these results to doubly stochastic matrices
A (ao.)’ i.e. those satisfying

ao_-> 0, i,j 1, 2, ...,n,

7 ao 1, j 1, 2, n,

E=1 ao" 1, i 1, 2, n.

THEOnEM 2. If A is n-square doubly stochastic and N (), then

(2) st(A) =< 1 + (N- 1)a(A).
Equality holds in (2) for r > 1 if and only if A is a permutation matrix.

We remark that for a stochastic matrix A, [per A[a I] _-< 1, a and
in Qr,. However, this estimate yields only the trivial inequality s(A __< N
whereas (2) has the immediate

COROLLARY 2. If A is an n-square doubly stochastic matrix, then

(3) s(A) <- N.

Equality holds in (3) for r >= 1 if and only if A is a permutation matrix.

The incidence matrix of a (v, It, X) configuration [7, p. 102] is v-square normal
and satisfies AA* A*A (to X )I J where I is the v-square identity
matrix andJ is the v-square matrix all of whose entries are 1. The numbers v,
/c and X are positive integers and satisfy 0 < X < lc < v, and (/c X) =/c Xv;
/c-lA is doubly stochastic and a(A) /c=, a(A) /c X, j 2, ..., v.
Directly applying Corollary 1 we have
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THEOREM 3. If A is the incidence matrix of a (v, ]c, ),) configuration, then

(A) _<_ ?+ (()- 1)-)(- ).

Equality holds for r 1. The inequality is always strict for r > 1.

!1. Proofs
Let Pr(A denote the (+;-)-square r induced matrix of A [4]" recall that

if a and fl are in G. ordered lexicographically, then the a, fl entry of P(A
is (per A[alfl])/((a)(fl))/, where (a) is the product of the factorials of
the multiplicities of the distinct integers in a, e.g. (1, 1, 1, 3, 3, 4, 4, 4)
32 3 t. Let Qr(A) be the N-square principal submatrix of Pr(A) whose
a, fl entry, fora, fl in Qr,n ordered lexicographically, iS(Pr(A ). per A[a ill.
Observe that

s(A trace ((Q(A) *Qr(A Qr(A ,
where indicates the Euclidean norm. The idea of the proof of the in-
equality prt of Theorem 1 is to obtain an upper bound on the Euclidean norm
of Qr(A) as principal submtrix of Pr(A).
The discussion of the cse of equality is, as usual, difflcult and requires the

use of the symmetric product of vectors. We temporarily defer this
pleasant business.
We require the elementary

LEMMA 1. Let Y be an m-square complex matrix and let X be a ranlc q, It-square
principal submatrix of Y. Then

if

then there exists an m-square permutation matrix Q such that

(5) Y Q(X W)Q

where W is m k )-square.

Prog. Let X (x), Y (y) and let (il, i, -.., i)eQ. be the
sequence for which x,t y,, s, 1, 2, 1. Set X PYP, where P
is the m-square projection matrix whose i,, i, entry is 1, s 1, 2, , and
whose remaining entries are 0. Then clearly

x x trc (xx).
Now, by an inequality due o A. Horn [2]

(P)(Y) IIY=, (), v , , "", q.
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(The inequality IIv=l a(AB) <= II= a(A)at(B) is proved first for p 1,
(the Cauchy-Schwarz inequality), and then for p > 1 by applying the p 1
case to the compound matrix of AB [8].)

Thus .log a.(X) -< V=l log at(Y), p 1,2, ...,q,

and by applying a lemma of G. P61ya [5], using the convex non-decreasing
function (t) e2t, we have

=(log a(X)) <= =(log at(Y));
or

the inequality (4).
Suppose X 12 E-- a(Y) and choose a permutation anatrix Q such that

Then

y*y Qr [[X*X + V*V
\U*X + W*V

A result of K. Fan [1] implies that

-’= a( Y) =(Y’Y)
is at least as great as the sum of any k main diagonal elements of Y*Y. Thus

x / v trace (X*X + V’V) <- E:I a(Y) X

and hence V O. Similarly, by examining YY* we conclude that U 0
and Y has the form (5).

LEMMA 2.

(6)
If A is an n-square complex matrix then

st(A) <= Lr(a2(A ), a(A ), ..., a,(A ).

If equality holds in (6), then

(P(A))., per A[a ]/(u(a)t(/))l/2 0

if aeQ,, and eGr,,, Q,, or if aeGr,n, aeQ,, and eQr,,.

Proof. We remark that for r 1 the condition of equality is vacuous and
(6) is always equality. The matrix P(A) is a multiplicative function of A
and the characteristic roots of P(A) are the ("+-) homogeneous products
of degree r in the characteristic roots of A. Thus

(P(A) )*P(A Pr(A*)P(A P(A*A
and the singular values of P(A are the homogeneous products of degree r in
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the singular values of A. It follows that the sum of the squares of the largest
(A)). Thus, ifN singular values of Pr(A) is just Lr(a(A), a.(A),

we take Y Pr(A), X Qr(A), and/ N in Lemma 1, then we have

8r(A Za,Qr,,, per A[a [] 12
Q,(A) =< L(a(A), a(A), a,(A2 )).

This proves (6). If equality holds in (6), then by Lemma 1 we know that
P(A is zero in the rows (columns) in which Q,(A lies, outside the columns
(rows) in which Q,(A) lies. In other words, (P,(A)
and B Q,,n, or if a Q,, and B e Q,,. But

(Pr(A)),, per A[a B]/((a)())l/2,
completing the proof of the lemma.
To complete our arguments we need the idea of the symmetric product of

vectors. A coordinate definition of this is sufficient for our purpose.
Let

xi (xl,x., ...,x) and let X- (x), i 1,2, ...,r,

j= 1, 2, ...,n.

Then xl" x" "xr, the symmetric product of xl, x2, x,, is defined to be
ththe (n+:-l).vector whose a component, a e G,, ordered lexicographically, is

per X[1, 2, ..., r all(r! (a)

We remark that x’x2" "x is symmetric in the x, i.e. for each permuta-
tion a e S,

X(1)’Xa(2)*’’’:X(r) Xl" X2" Xr

If (u, v) u.O, denotes the usual inner product of two vectors
u (Ul, u, ..., u), (v, ., ), then it is known [4] that

1(7) (x:x" "x, y’y2" "y) per ((x, y)),

and moreover
P(A )(x.’x2" "xr) (Axl)" (Axe)’... "(Axe).

Let el, e., ..., e. betheunitn-vectors, e (ti, $, ..., i), i 1, 2, ..., n.
Then from (7), the vectors (e,’e,’... "e,,)/((a)/r!)1 are the unit (+’)-
vectors. It is easy to see that

(/(a)()/r!)(P(A ),, (P(A )e’e" "ea e,,’e," "e,)

8 (Ae"Ae’..."Ae, e,," e,’..." e,

(A()’A(): "A (’), e.’e.,"... "e.)

where A (*) is the t column of A. According to Lemma 2, if equality holds
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in (6) then
(9) (A (1). A (2).....A (r)

for all e Qr, and all a Qr,n.

LEMMA 3. Assume r > 1. If xl x2 x, are non-zero n-vectors and

for e Qr., and o Q.n then xt zt e() where (r e Sn and zl, z2, z, are
complex numbers.

Proof. We show first that if yi (yi, yi2, y,), i 1, 2, r, are
non-zero vectors and (y: y::. y, e,: e,. :.. e,,) 0 for a Q.n, then
fors 1, ...,n,ysy-8= 0fori j,i,j 1, 2, ...,r. LetY (y),
i 1, 2, r, j 1, 2, n. If Y(’) 0 we can assume by the symmetry
of the symmetric product that y, 0, i 1, 2, p, y, 0, i p - 1,
p + 2, r. Since the sequence (s, s, s) is not in Q.n it follows that

(y:y::...:yr,e,:e:...:e) lI-_yi, 0

and hence p < r. It is shown in [4] that if y+’y,+’...’y 0 then some
y O, p 1 <- <= r. Hence there is at least one non-decreasing sequence
jl _< j -< =< j_ such that

per Y[p - 1, p - 2, ..., r lj, j2 ..., j,_] O.

Consider b (y" y2" "" y, es" e," ." e,: e." e12" "" e.,_) where there are p
occurrences of e. If p > 1 then (s, s, s, j, j, jr_,) is not in Q,
and hence b 0. But

1
b per

Y[b +. 1, ..., r lj, j-]

yi, per Y[p- 1 ...,rlj ...,j-] O.
r i=l

Thus p 1 and the above assertion is proved.
To complete the proof of the lemma, let X be the n-square matrix (x.)

where x (x, x, ..., x). Now by the above, X(’) has at most one
non-zero entry in it, s 1, 2, n. Thus X has at most n non-zero entries
in it. On the other hand, if X were to have fewer than n non-zero entries
then some row of X would have to be 0, i.e. some x 0. Thus X has pre-
cisely n non-zero entries, one in each column and one in each row. This
proves the lemma.
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To prove Theorem 1 we argue as follows. Lemma 2 gives us the inequality.
To discuss equality we note from (9) and Lemma 3 that

A Mdiag (zl,z, ...,z)

where M is a permutation matrix and zl, z., ..., z are non-zero complex
numbers. The singular values of A are clearly z I, [z. I, zn I, and thus

(A)) Lr(Iz ).(A) ,anLr(a(A),a ]z], ]z[
On the other hand it is easy to compute that

s(A .., ]per A[a ]]] Er(] z [, z , z ),
where E is the r elementary symmetric function of the indicated numbers.
Thus, in the case of equality

(10) 8r(A L(] z , z , z ) E( z , z [, ..., z [).
LEMMA 4. If a a a > 0 and r > 1 then

E(a, a, ..., a) L(a, a, a) if and only if a a,..

Proof. Suppose a, > a+ and equality holds. Then

Er(al a a a+ E_(a a_ a+ a,

+ (a + a+)Er_(a, ..., a_, a+, ..., a,)

+ E(a, ..., a,_, a+, ..., a)
< a E_(a, a_, a+, a)

+ (a + a+)E_(a, ..., a_, a+, ..., a,)

+ E(a, ..., a_, a+, ..., a).

This last expression is a sum of N homogeneous products of degree r in
a, ..., a and hence is no greater than Lr(a, a2, ’’’, an). This contra-
diction completes the proof.
From (10) and Lemma 4 we conclude in the case of’equality in Theorem 1

that [z [z and hence

eiO2 ionA Mdiag(e, ...,e ), 0real, i 1,2, ,n;

thus A R where R is a generalized permutation matrix. Conversely if
A R it follows immediately that the equality holds in (1). This proves
Theorem 1.

Corollary 1 is an immediate consequence of

2(A),L(a, ,a) a + (N- 1)ai-a, ai a i 1 n.

If A is doubly stochastic no row or column is 0 and moreover a(A) 1.
Thus the inequality (2) follows from Corollary 1. The only doubly sto-
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chastic generalized permutation matrices are the permutation matrices and
hence the case of equality in Theorem 2 follows. Corollary 2 follows similarly.
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